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Abstract: Decision-making in urologic oncology involves integrating multiple clinical data to provide
an answer to the needs of a single patient. Although the practice of medicine has always been an
“art” involving experience, clinical data, scientific evidence and judgment, the creation of specialties
and subspecialties has multiplied the challenges faced every day by physicians. In the last decades,
with the field of urologic oncology becoming more and more complex, there has been a rise in
tools capable of compounding several pieces of information and supporting clinical judgment and
experience when approaching a difficult decision. The vast majority of these tools provide a risk of a
certain event based on various information integrated in a mathematical model. Specifically, most
decision-making tools in the field of urologic focus on the preoperative or postoperative phase and
provide a prognostic or predictive risk assessment based on the available clinical and pathological
data. More recently, imaging and genomic features started to be incorporated in these models in order
to improve their accuracy. Genomic classifiers, look-up tables, regression trees, risk-stratification
tools and nomograms are all examples of this effort. Nomograms are by far the most frequently used
in clinical practice, but are also among the most controversial of these tools. This critical, narrative
review will focus on the use, diffusion and limitations of nomograms in the field of urologic oncology.
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1. Introduction

A nomogram is a graphical calculating device, a two-dimensional diagram designed
to allow the approximate graphical computation of a mathematical function or equation.
The graphical presentation may be a number of rulers where variables are listed separately,
with a number of points assigned to a given magnitude of the variable. Then, the score
obtained by the sum of all the variables is matched to a scale of outcome. In another version,
the formula is in a computer or smartphone-based calculator, where specific variables are
entered, and the results of the nomogram are provided to the user [1].

The development of a nomogram is a multi-phased process. Firstly, a clinical popu-
lation where the nomogram will apply and a relevant clinical question should be chosen,
with a clear definition of which outcome(s) are expected to be predicted by the tool.
In a second phase, the variables (covariates) are selected. This process is crucial: the
choice of covariates will have a profound influence on the performance of the nomo-
gram, and it should be based on clinical significance (derived from existing evidence)
rather than on statistical significance alone. Moreover, a statistical model must be chosen:
logistic regression analysis with binary outcome is the most commonly used mathematical
formula for prediction modelling in urology, while for survival analysis Cox proportional
hazards model is used most of the times to fit Kaplan–Meier survival curves.
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Before a widespread clinical use, the authors assess the performance of the nomogram:
validation, discrimination and calibration. Validation refers to testing the tool in different
populations, possibly unrelated to the training/development population (external valida-
tion). When external validation is not possible, internal validation (i.e., on the same dataset
used for development) might still be acceptable but requires improvement using statistical
methods; the more common are random extractions of different subsets of the database.
On the other hand, calibration measures the precision of the estimate risk to predict the
observed risk, better expressed in terms of agreement between predicted and observed
probabilities. A calibration plot is commonly used to depict this aspect in a graphical
form. Finally, discrimination is the ability of the nomogram to separate patients who will
experience a certain outcome from those who will not, and it is usually expressed as an
area under the curve (AUC) of a receiver-operating characteristic curve (ROC), also called
concordance index (CI). The CI may vary from 0.5 (where the use of the nomogram is equal
to throwing a coin—no better than chance) to 1 (the virtually impossible situation where
the nomogram provides a perfect prediction in 100% of the cases).

Steyerberg et al. [2] have described a total of seven structured steps for the devel-
opment of a prediction model: (1) consideration of the research question and initial data
inspection; (2) coding of predictors; (3) model specification; (4) model estimation; (5) eval-
uation of model performance; (6) internal validation; and (7) model presentation. The
model should then be validated using four key aspects: (1) calibration-in-the-large (the
model intercept); (2) calibration slope; (3) discrimination, with a concordance statistic; and
(4) clinical usefulness, involving a decision-curve analysis.

Ideally, to reach the highest possible level of evidence for adoption in clinical practice,
every nomogram should prove its efficacy in a prospective, randomized clinical trial (RCT).
The urological community, however, is very aware of the risk connected with a strict
application of this principle. Most of the results discussed in the present review, in fact,
come from good-level retrospective studies, which play an important role in providing
timely and accurate clinical answers.

2. Prostate Cancer

Several moments in the diagnostic and therapeutic pathway of prostate cancer (pCa)
may deserve a tool to assist in decision-making.

2.1. Diagnostic Phase

The first difficult question posed by a man with a clinical suspicion of pCa is “to biopsy
or not”. Prostate biopsy is an invasive procedure related with risks of adverse events, such
as hematuria, infection, worsening of urinary symptoms and even mortality. Furthermore,
unnecessary prostate biopsies lead to over diagnosis of indolent pCa, with impact on
quality of life and other health-related issues. For such reasons, several strategies have
been developed in order to reduce the number of prostate biopsies identifying the men at
higher risk of signification of pCa. Prostatic specific antigen (PSA) alone or free/total (F/T)
PSA are widely used to stratify pre-biopsy pCa risk [3]. In order to improve the diagnostic
performance of PSA, prostate health index (PHI) combines three forms of PSA: total PSA,
free PSA and the isoform [−2] proPSA, and it can outperform total and free PSA for pCa
detection on biopsy and have an association with aggressive forms of pCa [4–6]. PHI can
also be combined with prostate volume to obtain PHI density, improving its diagnostic
yield [7], or even with mpMRI with good results [8]. Since there is increasing evidence that
pCa risk is multifactorial and not completely assessed by a single marker, prostate cancer
risk calculators aim to estimate an individual’s risk for pCa based on multiple factors.

European Randomized Study of Screening for Prostate Cancer (ERSPC) calculator
is available in different versions: two for lay people, where age, family history, urinary
symptoms and PSA are taken into consideration; and two for physicians [9]. Another
similar tool is the Prostate Cancer Prevention Trial (PCPT) risk calculator, which includes
PSA, family history, digital rectal examination (DRE) and history of a prior negative biopsy.
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More recently, the calculator has been updated to include the results of urinary biomarkers
such as pCa3 and MiPS, with improvement of diagnostic performance. However, a head-
to-head comparison has shown that ERSPC outperforms PCPT in the prediction of any
pCa and clinically-significant pCa. The Sunnybrook nomogram [10] combines age, urinary
symptoms, PSA, free PSA, ethnic background, family history and digital rectal examination
(DRE) to provide an estimate of pCa risk.

It is important to note that these calculators have not been assessed in RCTs, and
their potential role in reducing pCa mortality remains unknown. For these reasons, all
these calculators/nomograms are currently not recommended by National Comprehensive
Cancer Network (NCCN) guidelines to decide whether prostate biopsy is indicated.

Nowadays these pre-biopsy tools are challenged by the growing role of upfront
mpMRI. Van Leeuwen et al. [11] developed a nomogram integrating prostate MRI and
clinical features to predict clinically significant pCa. The performance of the nomograms
was greatly improved by inclusion of MRI results: application of the model would reduce
28% of prostate biopsies, while missing 2.6% of clinically significant pCa. However, the
general applicability of the model has been questioned, especially because the range of
PSA of the training population was quite narrow. Moreover, the multivariable model
was not compared to MRI alone, it is therefore possible that most of the predictive value
in this model is provided by MRI alone, which could in fact “obscure” the effect of the
other variables.

More recently Bjurlin et al. showed that PSA density, age and MRI suspicion score can
predict pCa on combined MRI-targeted and systematic biopsy and developed a nomogram
including these data [12] with a ROC AUC for overall and clinically significant pCa
detection of 0.78 and 0.84 for men without prior biopsy. Radtke et al. [13] developed a
multivariable model on over 1100 men who underwent mpMRI prior to MRI/transrectal
ultrasound fusion biopsy. The tool includes PSA, prostate volume, DRE and PI-RADS score
as significant predictors of significant prostate cancer.

However, the role of MRI-based nomograms is not universally accepted: while the
widespread use of upfront mpMRI is certainly gaining more and more space, the limitations
of mpMRI (including the risk of missing clinically-significant pCa) must be carefully
considered. As a matter of fact, the use of mpMRI as a component of a model and not as a
single tool might indeed mitigate this risk. As always, the indication for prostate biopsy
should be based on informed discussion with the patients and not merely on the results
given by nomograms (with or without MRI).

2.2. Post-Diagnosis Decision Making

Another controversial setting is post-diagnosis decision making. An accurate risk
stratification is very important in providing advice on the possible management of clinically
localized pCa, given the different side effects associated with each treatment. This is
particularly important when active surveillance (AS) is a viable option.

In 2008, Kattan et al. developed a statistical model to predict 120-month survival for
pCa men not treated with curative intent. The variables included clinical stage, biopsy
Gleason grade, method of diagnosis (TURP vs. biopsy), percent cancer, baseline PSA, age
at diagnosis and the use hormonal therapy. Since then a number of predictive models have
been developed based on clinicopathological variables [14,15]. Recently, Iremashvili et al.
evaluated the ability of Kattan and Truong nomograms to select patients with Gleason
3 + 3 or 3 + 4 organ-confined pCa in a radical prostatectomy cohort, and compared it with
that of AS criteria of John Hopkins (JH), University of California-San Francisco (UCSF)
and the Prostate Cancer Research International: Active Surveillance (PRIAS) protocol.
The results showed that nomograms were slightly more accurate than JH and UCSF but
did not perform better than PRIAS criteria, which in turn demonstrated optimal balance
between sensitivity and specificity in selecting patients with low-grade organ-confined
pCa [16]. On the same issue, Davis et al. [17] pooled data on men suitable for AS but
undergoing upfront radical prostatectomy and assessed the performance of four models
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in predicting non-clinically significant pCa (various definitions) and obtained AUCs from
0.618 to 0.664. These data suggest a moderate, non-completely convincing accuracy of
these models.

The use of mpMRI-derived information is promising also in this setting. Siddiqui
et al. developed and tested a model based on number of lesions, degree of suspicion at
MRI and lesion volume/prostate volume to predict the probability of AS disqualification
at subsequent biopsy. Defining a cutoff probability of 19% to 32% on the nomogram, the
authors found that 27% to 68% of patients could avoid the biopsy. However, this model
relies on a small cohort of rather selected patients and its applicability to the general
population might be questioned.

Finally, new biomarker assays performed on prostate biopsies are providing additional
insights on tumor biology and have shown promising results in risk reclassification during
the initial decision-making. OncotypeDX®, Prolaris®, ProMark® and Decipher have all
been evaluated in this clinical setting [18], and the first two are now approved for clinical
use by NCCN guidelines.

2.3. Before Primary Treatment

The evaluation of tumor extension and risk of residual/recurrent disease before pri-
mary treatment is definitely one of the most fertile areas for nomograms. The D’Amico
risk classification was one of the first multifactorial models to stratify pCa according
to adverse disease features and recurrence. Since then, many tools have been devel-
oped, mainly focusing on radical prostatectomy and aiming to predict lymph node inva-
sion, positive surgical margins and extracapsular extension at definitive pathology [19].
The issue of lymph nodes is particularly relevant because with an accurate definition of
pN+ risk a significant proportion of patients could avoid lymph node dissection and the
associated morbidity. Based on clinical and biopsy variables, several nomograms have
been developed [20,21]. One of the most used, the Briganti nomogram [22,23], is based
on PSA, clinical stage, primary and secondary biopsy Gleason grade and percentage of
positive cores, showing 87.6% accuracy and suggesting avoiding LND when the calculated
risk is less than 5%. In its more recent version, published by the same group, the percentage
of positive cores was subdivided into two categories (percentage of higher and lower grade
cores/total cores) and showed a 90.8% accuracy. Using a 7% cutoff, this model would
allow sparing almost 70% of pelvic lymph node dissections (PLNDs) with a risk of missing
N+ of 1.5%. Obviously, this new model lacks a wide external validation and therefore its
applicability to other RP populations is questionable.

Some authors have recently suggested that mpMRI could have a role in risk sub
stratification in the setting of Briganti’s calculated risk <5%, based on the high accuracy of
mpMRI for extracapsular extension (ECE), seminal vesicle invasion (SVI) or high-grade
disease detection (which in turn are associated with an increased risk of N+) [24].

Other well-known pre-RP nomograms are the Partin Tables [25] and the CAPRA
score [26], along with MSKCC, Cagiannos and Godoy nomograms [27,28].

Another frequent clinical question is how to select men with high-risk pCa who will
benefit the most from RP as opposed to men who are best served with other approaches.
To provide a definitive answer to this question would ultimately require a RCT rather than
a nomogram, however a multi-institutional group developed a model specifically aimed
to this issue [29], identifying 40% of patients with high-risk pCa who have a specimen-
confined disease at RP and improving the preoperative selection of these men.

As in the other setting, clinically based nomograms are challenged by the widespread
adoption of mpMRI for staging purposes. Several reports have shown that mpMRI-derived
information may have an incremental role when compared to clinical nomograms, although
with some controversies [30–33]. In particular, almost all the studies show a significant
performance of mpMRI (and improvement of nomograms accuracy) for local staging
(extracapsular extension, seminal vesicle invasion), while the incremental role of mpMRI
for nodal staging is limited (thus confirming the sub-optimal accuracy of mpMRI along with
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the good performance of nomograms in regards of this outcome). Martini et al. recently
published on a mpMRI-based nomogram predicting side-specific extracapsular extension
of prostate cancer on a model including PSA; highest ipsilateral biopsy Gleason grade;
highest ipsilateral percentage core involvement; and extracapsular invasion on mpMRI.
After internal validation, the model AUC was 82.11%, with excellent calibration especially
when compared with mpMRI prediction of ECE alone. This model has been externally
validated, with an AUC of 67.6%, however, the model showed a suboptimal calibration
and the incremental value of adding mpMRI results to the other clinical variables was not
statistically significant [34].

Several models based on similar integration are being presented in these years [35,36],
although most of these nomograms lack an external validation and a formal comparison
between these tolls has not been performed yet.

Gandaglia et al. developed a nomogram specifically aimed to predict lymph-node
invasion (LNI) in MRI-diagnosed pCa. Briganti 2012, Briganti 2017 and MSKCC showed
suboptimal performances in this subset; while a new model including PSA, cT stage,
maximum diameter of the index lesion on mpMRI, grade group on MRI-guided biopsy and
the presence of clinically significant pCa on concomitant systematic biopsy had an AUC of
86% [37]. This increased accuracy would translate into a higher number of unnecessary
LND spared and lower risk of missing positive LNI compared to the existing models.

Finally, a novel nomogram to predict side-specific EPE has been recently proposed by
Soeterik et al. The model includes PSA density, highest ipsilateral ISUP grade, side-specific
percentage of positive cores on systematic biopsy and ipsilateral clinical stage assessed by
both digital rectal examination and mpMRI. The use of mpMRI information significantly
increased the AUC, while the model based on PSA density, ISUP grade and mpMRI stage
was superior in terms of calibration [38].

When a head-to-head comparison between these nomograms was carried out, the
Cagiannos model and the 2012-Briganti showed the best calibrations and results at the
decision-curve analysis. On the other hand, the ability to avoid unnecessary lymph node
dissection and the C-index values were virtually the same for all the nomograms tested in
this study (Cagiannos, 2012-Briganti, Godoy and MSKCC) [39].

2.4. After Primary Treatment

After primary intervention, in particular when RP is performed, patients must be
re-stratified to establish the need of additional treatments. This is a critical moment since
post-RP treatments (in particular radiation therapy-RT-) carry a non-negligible risk of
toxic effects.

Specifically, in a man with risk factors for recurrence after RP there are two main
approaches: immediate adjuvant RT even in the setting of undetectable PSA or observation
and early salvage RT if PSA starts to rise. Clearly, an accurate selection of patients more
likely to need and benefit from RT and patients safely managed with observation would
allow sparing a relevant proportion of men these side effects.

The CAPRA-S score [40] is a scoring system based on PSA, pathological Gleason Score
(pGS), ECE and LNI (1 point each), positive surgical margins and SVI. Each point increase
in CAPRA-S score carries a HR of 1.54 of pCa recurrence. The Stephenson and the Kattan
nomograms [41,42] used similar variables obtaining good, but not optimal, accuracy. A com-
mon problem of these nomograms is that they rely largely on surgical/histopathological
variables and most of them use composite definitions of pCa recurrence, including biochem-
ical recurrence (BCR), clinical progression, need for salvage therapies and pCa mortality.
Moreover, while they carry a good prognostic value, their predictive role in stratifying
patients for additional therapies is more controversial.

To overcome these limitations, in the last 10 years several genomic-based biomarkers
have been developed to predict both recurrence risk and adjuvant/salvage RT (ART/SRT)
benefit. Of interest, Den et al. evaluated a cohort of 188 pCa patients at 10-year follow-up
after ART or SRT for high-risk features. Genomic classifier score (Decipher®) outperformed
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conventional risk-assessment tools. Moreover, men with low genomic classifier (GC) scores
could safely undergo salvage RT only in case of pCa recurrence, while patients with a high
GC score are best served with ART [43]. The same tool was then recently integrated in
a nomogram, which combines pathological variables such as pathological T stage (pT),
Gleason score and lymph node status with the genomic classifier results. The results were
provided as a sum of risk factors, including pT3b/T4 stage, GS 8-10, LNI and Decipher
score > 0.6. Patients with two or more risk factors receiving ART had a decreased recurrence
rate, while those with only one risk factor did not. This study indicates a possible way
to exploit both clinical and genomic information further improving prediction models.
Another interesting tool is PORTOS (Post-Operative Radiation Therapy Outcomes Score),
a biomarker proteomic tool based on protein expression of a panel of 24 genes, which
can predict individual response to RT after RP [44]. Prolaris® and PTEN loss are other
biomarkers used in this setting.

The high cost and the actual unavailability in many European countries are strong
limitations to the widespread use of biomarkers. However, as evidence accumulates on the
added benefit of these tools, it is possible that we will see an increase in clinical use of com-
posite models (clinical and biomarkers) as an aid in post-prostatectomy decision-making.

3. Bladder Cancer

Diagnostic, predictive and therapeutic dilemmas are frequent also in bladder cancer
(BC) management. Several tools and nomograms have been developed and apply to
different settings of the disease. The most obvious clinical distinction is between the
non-muscle invasive (NMIBC) setting and the muscle-invasive (MIBC) stage.

3.1. NMIBC: Prediction of Recurrence, Progression and Response to Treatment

When approaching a bladder tumor, the first step is almost invariably transurethral
resection to evaluate the bladder status, obtain histology and eradicate the cancer whenever
possible. Then, if NMIBC is confirmed, risk stratification is necessary to assess the need of
additional treatments and optimize the follow-up schedule.

The European Association of Urology (EAU) guidelines stratify patients into three
main groups: low, intermediate and high risk, but strongly recommend the use of two
alternative models. The EORTC [45] scoring system is based on six clinical and pathological
factors: number of tumors, diameter, previous recurrence, T stage, grade and concomitant
carcinoma in situ (CIS). The sum will provide a recurrence score ranging 0–17 and a
progression score ranging 0–23. The use of this system is limited by the exclusion of patients
with CIS alone, the fact that no second-look TUR was performed in most patients and the
very low rates of BCG (7%). A more recent version of the EORTC system overcomes the
latter limitation and applies to patients treated with BCG induction and maintenance [46].

The Club Urológico Espanol de Tratamiento Oncológico (CUETO) provided another
tool based on different trials evaluating BCG treatments [47].

Notwithstanding these limitations, the EORTC and CUETO systems are externally
validated [48,49].

In 2005, a bladder cancer nomogram [50] was designed to predict the risk of recurrence
and progression in NMIBC patients based on a multi-institutional cohort of nearly 2681 pa-
tients, including also a biomarker (nuclear matrix protein) and showing an accuracy of at
least 84% for predicting BC recurrence. The main aim of this nomogram was to optimize
follow-up schedules.

A 2015 review by Kluth et al. [51] listed six scores in addition to EORTC and CUETO
and five NMIBC nomograms. Unfortunately, only one of these nomograms received
external validation and applies to the Japanese population [52].

Since a considerable number of biomarkers have shown prognostic relevance in BC,
their incorporation into nomograms is seen as the next frontier for improving tools and
nomograms [53].
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CDNA microarray multi-gene classifiers were developed by Dyrskjøt et al. [54] to
predict pT stage, CIS and progression. Fristrup et al. [55] analyzed Ta/T1 tumors of
genetically-different populations (Danish, Swedish, Spanish and Taiwanese) and defined
four pivotal markers (TRIM29, UBE2C cyclin D1 and MCM7) acting as independent
predictors of NMIBC progression.

On the other hand, Lindgren et al. [56] analyzed cDNA array to identify two intrinsic
molecular subtypes differing in terms of gene expression, mutation profiles, level of ge-
nomic instability as well as in BC-free survival. Sjödahl et al. [57] analyzed 307 advanced
bladder cancers and found 28 markers to classify urothelial carcinoma into urothelial-like,
genomically unstable, basal/SCC-like, mesenchymal-like and small-cell/neuroendocrine-
like. This further enhanced the complexity of BC molecular studies suggesting a sys-
tematic disagreement between mRNA profiling and by immunohistochemical profiling
and therefore highlighting the need of a combination of these techniques to provide
adequate classification.

High-risk NMIBC sub-stratification in often critical to identify potential candidates to
early cystectomy due to the progression risk with conservative management.
Van Kessel et al. [58] investigated the incremental value of biomarkers to improve NMIBC
risk stratification with regards to progression and studied multiple markers of methyla-
tion and mutation. These markers were then incorporated into an EORTC table. Taking
into consideration the progression rate for high-risk patients according to EAU/EORTC
(4.25/year/100 patients), a combination of FGFR3 mutation status and GATA2 methyla-
tion status was able to reclassify these patients into a good class (26.2% with a progres-
sion rate of 0.86), a moderate class (49.7% of patients, 4.32) and a poor class—very high
risk (24.0%, 7.66).

From the clinical standpoint, it is not completely clear in this paper how many patients
would have been in the ‘highest risk’ EAU subcategories and therefore the added benefit of
biomarker in this specific setting could not be assessed. However, these biomarkers could
be worth using also in intermediate or even low-risk categories, but this needs to be further
explored and validated in other studies.

Finally, a number of studies focused on BCG response in link with genetic variations.
As summarized in a recent systematic review [59], most works analyzed single variants on
rather small groups of patients without validation. However, several pathways deserve
attention: inflammatory genes (particularly polymorphisms in IL-6, IL-8 and TNF-alpha),
glutathione pathway genes (GSS, GPX2), nucleotide excision repair (NER) genes, sonic
hedgehog (Shh) genes and apoptosis genes. Since single biomarkers seem insufficient to
explain the complexity of BCG antitumor effect, further research should evaluate combina-
tion of biomarkers in larger studies, and then a well-designed predictive model for clinical
use could be built.

3.2. MIBC: Prediction of RC Outcomes and Long-Term Survival

As far as the cystectomy population is concerned, two main areas of interest are
present: the prediction of outcomes at radical cystectomy in order to counsel patients and
optimize access to additional (particularly neoadjuvant chemotherapy-NAC-) treatments
and the long-term oncological prognosis after primary treatment, in order to select patients
for adjuvant therapies.

The Karakiewicz nomogram, published in 2006, relies on T stage, 1973 WHO tumor
grade, presence of carcinoma in situ, age, gender and delivery of neoadjuvant chemother-
apy and showed a better performance than TUR stage alone to predict pT3-4 at RC [60].
Similarly, the Green’s model excludes NAC patients and predicts non-organ confined
disease at RC using T stage, lymphovascular invasion (LVI) and radiographic evidence of
non-organ confined disease or hydronephrosis [61]. Both tools received external validation,
but the Green’s one is more recent and includes more contemporary variables (in particular
CT/MRI features). The main use of this nomogram could be a better selection of NAC
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candidates, but this is not supported by the guidelines or strong clinical evidence at the
present moment.

In 2015 Kluth et al. [51] summarized BC nomograms reporting six nomograms pre-
dicting adverse RC pathology with similar variables and accuracies ranging 68%–83%.
Unfortunately, almost all lacked external validation and their clinical utility is questionable.

When disease recurrence and survival after RC are taken into consideration, the same
review provides 28 publications. Most of these nomograms rely on clinical and pathological
features (T and N stage, pathologic tumor grade, presence of LVI and CIS, administration
of neoadjuvant or adjuvant chemotherapy and/or radiation therapy), providing RFS, CSS
and seldom OS estimates with accuracies ranging 64%–87%. Also in this setting, many
models are not externally validated (only nine out of 28). However, some of these studies
deserve further attention.

A postoperative nomogram was developed and published by the International Bladder
Cancer Nomogram Consortium (IBCNC) [62]. This tool helps to predict the five-year risk
of disease recurrence based on age, time from diagnosis to surgery, gender, pathologic
tumor stage, tumor grade, histologic type and N status. A discrimination (c-index) analysis
showed a value of 0.78, which was compared to and outperformed the TNM alone or the
pathologic group model.

Vickers et al. evaluated the same model using a decision curve analysis to establish
whether the nomogram can improve decision making in choosing candidates to adju-
vant chemotherapy after RC. Analyzing 4462 patients, the authors compared different
cut-off levels provided by the nomogram (10%, 25% and 70% risk of five-year disease
recurrence) and TNM pT/pN stage criteria and found that the use of the nomogram outper-
formed TNM stage for the indication to receive adjuvant chemotherapy in every scenario.
In particular, the use of a nomogram-based decision resulted in 60 fewer chemotherapy
treatments per 1000 patients without any increase in recurrence rates.

On the same page, the Bladder Cancer Research Consortium (BCRC) nomogram [63]
is based on pT/pN status, tumor grade, presence of LVI and CIS at RC, and the use of
chemotherapy (neoadjuvant, adjuvant or both) and/or radiation therapy. This model can
predict the risk of disease recurrence, cancer-specific mortality and overall mortality at
different time intervals with c-indexes of 0.78 for recurrence and CSM and 0.73 for OM.

As we have shown, most MIBC nomograms focus on RC outcomes. International
guidelines currently recommend neoadjuvant chemotherapy (NAC) in all MIBC before RC.
However, there are subsets of patients who clearly benefit from this treatment and others
who do not or, even worse, progress during NAC. For these reasons, a tool predicting the
response to NAC and its oncological impact would be really useful. Steps in this direc-
tion started several years ago: in 2005 Takata et al. [64] carried out a genome-wide study
and identified 14 “predictive” genes showing the most significant differences between
responders and non-responders. More recently, different molecular subtypes have been
identified based on multi-gene expression (transcriptome analysis) and these subtypes
(including claudin-low, basal, luminal-infiltrated and luminal tumors) had different prog-
nostic features. In particular, basal tumors showed the most improvement in OS with
NAC compared with surgery alone, while luminal tumors had the best survival regardless
of NAC and claudin-low tumors had poor prognosis irrespective of treatment regimen,
clearly setting the need for more effective therapies [65]. However, these biomarkers have
not entered clinical practice, also because they have not yet been translated into easy-to-use
clinical tools. Several trials are currently analyzing the impact of molecular subtyping in
choosing individualized therapies and the results are eagerly awaited to provide answers
to these important questions [66].

Despite their potential utility in this specific setting, however, nomograms and predic-
tive models are still underused in the setting of MIBC, possibly because of heterogeneity in
the therapeutic choices between different centers.
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4. Kidney Cancer

Proper selection of patients is key in surgical treatment of patients with renal cell car-
cinoma (RCC). Consequently, several nomograms have focused on this issue, investigating
either oncological or functional or surgical (i.e., complications) outcomes. Many models, in
particular, aimed to predict complications, functional results and oncological outcomes of
partial nephrectomy (PN) as compared to radical nephrectomy (RN), while others dealt
with radical nephrectomy and its oncological implications.

The Kattan nomogram was developed to predict five-year recurrence after RN for
RCC. The model had a c-accuracy of 0.74 [67]. Anyhow, this system was tested in different
populations with controversial results. For example, a study on French patients found a
c-index of 0.607 for relapse-free survival and on multivariate Cox analysis TMN stage was
the only significant predictor of the outcome [68].

The Karakiewicz nomogram originated from a multi-institutional series and was
externally validated to predict RCC-specific mortality after nephrectomy for all stages
[69,70]. The model, based on age, gender, symptoms and TMN stage showed high accuracy
with 88.1% accuracy at one year, 86.8% at five year and 84.2% at ten year.

In the specific setting of locally-advanced RC, two recent studies analyzed survival
for surgically-treated RCC with tumor thrombus and developed predictive tools.

Abel et al. reported on 636 patients and found a role of tumor diameter, body mass
index, low preoperative hemoglobin, thrombus level, perinephric fat invasion and non
clear-cell histology in predicting five-year recurrence free survival. The overall accuracy
of the model was good with a c-index of 0.72, better than other previous models such as
the UISS (UCLA Integrated Staging System), SSIGN (Stage, Size, Grade and Necrosis) and
Sorbellini model [71]. The model was not externally validated.

Gu et al. [72], in a similar study, developed a nomogram based on histological subtype,
collecting system invasion, metastasis at surgery, De Ritis ratio (AST/ALT) and serum
albumin. The model showed a c index of 0.75 for overall survival. However, almost 60%
of the patients included had thrombus in the renal vein only and the study lacks external
validation, therefore it has very limited application in the IVC thrombus population.

In the field of partial nephrectomy, many tools are available. The PADUA [73] and
the RENAL [74] systems are based on anatomical features of the lesion and aim to predict
the complication risk after partial nephrectomy and, with regards to the RENAL score,
the malignant potential. These systems have been in use for several years and were
externally validated. However, the predictive role of the RENAL score in terms of malignant
histology is controversial: while some studies confirmed this value and provided external
validation [75], other works did not find a significant predictive value especially in the
small renal masses (where size is an obvious limiting factor) [76,77].

More recently, Karlo et al. proposed a model based on a nephrectomy database aiming
to identify cortical indolent tumors based on clinical and CT scan features (including
necrosis, calcification, contour, renal vein invasion, collecting system invasion, etc.) [78].
The model developed from this study had a c-index of 0.82. The authors should be
commended for developing a statistical model based on these features, however the effort
of defining the behavior of renal masses based only on clinical and imaging features has
been around in the urology field for a long time with controversial results.

Finally, nomograms predicting the functional impact of PN have seen a development
in the last years. Remarkably, Martini et al. [79] created a nomogram based on age, sex,
Charlson comorbidity index, baseline eGFR, RENAL nephrometry score and the occurrence
of acute kidney injury (AKI) in patients with normal baseline renal function or in patients
with chronic kidney disease. This model shoved a c-index of 0.73 in evaluating the risk of
significant eGFR reduction (<25% from baseline after 3 to 15 months after a robot-assisted
partial nephrectomy). Notably, preoperative renal function and comorbidities played a
major role in defining the risk of AKI while ischemia time (at a median, IQR of 15 min,
11–20 min) did not have a significant role as a predictor of acute kidney injury and was not
included in the model, while only 7% of the patients underwent a clampless approach.
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Similarly, Shum et al. [80] included a number of preoperative factors to build a
nomogram with a c-accuracy of 0.61 and 0.7 (MDRD and CKD-EPI formulae) for the
prediction of eGFR one year after partial nephrectomy. Although interesting in its aim, this
model was not externally validated and showed overall a moderate accuracy.

5. Conclusions

Urologic oncology is certainly a fertile field for nomograms and predictive models.
However, evidence of efficacy, availability (as web-based or apps) and ease of use will
probably be the key factors for the success of a nomogram. The continued proliferation
of “new” models lacking external evaluation and with unproven clinical benefit is not
necessarily providing help in everyday decision-making. On the other hand, refining the
existing validated models, possibly including new variables with a proven role (such as
biomarkers or mpMRI in prostate cancer) could improve the accuracy of “old” nomograms.

As already noted by Catto more than ten years ago [81], rather than multiply the
number of nomograms, we need better evidence of efficacy. There is a fundamental question
about a predictive model: is this tool improving patient care and treatment outcomes?
Perhaps the only way to provide a reliable answer is to promote prospective comparative
trials where nomograms can show their efficacy in direct clinical care, improving outcomes
and quality of life and controlling treatment costs.
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