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Abstract: This paper presents a comprehensive solution for distance estimation of the following
vehicle solely based on visual data from a low-resolution monocular camera. To this end, a pair of
vehicles were instrumented with real-time kinematic (RTK) GPS, and the lead vehicle was equipped
with custom devices that recorded video of the following vehicle. Forty trials were recorded with
a sedan as the following vehicle, and then the procedure was repeated with a pickup truck in the
following position. Vehicle detection was then conducted by employing a deep-learning-based
framework on the video footage. Finally, the outputs of the detection were used for following
distance estimation. In this study, three main methods for distance estimation were considered and
compared: linear regression model, pinhole model, and artificial neural network (ANN). RTK GPS
was used as the ground truth for distance estimation. The output of this study can contribute to the
methodological base for further understanding of driver following behavior with a long-term goal of
reducing rear-end collisions.

Keywords: safety; driving behavior; distance estimation; deep learning

1. Introduction

Road traffic injuries are among the eight main causes of death, according to the World
Health Organization [1]. Rear-end collisions are one of the most frequent among the
various types of crashes and account for 6.7 percent of fatalities and injuries yearly [2].
Several factors contribute to the occurrence of rear-end crashes, such as vehicle types, road
conditions, and driver characteristics. There are numerous studies that have applied deep
learning methods to analyze the underlying factors that may contribute to crashes [3–10].

The National Motor Vehicle Crash Causation Survey (NMVCCS) found possible driver
contribution for 94% of crashes [11]. The most common driver attributed factors were
recognition errors, including driver inattention and distraction.

To mitigate the risk of rear-end collisions, driver assistance systems that can reliably
predict the collision and provide timely warnings have been developed [12]. The systems
estimate the relative distance to the vehicle ahead. Then, time-to-collision (TTC) is calcu-
lated based on the estimated relative distance and the vehicles’ speeds, and if the calculated
TTC is less than a certain threshold, the collision warning will be issued [13].
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To calculate the TTC, the relative distance to the vehicle ahead should be estimated
as accurately as possible. Several methods utilizing various types of sensors have been
introduced for distance estimation. For example, radar sensors, which are commonly
used to estimate depth ranges, are especially beneficial in adverse weather conditions
and poor illumination conditions [14,15]; however, these sensors are relatively expensive.
Vision-based FCW systems have been investigated as a lower-cost alternative to radar, in
which they use cameras to detect the vehicle ahead and provide the necessary warnings
to the driver to avoid rear-end crashes [16–19]. Unlike radar sensor data, image data do
not contain depth information. The depth of the objects captured in the image can be
estimated by relating the size of the objects present in the image to their size in the real
world, as the height of an object in the image is inversely proportional to its distance from
the camera [20–24].

Several methods have been used to extract object depth information from image
data. Generally, there are two main vision-based methods for depth estimation: stereo- and
monocular-vision approaches. The former uses multi-view geometry and stereo image pairs
to rebuild a 3D space and generate the depth information of the target. However, errors
and computational complexities from the calibration and matching of stereo image pairs
reduce the measurement accuracy and efficiency. Monocular-vision methods, however,
have certain advantages, such as being less expensive, having a simple hardware structure,
and a wide field of application.

Generally, monocular-vision methods for distance estimation can be divided into two
categories. In the first category, the distance estimation is conducted based on the geometric
relationship and camera-imaging model [25]. In these types of methods, several parameters
from the camera (e.g., the elevation of the camera and the measured object; the height of
the target vehicle) need to be provided in advance. Liu et al. used the geometric positional
relationship of a vehicle in the camera coordinate system to construct the correspondence
between the key points in the world coordinate system and the image coordinate system
and then they established a ranging model to estimate the target vehicle distance [25]. Kim
et al. used the camera imaging model and the width of the target vehicle to estimate the
distance to a moving vehicle that is far ahead [22].

The second category involves constructing a regression model using machine learning.
Wongsaree et al. trained a regression model using the correspondence between different po-
sitions in an image and their corresponding distances to complete distance estimation [26].
Gökçe et al. used the target vehicle information to train a distance regression model for
distance estimation [27]. The main disadvantage of these methods is that they have to
collect a large number of training data with real distances.

The primary objective of this study is to develop and validate a distance estimation
method using monocular video images recorded by a custom data collection device that
was designed to study driver behavior while approaching, following, and overtaking farm
equipment traveling in the same direction. Two factors make this applied situation novel.
First, existing vehicle TTC estimates are based on calculations from a forward-facing system
assessing an object that the equipped vehicle is approaching. The unique nature of our
question required the opposite—a rear-facing system estimating distance from an object
approaching the equipped vehicle. Second, farm equipment, which has a wide range of
size and operational features, behaves differently in roadway interactions than passenger
vehicles, potentially influencing which estimates are most valid. The devices are mounted
on several farm vehicles to investigate driver-following behavior to collect data over many
seasons. To better manage the data, the captured videos are compressed and have low
resolution. Consequently, some methods, such as distance estimation based on the license
plate [28], cannot be applied. Moreover, frequent calibration of the camera and monitoring
of calibration quality is not practical since the device is mounted on the vehicles which
routinely travel over rough terrain. As a result, stereo-based distance estimation is not
practical. Additionally, since there will be a large number of vehicles instrumented with
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these devices, the cost per unit should be reasonable, eliminating the option of using more
expensive sensors such as LiDAR and/or radar.

Therefore, to confirm the distance estimation method, an experiment was designed
in which two pairs of vehicles were instrumented with the study devices and RTK GPS
sensors. Several trials of vehicle interactions were conducted on a closed course, and
GPS data and video footage were captured. The data were then aggregated, cleaned, and
processed by employing the Nvidia DeepStream object detection framework [29]. Using
the output of detection, three different distance estimation models, i.e., linear regression,
pinhole, and artificial neural network (ANN), were applied and their results were compared.
The accuracy of the proposed methods was verified by comparing with RTK GPS-based
estimated distances, which have sub-inch accuracy.

2. Methodology
2.1. Data Collection Device

The data collection devices were designed specifically for a naturalistic study of how
drivers approach, follow, and pass farm equipment on the roadway. Contained in rugged,
weather-resistant cases approximately 0.23 m × 0.20 m × 0.10 m, the devices attach to farm
equipment using switch magnets. Video data were recorded at a frequency of 30 Hz and a
resolution of 800 × 600 pixels. Figure 1 depicts the data collection device.
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Figure 1. Data collection device mounted on the back of a piece of farm equipment.

2.2. Validation Data Collection

Validation data were collected on a closed runway about 1000 feet long and 150 feet
wide. A lead vehicle was equipped with several devices in a vertical stack such that
the camera lenses were at different heights (0.71 m to 2.02 m) to approximate the range
of heights from common farm vehicles (e.g., combines, tractors). The devices were set
to record continuously. A Trimble R8 RTK GPS receiver was mounted directly above
the stack of devices. The Trimble R8 is rated with a horizontal accuracy of ±0.03 feet
(8 mm). Real-time corrections were provided via cellular modem by the Iowa Real-Time
Network (IaRTN), a statewide system of base stations operated by the Iowa Department
of Transportation (IDOT). In the experience of the research center that provided the RTK
equipment, the horizontal accuracy of the IaRTN corrections in practice is approximately
±0.05 feet (15 mm). The RTK was recorded at 1 Hz.

Another identical Trimble R8 receiver was mounted above each following vehicle.
Two different types of following vehicles were used in the data collection: a 2012 Toyota
Camry sedan and a 2018 Ford F150 SuperCrew pickup truck. For the sedan, the mounting
pole was extended through the sunroof of the cab and, relative to a driver’s perspective,
was located 4 inches right of center and 92 inches behind the front bumper. For the pickup,
the mounting pole was secured to an equipment rack behind the cab, 29 inches right of
center and 166 inches behind the front bumper. Figure 2 shows the instrumented vehicles.
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Figure 2. Instrumented vehicles: (a) data collection devices mounted vertically at four different
elevations on the back of the lead vehicle, (b) following truck vehicle, and (c) following sedan vehicle.

Approximately 40 trials were recorded with each of the following vehicles traveling
behind the lead vehicle. For each trial, the driver of the lead vehicle would begin to travel
down the runway and attempt to quickly accelerate to and then maintain a consistent speed
of about 30 mph or 40 mph. The driver of the following vehicle attempted a wide variety
of maneuvers, including following at various time headways (i.e., 1, 3, and 5 s), changing
time headways while following, changing lanes, and passing.

2.3. Distance Estimation Models

Three vision-based distance estimation models were evaluated: linear regression,
pinhole, and ANN. Since the image data do not contain the depth information of objects
within them, that information should be estimated by using the size and position of the
objects in the image. To this end, Nvidia DeepStream [30], a deep-learning-based vehicle
detection framework, was used to extract object position and size (i.e., bounding box
information) in the image space.

DeepStream is a complete streaming analytics toolkit for AI-based video and image
understanding, as well as multi-sensor processing. It uses the open-source multimedia
handling library GStreamer to deliver high throughput with a low-latency streaming
processing framework. The DeepStream SDK is based on the open-source GStreamer [29]
multimedia framework. A DeepStream application is a set of modular plugins connected
in a graph. Figure 3 shows a sample of DeepStream output from our study dataset. It
should be noted that some of the DeepStream output were sampled, and its accuracy was
confirmed by the authors to be within an acceptable range. It should be noted that the
bounding box size is small when the vehicle is far from the farm equipment. However, the
focus of this study was to develop a system to investigate the driving behavior when the
vehicles are following and preparing to overtake the farm equipment. For the distances
observed in these situations, the bounding box is large enough to reasonably estimate the
distance.
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Figure 3. A sample of DeepStream vehicle detection.

The detection outputs were then used to estimate the vehicle distance d. Detection
outputs include bounding box height (H), width (W), bounding box center vector (lx and
ly), originated from the upper left of the video frame, and type of the vehicle, i.e., pickup
truck or sedan. Detection outputs, along with the height of the camera lens, were used to
train the distance estimation models.

2.3.1. Linear Regression

The first distance estimation model is linear regression. Four different models, each
devoted to the data collected from one of the data collection devices of differing heights,
were fitted using the following equation:

y = Xβ + ε (1)

where y and ε are n× 1 vectors of the response variables, i.e., estimated distances, and
errors of n observations, and X is an n× p design matrix.

2.3.2. Pinhole Camera Model

The second distance estimation model presented here is a pinhole camera model [25].
Let P = [X Y Z]T be an arbitrary 3D point seen by a camera placed at the origin O of its

camera space OXYZ, and p = [u v]T be the image of P, expressed in the image coordinate
system ouv. The point p represents a pixel in an image captured by the camera, which is
formed by intersecting the light ray from P passing through the camera optical center O
and the image plane. Assuming that the projective plane is perpendicular to the Z-axis of
the camera coordinate system, the intersection is at the principal point F = [0 0 f ]T, which is
expressed in the image coordinate system as c = [cx cy]T. Figure 4 illustrates the pinhole
camera model.
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The distance of the object P from the center of the camera O can be calculated using
the following equation:

d =

√
A2 + B2 + 1

Z
, A =

u− cx

f
, B =

v− cy

f
(2)

Since, in the current study, the following vehicle was near the center of the camera
image, Equation (2) can be simplified to

d = f · h
H

(3)

where f is the focal length of the camera, h is the height of the vehicle in the real world,
and H is the height of the vehicle in the image space in pixel values. Moreover, since the
focus of the current study is on sedan cars and pickup trucks, these two types of vehicles
were considered, and the average of their heights were measured to find h. The actual
heights for the sedan and the pickup truck were 57 inches and 76 inches, respectively. The
camera focal length, f , was calculated by conducting a calibration process which involved
determining the relationship between the height of the detected object in the image space,
H, and its distance from the camera in the real world, h, by using the pinhole camera model
(Equation (3)). To this end, several peaks and valleys of GPS-based distance estimation
along with its corresponding H value, derived from detection processing, were considered.
The calibration process included relating the H values to the GPS-based distances using
Equation (3). After conducting the calibration, the focal length of 892 pixels was calculated.

2.3.3. Artificial Neural Network (ANN)

Finally, an ANN structure was designed to regress the distances by considering the
detection results as the inputs of the network. The network consisted of the input layer,
which had six neurons (equal to the number of variables used for training), the output layer,
which had one neuron (estimated distance), and hidden layers, which connect the input layer
to the output layer. The number of hidden layers and the number of neurons in each of them
are two tuning parameters. Moreover, a dropout layer was considered for the last hidden
layer. The idea of dropout is to randomly (with a specific rate) drop neurons along with
their connections from the neural network to prevent overfitting. In addition, activation
functions were used to increase the nonlinearity of the neural network. In this study, we
applied two well-known activation functions, i.e., relu and tanh. Batch size is the number of
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data points on which the training will be conducted. Finally, the epochs are the number of
times that the training will be conducted.

Since there is no exact solution to find the optimal network architecture and configura-
tion, an exhaustive grid search was conducted to find the best network based on the regres-
sion accuracy metric. The grid search was conducted between f irst hidden layer nodes ∈
{16, 8, 4}, number o f hidden layers ∈ {2, 3, 4, 5}, last hidden layer nodes ∈ {4, 5}, dropout
rate ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, activation f unctions ∈ {relu, tanh}, batch
size ∈ {8, 16, 32}, and epochs ∈ {100, 300, 800}.

2.3.4. Comparison of GPS-Based and Video-Based Distance Estimation

To investigate the accuracy of the distance estimation models, the ground truth dis-
tances, i.e., GPS-based distances, were compared with distances derived using the detection
results from the pinhole model. Figure 5 depicts the GPS-estimated and pinhole model-
estimated distances. The video-based distance time series and GPS-based time series were
recorded at different data frequencies (1 Hz and 30 Hz, respectively). Consequently, in order
to quantify the distance estimation error between the two time series, the fast dynamic time
warping (FDTW) method was used to find the optimal alignment between them [31]. The
FDTW is an approximation of dynamic time warping (DTW) and it has linear time and
space complexity.
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Figure 5. Comparison of the GPS and camera distance estimation.

A two-dimensional cost matrix D was constructed where D(i, j) was the minimum
distance warp path that can be constructed using the two time series. Figure 6 illustrates
the cost matrix of the two time series. Using the minimum distance path derived by FDTW,
the two time series were aligned.

Figure 7a shows the scatter plot of GPS and camera estimated distances. It can be seen
that the camera distance estimation could successfully estimate the distances obtained by
GPS. To quantify the distance estimation error, the residuals were calculated. Figure 7b
shows the pattern of residuals. The residuals are roughly randomly scattered, meaning that
they are unbiased and homoscedastic. The extreme errors at the middle of the graph show
that the camera estimation is less reliable in estimating distances beyond 60 m.
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3. Results

Once the time series were aligned by using the FDTW, GPS-based distance estimations
were used as the “gold standard” labels for training the regression and ANN model. As
described in Section 2.3.3, an exhaustive search was conducted to find the most optimal
ANN configuration and architecture in the grid search. The review of model accuracy
showed that a model with four hidden layers (with layers having 8, 7, 6, and 5 neurons,
respectively), no dropout, relu activations, batch size of 16, and epochs number of 800 is the
most optimal model in the grid search.

To further analyze the distance estimation models, the distance errors were calculated
for multiple randomly selected trials, considering data collected from the device at each
height. Then, the mean and standard deviation of errors were calculated for each device
height. Figure 8a,b shows the vision-based distance estimation error with two standard
deviations error bars for the sedan and the pickup truck, respectively. The review of results
for both the sedan and the pickup truck shows that the distances estimated using the
linear regression model have the highest standard deviation while the ANN has the lowest
standard deviation overall. The ANN model also has the lowest error, having the closest
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error to zero. Table 1 summarizes the mean error and standard deviation of error for each
distance estimation method for the sedan and the pickup truck.
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(b) pickup truck.

Table 1. Comparison of distance estimation error for the three candidate models.

Mean Standard Deviation

Camera Height (m) Linear Regression Pinhole ANN Linear Regression Pinhole ANN

Sedan

0.71 −0.001 −0.432 0.354 5.507 3.481 3.195
1.14 0.988 1.055 0.229 7.107 4.689 2.524
1.53 −0.625 0.522 −1.196 8.905 2.913 2.66
2.02 −1.298 1.997 −0.071 8.918 6.075 4.50

Average mean = 0.99 1.19 0.17

Truck

0.71 −0.001 −0.293 −0.740 5.507 4.561 3.693
1.14 0.988 0.968 0.181 7.107 1.541 1.321
1.53 −0.625 0.739 −0.368 8.905 1.414 1.349
2.02 −1.298 −0.048 0.0775 8.918 4.653 3.849

Average mean = 0.49 0.85 0.13

Based on the presented results, the model ANN was determined to be the best esti-
mator for distance. Figure 9 shows the scatter plot of residuals, derived from the ANN
model plotted against the ground truth, i.e., GPS-based distances, for both the sedan and
the pickup truck. As it can be seen, the residuals do not follow any specific pattern overall,
indicating that the ANN model provides a good fit to the data. Moreover, the histogram of
residuals was investigated. Based on the results shown in Figure 9, the residual histograms
for both the sedan and the pickup truck follow the normal distribution with the mean close
to zero.
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4. Discussion

The results of this investigation indicated that using shallow models, for instance,
linear regression, were not very effective for distance estimation due to their inconsistency
in prediction, i.e., high variance. This seems to be related to the fact that these models cannot
identify all the nonlinear relations between the input, i.e., detection outputs, and the output,
i.e., estimated distances. Consequently, the artificial neural network model was determined
to be the best option for distance estimation with a reasonable standard deviation. Moreover,
increased height impacts the standard error far more than the mean, especially for the
regression model. This is important because the diversity of farm equipment makes it
impossible to normalize camera height, so this analysis will help adjust for height in future
models. It should be noted, however, that regardless of the distance estimation method, the
results are highly dependent on the quality of the input, i.e., detection outputs. Detection
model performance is related to the quality of the video as well as the detection algorithm;
thus, to improve the detection results, having high-resolution videos would be helpful. In
addition, detection output could be improved by using the transfer learning methods and
retraining the model using the actual videos used in this study. In addition to retraining,
which could significantly improve the results, a careful data annotation would also make
a difference. The review of detection output showed that, sometimes, the entire or some
portion of tires were excluded from the bounding box, which might be related to the careless
annotation. Finally, since the recording platform will be mounted on farm equipment, it is
prone to drastic vibration. The vibration might sometimes cause the captured video to be
blurry, and, consequently, the detection algorithm fails. In this case, a vibration resilience
enclosure may improve the results.
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5. Conclusions

In this study, we propose a solution to extract the depth information of objects in
an image recorded by a low-resolution monocular camera using the deep-learning-based
approach. Video and RTK GPS were collected on a closed course with two types of
following vehicles. The data were then aggregated, cleaned, and preprocessed using the
Nvidia DeepStream, which is an analytics toolkit for video and image analysis. The vehicle
detection and tracking were conducted using DeepStream, and bounding boxes information
was obtained. Using the pinhole camera model, the height of detected objects in the image
was related to the distance of the object in the real world to the camera. The distance
estimation process involved finding the focal length of the camera through a calibration
step which was conducted by comparing the distances estimated from pinhole model with
that of RTK GPS as the ground truth. In addition to the pinhole model, two more distance
estimation models were investigated, i.e., linear regression and artificial neural network
(ANN). Among the mentioned three models, the ANN was the best distance estimator by
having the least mean error and standard deviation. Finally, the legitimacy of the proposed
ANN method was confirmed by investigating the scatter of the residuals and histogram
plots. The methodology confirmed in this study can be applied to future study of farm
vehicle and passenger vehicle interactions in terms of following distance. The output of
this study can be used to inform prevention efforts to reduce the risk of rear-end collisions,
especially when a heavy vehicle with large blind spots is involved.
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