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In vivo fluorescence imaging of 
conjunctival goblet cells
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Conjunctival goblet cells (GCs) are specialized epithelial cells that secrete mucins onto the ocular 
surface to maintain the wet environment. Assessment of GCs is important because various ocular 
surface diseases are associated with their loss. Although there are GC assessment methods available, 
the current methods are either invasive or difficult to use. In this report, we developed a simple and 
non-invasive GC assessment method based on fluorescence imaging. Moxifloxacin ophthalmic solution 
was used to label GCs via topical administration, and then various fluorescence microscopies could 
image GCs in high contrasts. Fluorescence imaging of GCs in the mouse conjunctiva was confirmed by 
both confocal reflection microscopy and histology with Periodic acid-Schiff (PAS) labeling. Real-time 
in-vivo conjunctival GC imaging was demonstrated in a rat model by using both confocal fluorescence 
microscopy and simple wide-field fluorescence microscopy. Different GC densities were observed in the 
forniceal and bulbar conjunctivas of the rat eye. Moxifloxacin based fluorescence imaging provides high-
contrast images of conjunctival GCs non-invasively and could be useful for the study or diagnosis of GC 
related ocular surface diseases.

Goblet cells (GCs) are specialized epithelial cells that secrete gel-forming mucins. GCs are found intercalated 
within the epithelia of the respiratory tract, gastrointestinal tract, and conjunctiva1,2. Conjunctival GCs are the 
source of mucins that form the innermost layer of the tear film and are essential for maintaining the wettability 
on the ocular surface. Mucins reduce friction of the eyeball and protect the eyeball from harmful substances and 
pathogens3. Thus, the decrease of either mucins or GCs was used as an index to measure the severity of various 
mucin-deficient ocular diseases4,5. GC loss is associated with vision-threatening corneal complications such as 
ocular graft versus host disease (GVHD) and Stevens-Johnson syndrome6. Dry eye is a multifactorial disease 
and GC loss was found during progression. GCs are an important indicator of chemical burn injury and healing 
after that as well7–9. Thus, GC assessment methods may play an important role in the diagnosis of various ocular 
surface complications. Longitudinal monitoring of GC density changes may be also helpful in post-treatment 
follow-up.

Impression cytology (IC) is the current standard technique of GC assessment10,11. IC involves the application 
of a cellulose acetate filter onto the ocular surface including the conjunctiva to extract the ocular surface epithe-
lium. The extracted IC samples are stained with Periodic acid-Schiff (PAS) to visualize and analyze GCs and GC 
density12. IC is mildly invasive, and its procedure is not standardized. Frequent sampling using IC can lead to the 
surface deterioration of the damaged eye. Recently, laser scanning confocal reflection microscopy (CRM) was 
used as a non-invasive assessment method of GCs to avoid the complications of IC13. CRM visualized conjunc-
tival GCs to be large sized cells with relatively high and uniform reflectivity compared to other epithelial cells13. 
However, CRM provides relatively low image contrasts, because the differences in light reflection between goblet 
cells and other cells are not sufficient especially in damaged eyes. Therefore, CRM examination of GCs requires 
some training to recognize all the cells on the ocular surface including GCs. A non-invasive and high-contrast 
imaging method of conjunctival GCs will be useful. We tested fluorescence microscopy with moxifloxacin as a 
new GC imaging method in this study.

Previously we reported fluorescence tissue imaging with moxifloxacin ophthalmic solution as a cell labe-
ling agent14. Moxifloxacin is one of 4th generation fluoroquinolone antibiotics used both to treat and to prevent 
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ocular bacterial infection with good pharmacokinetic properties for tissue penetration, and it has intrinsic flu-
orescence under ultraviolet (UV) excitation15. Its alternative usage as the cell labeling agent was demonstrated 
with fluorescence microscopy techniques including nonlinear two-photon microscopy (TPM) and confocal flu-
orescence microscopy (CFM)14,16. Moxifloxacin based fluorescence microscopies could visualize cells within tis-
sues in enhanced contrasts. Moxifloxacin usually labels all the cells nonspecifically, but we recently reported that 
moxifloxacin-based TPM could visualize Paneth cells in the small intestine specifically with strong fluorescence 
compared to other cells17. Paneth cells are granule secreting cells and their granules were labeled strongly by mox-
ifloxacin. Since GCs are secretive cells similarly to Paneth cells, we assumed that GCs could be specifically labeled 
by moxifloxacin as well. Our preliminary results showed the visualization of GCs in the mouse colon.

In this study, moxifloxacin-based fluorescence imaging was tested as a non-invasive and high-contrast imag-
ing method of conjunctival GCs. Two 3D fluorescence microscopy methods of TPM and CFM were tested in 
freshly excised ex-vivo mouse conjunctiva tissues. CRM was used together with the 3D fluorescence microscopies 
as the standard GC imaging method. The imaged tissue specimens were processed for histology. After the veri-
fication of fluorescence imaging in the ex-vivo mouse conjunctivas, in-vivo fluorescence imaging of conjunctival 
GCs was tried in a rat model under gas anesthesia. CFM and wide-field fluorescence microscopy (WFFM) were 
used for real-time imaging of the rat conjunctiva.

Results
Moxifloxacin-based fluorescence imaging of the mouse conjunctiva, ex-vivo. Moxifloxacin 
based fluorescence imaging of conjunctival GCs was tested in ex-vivo mouse conjunctiva tissues. The freshly 
excised mouse conjunctiva tissues were imaged by both TPM and CFM based on fluorescence and then by CRM 
based on reflectance. After the imaging was completed, the tissues were processed for histology. The results of 
imaging and histology were presented in Fig. 1. Representative single-plane en-face images on the surface of a 
mouse conjunctiva tissue were presented. Both TPM and CFM images showed clusters of cells expressing rela-
tively high moxifloxacin fluorescence among epithelial cells expressing relatively weak fluorescence on the con-
junctiva surface. The strongly fluorescent cells formed a specific arrangement, similar to a rosette form found in 
the conjunctival GC clusters of mouse conjunctiva histology18. These cell clusters were sparsely distributed. A 
corresponding CRM image of the mouse conjunctiva showed that the fluorescent cell clusters had relatively high 
reflectivity compared to the surrounding epithelial cells, indicating conjunctival GCs. Finally, a corresponding 
en-face PAS histological image showed clusters of conjunctival GCs in similar shapes to the ones in both the flu-
orescence and reflection images. Spatial distribution of GCs in the histological image was not matched well with 
the ones in the fluorescence and reflection images. The discrepancy was attributed to mismatch of the sectioning 
plane with the imaging plane and sample deformation during histology processing.

TPM, CFM, and CRM images in Fig. 1 were single-plane images on the surface from 3D images. The 3D 
images captured other structures of the mouse conjunctiva below the surface, and their images at several different 
depths were presented in Fig. 2. 3D TPM images of the mouse conjunctiva showed GCs coming out from the 
surface (Fig. 2. a1), and then both epithelial cells and GCs at 15 μm deep from the first image plane (Fig. 2. a2). 
At 35 μm deep from the first image plane, TPM showed the substantia propria below the superficial epithelium 
(Fig. 2. a3). In the substantia propria, TPM visualized collagen in the extra-cellular matrix (ECM) by second 

Figure 1. En-face TPM, CFM, CRM and histological images of the ex-vivo mouse conjunctiva on the surface. 
(a–c) moxifloxacin-based TPM and CFM images, and an CRM image of the same mouse conjunctiva tissue 
respectively. Clusters of highly fluorescent and reflective cells are marked with white arrows (d) a PAS 
histological image of the same conjunctiva tissue. Conjunctival goblet cells were labeled in red color (white-
arrow).
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harmonic generation (SHG), blood vessels with no fluorescence expression, and other cells with moxifloxacin flu-
orescence. 3D CFM images showed cellular structures similar to the TPM images except the SHG contrast. These 
structures included both protruding GCs with strong fluorescence among weakly fluorescent epithelial cells in 
the epithelium, and cellular structures in the substantia propria including blood vessels and other cells. 3D CRM 
images showed highly reflective GCs among less reflective epithelial cells in the epithelium, and highly scattering 
substantia propria with blood vessels at 3 different depths.

Moxifloxacin based CFM imaging of the rat conjunctiva, in vivo. After the fluorescence imaging of 
conjunctival GCs in the ex-vivo mouse conjunctiva, in-vivo fluorescence imaging was attempted on the rat con-
junctiva under gas anesthesia. CFM was used in the in-vivo imaging, because it operates at a relatively high imag-
ing speeds to avoid the motion artifacts such as breathing. Representative CFM images of both the bulbar and 
forniceal conjunctivas were presented in Fig. 3. Real-time CFM videos of the rat bulbar and forniceal conjunctivas 
were presented as Supplementary video 1 and 2, respectively. CFM visualized GCs in conjunctival zones. GCs in 
the rat conjunctiva appeared as clusters in the same way as the ones in the ex-vivo mouse conjunctiva. CFM image 
of the bulbar conjunctiva showed sparse GC distribution, while the forniceal conjunctiva showed denser GC 
distribution. CFM images of the rat conjunctiva were analyzed to get information of GC density. GC density and 
GC cluster density in the conjunctiva were obtained after a series of image processing and analysis procedures. 
GC density and GC cluster density in the forniceal conjunctiva were 2808 ± 250 cells/mm2 and 746 ± 103 clusters/
mm2, respectively. The ones in the bulbar conjunctiva were 385 ± 166 cells/mm2 and 311 ± 104 clusters/mm2, 
respectively. The GC cluster densities found in the forniceal and bulbar conjunctivas of the rat eye via the image 
analysis were consistent with the result of a previous report18.

Real-time CFM visualized conjunctival GCs clearly owing to their strong moxifloxacin fluorescence compared 
to that of surrounding epithelial cells. Because conjunctival GCs were distributed as mono layer on the surface 

Figure 2. 3D TPM, CFM and CRM images of an ex-vivo mouse conjunctiva tissue. (a–c) moxifloxacin-based 
TPM and CFM images, and an CRM image of the same mouse conjunctiva tissue respectively. Three en-face 
images at different depths of the near surface, 15 μm and 35 μm deep from the surface are presented. The first 
two superficial images showed the epithelium and the last one image showed the substantia propria. Green 
color in both TPM and CFM images represented moxifloxacin fluorescence and blue color in the TPM image 
represented SHG. White and yellow arrows marked goblet cell clusters and blood vessels, respectively.
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and expressed strong fluorescence compared to other cells, they could be imaged by a simple wide-field fluores-
cence microscopy (WFFM) which does not have a 3D resolution. WFFM imaging of GCs was attempted on the 
rat model under gas anesthesia and results were presented in Fig. 4. WFFM images of both the bulbar and for-
niceal conjunctivas indeed showed GC clusters, although there were relatively high background intensities in the 
images. The background signals were probably from different depths of the conjunctiva. Although the contrast 
of WFFM images was low compared to CFM images, GCs were still visible by the simple fluorescence micros-
copy. WFFM images showed different GC densities in the bulbar and forniceal conjunctivas, as expected. In-vivo 
real-time imaging of GCs in the rat conjunctiva was successfully demonstrated by using both CFM and WFFM.

Discussions and Conclusions
Fluorescence imaging of conjunctival GCs with moxifloxacin labeling was successfully demonstrated in this 
study. Moxifloxacin ophthalmic solution labeled GCs stronger than the other epithelial cells in the conjunctiva 
so that GCs were clearly visualized by fluorescence microscopies. 3D fluorescence imaging of the ex-vivo mouse 
conjunctiva showed specifically arranged clusters of fluorescent cells, which were confirmed to be GCs by the 
standard CRM imaging and PAS histology. In-vivo real-time fluorescence imaging was conducted in the rat con-
junctiva. Both CFM and WFFM with moxifloxacin administration could image conjunctival GCs in the rat eye. 
GCs were distributed densely in the forniceal conjunctiva and relatively sparsely in the bulbar conjunctiva, and 
the spatial variation of GC density was consistent with literature18.

Fluorescence microscopies with moxifloxacin labeling have several advantages over the current non-invasive 
imaging method, which is CRM. CRM detects GCs based on the relatively high reflectivity and large cell size 
compared to the surrounding epithelial cells. However, this information is not specific, and the image contrast 
may not be good enough in case of damaged conjunctiva. Therefore, CRM examination of GCs on the ocular 
surface requires some experience. On the other hand, fluorescence microscopies provided high-contrast images 
of conjunctival GCs with moxifloxacin labeling. Quantitative GC density analysis could be easily performed by 
processing high-contrast GC images. WFFM, which is a simple fluorescence microscopy method without 3D res-
olution, could visualize GCs on the surface of conjunctiva. WFFM used an air objective lens with 8 mm working 
distance for conjunctival GC imaging instead of an immersion objective lens which is typically used for CRM. 
Therefore, Fluorescence microscopy methods could be more convenient in the assessment of conjunctival GCs 
than CRM.

Moxifloxacin based fluorescence microscopy methods is applicable to human patients in principle by using the 
FDA-approved moxifloxacin ophthalmic solution for labeling. One concern for using fluorescence microscopy 

Figure 3. Real-time CFM images of the rat conjunctiva, in-vivo. (a,b) CFM images of the bulbar and forniceal 
conjunctiva, respectively.

Figure 4. WFFM images of the rat conjunctiva, in-vivo. (a) a WFFM image of the bulbar conjunctiva, (b) a 
WFFM image of the fornix conjunctiva.
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in human patients is photo-toxicity of excitation light. Fluorescence microscopy typically uses short wavelength 
light in the range of ultraviolet (UV) and short visible light for fluorophore excitation, and 405 nm excitation light 
was used for GC imaging in the study. Because 405 nm is short visible wavelength (violet), too much exposure 
could induce photo-toxicity. However, excitation energy of approximately 0.5–3 J/cm2 was used for GC imaging 
in the current study and the energy level was much less than the damage threshold, which was measured to 
be approximately 50 J/cm2 based on cell studies19. Therefore, we considered that the fluorescence GC imaging 
methods are safe and applicable to human as well. We did not notice any damage in both the mouse and rat eyes 
during and after fluorescence imaging, although more careful safety study would be needed before human trial. 
Additional safety concern of photo-toxicity by 405 nm excitation light onto other parts of the eye such as the cor-
nea and retina need to be addressed as well. Efforts should be made to minimize the exposure of excitation light 
during imaging by utilizing safety devices such as shutters and others.

The current imaging protocol of fluorescence microscopies has not been optimized and there are rooms for 
improvement. The current imaging field of view (FOV) was approximately 1 mm on one side, and FOV could be 
increased by using low magnification objective lenses. 5x or 10x objective lenses will provide FOV of 4 mm and 
2 mm on one side, respectively. The current imaging speeds was 3–5 frames per second (fps) maximum for CFM 
and 3 fps maximum for WFFM, and the excitation powers were still below the damage threshold. Therefore, the 
imaging speed can be increased by either increasing the excitation power or by using cameras with the higher 
sensitivities. Fluorescence microscopies could capture only a small region of the conjunctiva in focus at a time, 
because the conjunctiva is highly curved. The imaging plane could be easily slanted or mismatched with the 
conjunctiva surface. In order to capture GCs on the entire conjunctival surface in focus, sequential imaging with 
a stepwise axial translation of the imaging plane would be needed. Therefore, an auto-focusing mechanism, an 
axial translation mechanism, and high imaging speeds would be useful for robust imaging and examination of 
conjunctival GCs and GC density.

CRM has been adapted to daily ophthalmology clinics through long development and commercialization. 
Confocal imaging on the frontal eye surface can be conveniently done, although it has limitations in the GC 
assessment. Moxifloxacin based fluorescence imaging methods are new and will need a long period of develop-
ment and verification in order to be adapted to daily ophthalmology clinics in the future, just like CRM. However, 
the new fluorescence imaging methods have several advantages over the clinically established CRM in principle 
in the GCs assessment by providing high-contrast images in simple setting. Also, CFM can be incorporated into 
the established CRM by adding an additional fluorescence mode to the existing reflection mode. Next steps will 
be tests of the fluorescence GC imaging methods in animal models of specific diseases associated with conjuncti-
val GC loss for verification and in large animal models such as rabbits.

This study demonstrated high-contrast fluorescence imaging of conjunctival GCs in both ex-vivo mouse and 
in-vivo rat models. Moxifloxacin based fluorescence imaging is promising as the conjunctival GC assessment 
method by providing high-contrast and high-speed images non-invasively.

Methods
Subjects and sample labeling. 15-week-old SKH1-Hrhr male mice (4 in total) and a 15-month old rat 
were used for the ex-vivo and in-vivo imaging experiments, respectively. Moxifloxacin ophthalmic solution 
(Vigamox, Alcon Laboratories, Fort Worth, USA) was used as a labeling agent. For the ex-vivo imaging, mice 
were euthanized by cervical dislocation during gas anesthesia and then the conjunctiva tissues were excised. The 
excised mouse conjunctiva tissues were immersed in moxifloxacin ophthalmic solution for 3–5 min, and then 
were imaged by using both TPM, CFM, and CRM. After the imaging, the mouse conjunctiva specimens were 
fixed with 4% formaldehyde solution for histology processing. For the in-vivo imaging, the rat was gas anesthe-
tized and held by a custom rat eye holder consisting a stereotactic device with ear bars. The left eye was instilled 
with drops of moxifloxacin ophthalmic solution and incubated for 3–5 minutes. Eyelids were closed during the 
incubation time to prevent from drying. For the imaging, the eyelid was rolled open with a cotton tip and held 
with taping. In case of the bulbar conjunctiva, the area between the superior bulbar and the nasal bulbar was 
imaged. All the animal experiment procedures were approved by the Institutional Animal Care & Use Committee 
at Pohang University of Science and Technology (IACUC, approval number: POSTECH-2015-0030-R2) and were 
conducted in accordance with the guidelines.

Fluorescence imaging. TPM, CFM, and CRM imaging were conducted by using a Leica SP5 confocal 
and multiphoton microscope (Leica TCS SP5 II) equipped with continuous wave (CW) lasers of various wave-
lengths and a tunable Ti-Sapphire laser (Chameleon Vision II, Coherent) for confocal microscopy and TPM, 
respectively. TPM used near-infrared (NIR) wavelengths instead of ultraviolet (UV) via two-photon excitation 
and could image deeper in turbid tissues than CFM20. Three-photon microscopy with moxifloxacin was demon-
strated with the higher imaging depth than TPM21. Excitation wavelengths of CFM and TPM were 405 nm and 
800 nm, respectively for moxifloxacin excitation. Moxifloxacin has single-photon excitation peaks in ultra-violet 
(UV) wavelengths: first and second peaks at 290 nm and 340 nm, respectively. CFM used 405 nm as the excita-
tion wavelength owing to the availability of laser wavelength, although 405 nm was off from the peak excitation 
wavelength. CFM could image faster than TPM, because single-photon excitation is much more efficient than 
two-photon excitation. CRM used 633 nm wavelength for imaging. A 20x objective lens (HCX APO L 20x/1.00 W, 
15507701, Leica) was used, and typical images had 775 × 775 μm imaging field of view (FOV) consisting of either 
512 × 512 pixels or 1024 × 1024 pixels. Emission light from the specimen was collected in the wavelength range 
from 430 nm to 650 nm in both CFM and TPM. The imaging speed of the ex-vivo conjunctiva specimens was 1.4 
frames per second (FPS) in all the microscopies by adjusting excitation or illumination laser powers. Excitation 
laser power for TPM was approximately 30 mW on the sample surface and increased up to 90 mW with depth, 
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and the one for CFM was approximately 0.1 mW on the sample surface and increased up to 0.9 mW with depth. 
Illumination power for CRM was 0.1 mW.

For in-vivo imaging of the conjunctival GCs, both CFM and WFFM were used. CFM configuration for in-vivo 
imaging was the same as the case for ex-vivo imaging, except the excitation power and imaging speed. Relatively 
high imaging speeds of 3–7 frames/s were used to avoid motion artifacts such as breathing motion, and excita-
tion power for the high-speed imaging was 2.3 mW. WFFM imaging was conducted by using a Leica macro-
scope (Z16APO A) equipped with a mercury lamp as the excitation light source and a monochromatic camera 
(DMC6200). 405 nm excitation light was generated by using an excitation filter in the light source. Emission 
light was collected by using an emission filter transmitting from 430 nm to 650 nm. The imaging FOV was 
500 × 500 μm by using a 20x objective lens (HCX APO L 20x/1.00 W, 15507701, Leica), and the imaging speed 
was 3 frames/s.

Periodic acid schiff (PAS) histology. The imaged mouse conjunctival tissues were fixed in 4% formalde-
hyde solution for 24 hours, and then made into paraffin blocks. From the plane where the paraffin block tissue was 
first exposed, a depth range down to 30 μm~50 μm was sectioned and stained with Periodic Acid Schiff (PAS). The 
tissue samples were tilted, so the actual depth of the section and the depth from the surface could be different. The 
above histology procedure was conducted in the pathology department of Asan Medical Center (AMC) in Seoul.

Analysis of goblet cell (GC) density. GC density was analyzed from the in-vivo CFM images of rat conjunc-
tiva. All the image processing and analysis was conducted by using Matlab (Mathoworks, Natick MA), and the flow 
chart of image processing procedures is depicted in Fig. 5. (1) The GC images were enhanced and smoothened by 
applying the BM3D image filter22. (2) The image contrast was adjusted by using local threshold values obtained from 
adaptive threshold analysis. (3) In-focus region was manually selected from the GC image, then the intensity image 
in the in-focus region was converted to a binary image with proper manual thresholding. (4) The number of GCs 
was calculated by dividing the area of total GC pixels with the average size of GCs, and the density of GCs was calcu-
lated by dividing the number of GCs with the in-focus area. (5) The number of GC clusters was analyzed by using a 
boundary tracing function, and the density of GC clusters was calculated by dividing the number of clusters with the 
in-focus area. GC size was calculated based on the information of GC diameter, 10.5 μm23.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.

Received: 20 May 2019; Accepted: 7 October 2019;
Published: xx xx xxxx

Figure 5. Image processing and analysis flowchart. (a) a raw CFM image, (b) image enhancement by using 
BM3D smoothing filter and applying local contrast adjustment, (c) manual selection of focused area in the 
image, (d) binary image conversion, (e) GC cluster counting, (f) GC density and GC cluster density analysis.
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