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Abstract: Introduction: The standard treatment of acute leukemias (AL) is becoming more efficacious
and more selective toward the mechanisms via which to suppress hematologic cancers. This tendency
in hematology imposes additional requirements on the identification of molecular-genetic features of
tumor clones. MicroRNA (miRNA, miR) expression levels correlate with cytogenetic and molecular
subtypes of acute leukemias recognized by classification systems. The aim of this work is analyzing
the miRNA expression profiles in acute myeloblastic leukemia (AML) and acute lymphoblastic
leukemia (ALL) and hematopoietic conditions induced by non-tumor pathologies (NTP). Methods:
A total of 114 cytological samples obtained by sternal puncture and aspiration biopsy of bone
marrow (22 ALLs, 44 AMLs, and 48 NTPs) were analyzed by real-time PCR regarding preselected
25 miRNAs. For the classification of the samples, logistic regression was used with balancing of
comparison group weights. Results: Our results indicated potential feasibility of (i) differentiating
ALL+AML from a nontumor hematopoietic pathology with 93% sensitivity and 92% specificity using
miR-150:miR-21, miR-20a:miR-221, and miR-24:nf3 (where nf3 is a normalization factor calculated
from threshold cycle values of miR-103a, miR-191, and miR-378); (ii) diagnosing ALL with 81%
sensitivity and 81% specificity using miR-181b:miR-100, miR-223:miR-124, and miR-24:nf3; and (iii)
diagnosing AML with 81% sensitivity and 84% specificity using miR-150:miR-221, miR-100:miR-24,
and miR-181a:miR-191. Conclusion: The results presented herein allow the miRNA expression profile
to de used for differentiation between AL and NTP, no matter what AL subtype.

Keywords: acute myeloblastic leukemia; acute lymphoblastic leukemia; microRNA

1. Introduction

Acute leukemia (AL) is a hematologic cancer arising from early hematopoietic precursors that have
undergone malignant transformation and for that reason lost their ability to differentiate into mature
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blood cells. From a clinical perspective, the progression of this type of hematologic cancer may be
evident on a hemogram as pancytopenia due to the withdrawal of normal lineages from bone marrow
by tumor blasts, as pronounced tumor toxicity, as secondary lesions to internal organs due to blastic
infiltration, and as hematopoietic deficiencies (anemia, hemorrhagic syndrome, and infection-based
agranulocytosis). Special epidemiological features of ALs make these pathologies some of the most
important types of hematologic cancers that are determinants of treatment efficacy of hematologic
cancers [1].

The standard treatment of ALs is becoming more efficacious and more selective toward the
mechanisms via which to suppress hematologic cancers. Cells that remain in the BM after chemotherapy
are believed to be responsible for relapses. This is why protocols for an early and accurate detection
of the residual leukemic cells (minimal residual disease (MRD)) are important. MRD monitoring
may have importance for clinical decision making, as it allows survival rates and relapse risk to be
accurately assessed [2].

Classical cell-based methods used to ascertain relapsed AL, including flow immunocytofluorometry,
are well proven and reliable. However, these methods are no aids to monitor early molecular-genetic
events in the genomes of the pre-cancerous precursors that have implications for AL progression.
This is why the only privilege that a physician armed with standard laboratory methods for detecting a
relapse has at the moment is to observe what clonal selection has done rather than to have full control
of the process.

Residual leukemic cells are not seldom present in very low numbers, and so their detection requires
more sensitive methods [3]. Real-time PCR and droplet digital PCR are some of them. However,
MRD detection can be complicated by a phenomenon known as ‘clonal evolution’. Thus, analysis of all
molecular markers at diagnosis and first relapse may show that the predominant clone is not always of
one and the same origin [4]. There is little doubt that the use of any MRD detection method requires a
biomarker or a combination of biomarkers that can clearly differentiate between normal and cancer
cells. This is especially difficult in AL due to a high genetic instability of tumor cells’ genome and, as a
consequence, a substantial clonal heterogeneity of this disease.

On the other hand, patients who are neither genetically nor epigenetically predisposed to tumor
progression/relapse have to rely on standard chemotherapeutic relapse prevention protocols and are
exposed to undue risk of side effects and even death.

Analysis of molecular-genetic factors in the pathogenesis of leukemias has allowed to discover
a new regulatory mechanism underlying an abnormal function of the key genes responsible for
differentiation into myeloid and lymphoid cell types. This mechanism involves microRNAs (miRNAs,
miRs), i.e., short noncoding RNAs exerting regulatory action on the expression of target genes,
both transcriptionally and translationally [5].

It has been demonstrated that miRNA expression levels correlate with cytogenetic and molecular
AL subtypes recognized by classification systems and determine many properties of tumor blasts [5,6].
Aberrations in miRNA expression profiles in AL have been demonstrated [7–9]. Today, there is little
doubt that miRNAs correlate strongly with the efficacy of standard chemotherapy for AL and clinical
outcomes of hematologic cancers [10].

The aim of this work is analyzing the miRNA expression profiles in acute myeloblastic leukemia
(AML), acute lymphoblastic leukemia (ALL), and hematopoietic conditions induced by non-tumor
pathologies (NTP). Data obtained will allow us to identify the miRNAs that can be used as
high-sensitivity biomarkers to detect MRD with.

2. Experimental Section

Clinical material. A total of 114 cytological samples were obtained by sternal puncture and
aspiration biopsy of bone marrow on the posterior iliac spine. All the cases were AL patients at the
Novosibirsk Municipal Hematological Center before treatment initiation. Cytological material was
obtained in compliance with Russian laws and regulations, written informed consent was obtained
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from each patient, and all the data were depersonalized. The study protocol No.15 of May 25, 2020 was
approved by the Ethics Committee of Novosibirsk State Medical University.

The types of hematologic cancers included in the study population were ALL (22 specimens)
and AML (44 specimens). The characteristics of the groups are shown in Supplementary Table S1.
Work with healthy bone marrow donors for allogeneic transplantation is beyond the competence of
our clinic. Taken together, we decided to go with a control group composed of people who had no
hematologic cancer, but had indications for bone marrow examination to exclude one. They were
people with secondary anemic and cytopenic conditions, in whom leukemias were not confirmed by
myelography (NTP (48 specimens)). The characteristics of the NTP group are shown in Table 1.

Table 1. Clinical data of non-cancerous blood diseases (NTP) (n = 48).

Characteristic n (%)

Gender
Male 23 (48)

Female 25 (52)

Age
>60 years 11 (23)
<60 years 37 (77)

Median hemoglobin, g/L 90
Median WBC count, ×109/L 6.7

Median ANC, /dL 5
Median platelet count, ×109/L 200.5

Sybtype
Iron-deficiency anemia 28 (58)

hemolytic anemia 3 (6)
B12 deficiency anemia 5 (10)
chronic disease anemia 6 (13)

immune thrombocytopenia 5 (10)
aplastic anemia 1 (2)

Abbreviations: WBC = white blood cell; ANC = absolute neutrophil count.

Selecting miRNAs. MiRNAs were chosen based on literature data. The experimental analysis
involved 25 miRNAs: miR-100-5p, -124-3p, -126-3p, -128-3p, -146a-5p, -150-5p, -155-5p, -18a-5p,
-181a-5p, -181b-5p, -196b-5p, -20a-5p, -21-5p, -210-3p, -221-3p, -223-3p, -24-3p, -26a-5p, -29b-3p, -451a,
-9-5p, -92a-3p, -96-5p, -99a-5p, and let-7a [10–15]. Reference miRNAs were miR-378-3p, -191-5p,
and -103a-3p, which were selected by means of our original data and literature data [16]. In some
classification variables, the geometric mean of threshold cycle (Ct) values of the three reference miRNAs
was employed for normalization as proposed by Vandesompele [17].

Total nucleic acid isolation. Nucleic acid was isolated and, as described by Titov et al., a dried
cytological smear was washed into a microcentrifuge tube with three 200 µL portions of guanidine
lysis buffer [18]. The sample was vigorously mixed and incubated in a thermal shaker for 15 min at
65 ◦C. Next, an equal volume of isopropanol was added. The reaction solution was thoroughly mixed
and kept at room temperature for 5 min. After centrifugation for 10 min at 14000 g, the supernatant
was discarded, and the pellet was washed with 500 µL of 70% ethanol and 300 µL of acetone. Finally,
the RNA was dissolved in 200 µL of deionized water. If not analyzed immediately, RNA samples were
stored at 20 ◦C.

Oligonucleotide primers and probes. All the oligonucleotides, including fluorescently labeled ones,
were synthesized by AO Vector-Best (Novosibirsk, Russia). The oligonucleotides were chosen using an
online tool, PrimerQuest (https://eu.idtdna.com/). For each miRNA, several sets of oligonucleotides
were chosen, from which those with the highest real-time PCR efficiency were selected. PCR efficiency
was assessed by constructing a standard curve for serial dilutions of synthetic miRNA analogs

https://eu.idtdna.com/
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(OOO Biosan, Novosibirsk, Russia) of known concentration. Depending on the system, the E value
varied from 91.5% to 99.8%. The sequences of the oligonucleotides are given in Supplementary Table S2.

Detection of miRNA by real-time PCR. Mature miRNAs were detected via the method proposed
by Chen et al. [19]. For each miRNA, reverse transcription was carried out, followed by real-time
PCR as described by Titov et al. [18]. Reverse transcription and PCR for each sample involved one
replicate each. Concentrations of some miRNAs were normalized to “nf3,” which is the geometric
mean of Ct values of the three reference miRNAs (miR-103a-3p, miR-191-5p, and miR-378-3p), by the
2−∆Ct method [20]. Concentrations of some other miRNAs were normalized to another miRNA
(instead of nf3), as described below. In other words, nf3 served as the normalization factor for some
classification variables.

Classifying samples. To investigate the association between miRNA concentrations and outcomes
in NTP, ALL, and AML, classification variables were created that represent binary logarithms of
pairwise ratios of miRNA concentrations; for example, the classification variable miR-150:miR-378
denotes Ct(miR-150) minus Ct(miR-378). The paper by Ivanov et al. explains why it is worthwhile
to use ratios corresponding to pairs of markers (where an oncogenic or tumor suppressor miRNA
is normalized to another marker miRNA) rather than stand-alone markers (individual miRNAs)
normalized to housekeeping genes [21]. Above-mentioned normalization factor nf3 was employed
to create some classification variables (i.e., to calculate some ratios), for example, miR-150:nf3 was
equal to Ct(miR-150) − Ct(nf3). The reference miRNAs miR-103a-3p, miR-191-5p, and miR-378-3p
were included in our analysis as nonreference miRNAs too, even though they are components of nf3.
For instance, variables miR-150:miR-378 and miR-191:nf3 were utilized in the classification analysis.
A total of 406 of such classification variables based on miRNA Ct values were tested in this analysis.

Primary analysis. For each classification variable, the following comparisons were made: NTP vs.
others, ALL vs. others, AML vs. others, and ALL vs. AML. The comparisons were carried out by
the exact Mann–Whitney test. In accordance with the Bonferroni approach to multiple comparisons,
differences with p-values less than 0.05/(4 × 406) were considered statistically significant. In addition
to the p-values, we calculated the following prediction accuracy measures for leave-one-out cross-
validation: accuracy, sensitivity, specificity, and receiver-operating characteristic (ROC) area under the
curve (AUC) with DeLong’s confidence interval. Predicted values were computed via logistic regression
with balancing of the comparison groups’ weights. The accuracy, sensitivity, specificity, and ROC AUC
values in the leave-one-out cross-validation were calculated for the threshold value of 0.5.

Secondary analysis. To assess the possibility of improving prediction accuracy, we examined all
logistic regression models based on two or three of the created variables. In total, for each of the four
comparisons, (406 × 405/2) + (406 × 405 × 404/6) = 11,153,835 models with two or three regressors
were tested. Additionally, we tried the following machine learning methods: support vector machine,
linear discriminant analysis, and boosting, but their performance was not better than that of logistic
regression, and therefore their results are omitted here.

The computations were made in the R software, v.3.6.3 (R Core Team).

3. Results

3.1. Comparing miRNA Concentrations among ALL, AML, and NTP Samples

Relative concentrations of miRNAs in different sample types were determined by RT-PCR
(Figure 1). As an example, the scatterplot of miR-150:nf3 and miR-221:nf3 for individual patients is
displayed in Figure 2.
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Figure 1. Boxplot for binary logarithms of some miRNA concentrations, those that were normalized 
to nf3. The boxes depict medians with the 1st and 3rd quartiles. 

 
Figure 2. The scatterplot of miR-150:nf3 and miR-221:nf3 for individual patients. 

3.2. Sample Classification 

Although significant differences in the concentrations of seven miRNAs were found between 
either ALL or AML and NTP samples, none of the miRNAs could serve as a single marker (Figure 1). 
For this reason, when classifying samples, we used ratios of concentrations for pairs of miRNAs 
(some of these ratios involved reference miRNAs and/or nf3) in univariate classification models or 
combinations of such ratios in multivariable classification models. 
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3.2. Sample Classification

Although significant differences in the concentrations of seven miRNAs were found between
either ALL or AML and NTP samples, none of the miRNAs could serve as a single marker (Figure 1).
For this reason, when classifying samples, we used ratios of concentrations for pairs of miRNAs
(some of these ratios involved reference miRNAs and/or nf3) in univariate classification models or
combinations of such ratios in multivariable classification models.



Biomedicines 2020, 8, 607 6 of 17

The results of the comparison between NTP and the others are given in Table 2; those for ALL vs.
others, in Table 3; the results on AML vs. others in Table 4, and the comparison between ALL and AML
is presented in Table 5. The tables list univariate models for the variables for which p × 4 × 406 < 0.05
and those classification variables that are based on normalization to nf3. For the sake of convenience,
in the tables, the p-values are multiplied by the number of comparisons 4 × 406 to allow the reader
to compare the “normalized” p-values with the common threshold of 0.05, which is equivalent to
comparing the “raw” p-values with 0.05/(4 × 406). Additionally, some logistic regression models based
on two or three variables with the best cross-validation accuracy are presented in the tables.

According to Table 2, which shows the results of the comparison between NTP and the
others, the best prediction accuracy (93.8% sensitivity with 92.4% specificity) was manifested by
the classification model based on covariates miR-150:miR-21, miR-20a:miR-221, and miR-24:nf3.
Among univariate models, miR-150:miR-378 had the best prediction accuracy (87.5% sensitivity with
72.7% specificity).

Table 2. Comparison of NTP vs. others.

p-Value × 4
× 406

CV
Accuracy

CV
Sensitivity

CV
Specificity CV AUC

miR-150:miR-21 +
miR-20a:miR-221 +

miR-24:nf3
0.930 0.938 0.924 0.949 (0.910, 0.989)

miR-150:miR-223 +
miR-150:miR-221 +
miR-126:miR-191

0.921 0.917 0.924 0.950 (0.910, 0.991)

miR-150:miR-223 +
miR-150:nf3 +

miR-126:miR-221
0.921 0.917 0.924 0.959 (0.926, 0.993)

miR-150:miR-223 +
miR-223:miR-221 +
miR-126:miR-191

0.921 0.917 0.924 0.950 (0.910, 0.991)

miR-150:miR-223 +
miR-223:nf3 +

miR-126:miR-221
0.921 0.917 0.924 0.959 (0.926, 0.993)

miR-150:miR-221 +
miR-223:miR-221 +
miR-126:miR-191

0.921 0.917 0.924 0.950 (0.910, 0.991)

miR-150:nf3 +
miR-20a:miR-221 +
miR-24:miR-103a

0.921 0.917 0.924 0.946 (0.900, 0.991)

miR-150:nf3 +
miR-223:nf3 +

miR-126:miR-221
0.921 0.917 0.924 0.959 (0.926, 0.993)

miR-150:miR-146a +
miR-155:miR-221 +

miR-24:miR-378
0.921 0.938 0.909 0.951 (0.910, 0.993)

miR-150:miR-221 +
miR-196b:miR-99a +

miR-24:nf3
0.921 0.958 0.894 0.950 (0.909, 0.992)

miR-223:miR-378 +
miR-221:miR-24 +

miR-29b:nf3
0.921 0.958 0.894 0.943 (0.895, 0.990)

miR-223:nf3 +
miR-221:miR-24 0.886 0.917 0.864 0.919 (0.865, 0.972)
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Table 2. Cont.

p-Value × 4
× 406

CV
Accuracy

CV
Sensitivity

CV
Specificity CV AUC

miR-150:miR-221 +
miR-24:miR-378 0.877 0.917 0.848 0.931 (0.886, 0.976)

miR-223:miR-221 +
miR-126:miR-103a 0.877 0.875 0.879 0.929 (0.881, 0.977)

miR-223:miR-221 +
miR-126:miR-191 0.877 0.896 0.864 0.932 (0.888, 0.975)

miR-223:miR-221 +
miR-29b:nf3 0.877 0.875 0.879 0.930 (0.880, 0.980)

miR-150:miR-378 0.00000000071 0.789 0.875 0.727 0.863 (0.794, 0.932)

miR-150:nf3 0.0000000024 0.772 0.854 0.712 0.857 (0.785, 0.929)

miR-221:miR-24 0.000000044 0.746 0.792 0.712 0.836 (0.764, 0.908)

miR-223:miR-221 0.00000056 0.719 0.792 0.667 0.820 (0.744, 0.895)

miR-150:miR-221 0.00000099 0.728 0.792 0.682 0.817 (0.741, 0.893)

miR-150:miR-191 0.0000021 0.746 0.812 0.697 0.811 (0.730, 0.892)

miR-223:miR-378 0.0000045 0.693 0.792 0.621 0.806 (0.726, 0.886)

miR-150:miR-92a 0.000043 0.746 0.792 0.712 0.788 (0.703, 0.873)

miR-150:miR-103a 0.000045 0.719 0.771 0.682 0.785 (0.699, 0.871)

miR-128:miR-150 0.000068 0.693 0.729 0.667 0.782 (0.698, 0.867)

miR-150:miR-146a 0.00011 0.719 0.792 0.667 0.779 (0.695, 0.863)

miR-150:miR-181a 0.00011 0.711 0.792 0.652 0.778 (0.695, 0.861)

miR-451a:miR-103a 0.00015 0.684 0.667 0.697 0.775 (0.690, 0.860)

miR-150:miR-181b 0.00017 0.711 0.812 0.636 0.773 (0.687, 0.860)

miR-92a:miR-451a 0.00032 0.667 0.688 0.652 0.769 (0.682, 0.855)

miR-221:miR-26a 0.00045 0.728 0.771 0.697 0.764 (0.675, 0.853)

miR-126:miR-221 0.00059 0.728 0.750 0.712 0.764 (0.676, 0.852)

miR-150:miR-21 0.00099 0.719 0.729 0.712 0.759 (0.668, 0.849)

miR-451a:nf3 0.0015 0.649 0.667 0.636 0.753 (0.665, 0.842)

miR-451a:miR-21 0.0016 0.667 0.792 0.576 0.753 (0.662, 0.844)

miR-181b:miR-223 0.0019 0.640 0.833 0.500 0.751 (0.662, 0.841)

miR-221:miR-451a 0.0020 0.693 0.750 0.652 0.751 (0.663, 0.840)

miR-451a:miR-378 0.0032 0.667 0.750 0.606 0.745 (0.656, 0.834)

miR-221:miR-9 0.0034 0.702 0.771 0.652 0.747 (0.656, 0.837)

miR-221:miR-29b 0.0042 0.711 0.729 0.697 0.747 (0.656, 0.838)

miR-26a:miR-378 0.0050 0.675 0.646 0.697 0.741 (0.649, 0.833)

miR-150:miR-20a 0.0054 0.693 0.688 0.697 0.744 (0.653, 0.835)

miR-29b:miR-378 0.0069 0.711 0.708 0.712 0.740 (0.647, 0.832)

miR-150:miR-18a 0.0074 0.693 0.729 0.667 0.739 (0.647, 0.831)

miR-24:miR-378 0.0091 0.667 0.625 0.697 0.735 (0.638, 0.833)

miR-150:miR-99a 0.011 0.702 0.750 0.667 0.732 (0.639, 0.825)

miR-451a:let7a 0.016 0.684 0.771 0.621 0.729 (0.637, 0.822)

miR-223:nf3 0.017 0.675 0.792 0.591 0.725 (0.633, 0.818)
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Table 2. Cont.

p-Value × 4
× 406

CV
Accuracy

CV
Sensitivity

CV
Specificity CV AUC

miR-150:miR-196b 0.017 0.667 0.792 0.576 0.732 (0.638, 0.827)

miR-126:miR-378 0.019 0.675 0.667 0.682 0.729 (0.633, 0.825)

miR-150:miR-155 0.026 0.684 0.792 0.606 0.727 (0.633, 0.821)

miR-20a:miR-451a 0.026 0.632 0.646 0.621 0.724 (0.629, 0.820)

miR-451a:miR-191 0.032 0.649 0.667 0.636 0.722 (0.628, 0.815)

miR-29b:nf3 0.18 0.684 0.646 0.712 0.698 (0.597, 0.799)

miR-126:nf3 0.41 0.649 0.646 0.652 0.686 (0.581, 0.791)

miR-26a:nf3 0.70 0.623 0.604 0.636 0.681 (0.581, 0.781)

miR-20a:nf3 >1 0.588 0.604 0.576 0.636 (0.535, 0.737)

miR-210:nf3 >1 0.632 0.583 0.667 0.628 (0.521, 0.735)

let7a:nf3 >1 0.570 0.625 0.530 0.627 (0.519, 0.735)

miR-221:nf3 >1 0.570 0.604 0.545 0.624 (0.520, 0.728)

miR-24:nf3 >1 0.579 0.542 0.606 0.628 (0.520, 0.735)

miR-196b:nf3 >1 0.614 0.562 0.652 0.621 (0.517, 0.724)

miR-18a:nf3 >1 0.570 0.542 0.591 0.614 (0.508, 0.720)

miR-96:nf3 >1 0.561 0.646 0.500 0.608 (0.504, 0.713)

miR-9:nf3 >1 0.614 0.500 0.697 0.597 (0.489, 0.705)

miR-128:nf3 >1 0.596 0.521 0.652 0.543 (0.433, 0.652)

miR-124:nf3 >1 0.553 0.583 0.530 0.553 (0.448, 0.659)

miR-21:nf3 >1 0.553 0.542 0.561 0.534 (0.420, 0.648)

miR-181b:nf3 >1 0.579 0.667 0.515 0.553 (0.447, 0.659)

miR-92a:nf3 >1 0.544 0.562 0.530 0.490 (0.383, 0.597)

miR-155:nf3 >1 0.491 0.583 0.424 0.462 (0.356, 0.569)

miR-100:nf3 >1 0.456 0.521 0.409 0.500 (0.389, 0.611)

miR-181a:nf3 >1 0.465 0.562 0.394 0.523 (0.416, 0.630)

miR-99a:nf3 >1 0.439 0.521 0.379 0.591 (0.486, 0.696)

miR-146a:nf3 >1 0.465 0.604 0.364 0.511 (0.404, 0.618)

In this table, sensitivity is the proportion of NTP patients that are correctly identified as such, and specificity is the
proportion of ALL+AML patients correctly identified as such.

According to Table 3, which presents the results of the comparison between ALL and the others,
the model based on covariates miR-181b:miR-100, miR-223:miR-124, and miR-24:nf3 had the best
prediction accuracy (81.8% sensitivity with 81.5% specificity).

Table 3. Comparison of ALL vs. others.

p-Value × 4
× 406

CV
Accuracy

CV
Sensitivity

CV
Specificity CV AUC

miR-181b:miR-100 +
miR-223:miR-124 +

miR-24:nf3
0.816 0.818 0.815 0.796 (0.679, 0.914)

miR-155:miR-124 +
miR-181b:miR-100 +
miR-223:miR-103a

0.807 0.818 0.804 0.839 (0.736, 0.941)
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Table 3. Cont.

p-Value × 4
× 406

CV
Accuracy

CV
Sensitivity

CV
Specificity CV AUC

miR-155:miR-378 +
miR-181b:miR-223 +

miR-100:miR-210
0.807 0.818 0.804 0.829 (0.732, 0.926)

miR-196b:miR-124 +
miR-92a:miR-24 +
miR-100:miR-181a

0.807 0.818 0.804 0.850 (0.763, 0.936)

miR-155:miR-378 +
miR-181b:miR-196b +

miR-223:miR-146a
0.807 0.773 0.815 0.768 (0.646, 0.890)

miR-155:miR-378 +
miR-181b:miR-223 +

miR-196b:miR-24
0.807 0.773 0.815 0.772 (0.663, 0.882)

miR-155:miR-100 +
miR-196b:miR-124 +

miR-223:miR-92a
0.807 0.727 0.826 0.801 (0.689, 0.914)

miR-181b:miR-223 +
miR-196b:miR-103a +

miR-100:miR-124
0.807 0.727 0.826 0.796 (0.674, 0.918)

miR-196b:miR-124 +
miR-223:miR-26a +
miR-99a:miR-378

0.807 0.727 0.826 0.792 (0.673, 0.911)

miR-196b:nf3 +
miR-223:miR-181a +

miR-126:miR-210
0.807 0.727 0.826 0.726 (0.590, 0.862)

miR-223:miR-26a +
miR-100:miR-181a +
miR-451a:miR-103a

0.807 0.727 0.826 0.777 (0.658, 0.896)

miR-196b:miR-181a +
miR-92a:miR-24 +
miR-221:miR-21

0.807 0.682 0.837 0.719 (0.584, 0.855)

miR-155:miR-92a +
miR-181b:miR-196b +

miR-221:miR-451a
0.807 0.545 0.870 0.698 (0.567, 0.829)

miR-196b:miR-181a +
miR-20a:miR-451a +

let7a:miR-21
0.807 0.545 0.870 0.643 (0.488, 0.798)

miR-155:miR-92a +
miR-181b:miR-126 +
miR-196b:miR-181a

0.807 0.500 0.880 0.650 (0.496, 0.803)

miR-181b:miR-223 +
miR-196b:miR-103a 0.789 0.682 0.815 0.727 (0.596, 0.858)

miR-18a:miR-451a +
miR-181a:miR-24 0.789 0.545 0.848 0.647 (0.502, 0.793)

miR-181b:miR-223 +
miR-221:miR-9 0.789 0.545 0.848 0.727 (0.616, 0.838)

miR-128:miR-21 +
miR-223:miR-181a 0.789 0.500 0.859 0.617 (0.452, 0.781)

miR-196b:nf3 >1 0.649 0.591 0.663 0.703 (0.570, 0.836)

miR-223:nf3 >1 0.684 0.591 0.707 0.686 (0.548, 0.824)

miR-100:nf3 >1 0.596 0.591 0.598 0.643 (0.527, 0.759)
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Table 3. Cont.

p-Value × 4
× 406

CV
Accuracy

CV
Sensitivity

CV
Specificity CV AUC

miR-9:nf3 >1 0.570 0.682 0.543 0.625 (0.502, 0.748)

miR-451a:nf3 >1 0.596 0.500 0.620 0.595 (0.453, 0.737)

miR-124:nf3 >1 0.588 0.545 0.598 0.595 (0.459, 0.732)

miR-150:nf3 >1 0.614 0.455 0.652 0.570 (0.439, 0.700)

miR-29b:nf3 >1 0.526 0.591 0.511 0.583 (0.450, 0.715)

miR-126:nf3 >1 0.570 0.636 0.554 0.564 (0.436, 0.691)

miR-24:nf3 >1 0.535 0.455 0.554 0.574 (0.449, 0.699)

miR-21:nf3 >1 0.518 0.500 0.522 0.564 (0.439, 0.689)

miR-181a:nf3 >1 0.588 0.364 0.641 0.558 (0.428, 0.688)

miR-181b:nf3 >1 0.623 0.409 0.674 0.558 (0.409, 0.707)

miR-20a:nf3 >1 0.596 0.545 0.609 0.509 (0.361, 0.658)

let7a:nf3 >1 0.570 0.455 0.598 0.549 (0.409, 0.689)

miR-96:nf3 >1 0.579 0.455 0.609 0.535 (0.384, 0.686)

miR-26a:nf3 >1 0.518 0.545 0.511 0.506 (0.372, 0.641)

miR-146a:nf3 >1 0.596 0.364 0.652 0.502 (0.366, 0.637)

miR-99a:nf3 >1 0.500 0.636 0.467 0.523 (0.408, 0.637)

miR-18a:nf3 >1 0.491 0.455 0.500 0.502 (0.379, 0.625)

miR-155:nf3 >1 0.561 0.364 0.609 0.499 (0.348, 0.650)

miR-128:nf3 >1 0.588 0.364 0.641 0.489 (0.334, 0.644)

miR-221:nf3 >1 0.500 0.318 0.543 0.602 (0.482, 0.722)

miR-210:nf3 >1 0.482 0.500 0.478 0.650 (0.536, 0.763)

miR-92a:nf3 >1 0.447 0.364 0.467 0.629 (0.507, 0.752)

In this table, sensitivity is the proportion of ALL patients that are correctly identified as such, and specificity is the
proportion of NTP+AML patients correctly identified as such.

According to Table 4, which lists findings of the comparison between AML and the others, the best
prediction accuracy (81.8% sensitivity with 84.3% specificity) was shown the model based on the
covariates miR-150:miR-221, miR-100:miR-24, and miR-181a:miR-191. Among univariate models,
miR-150:miR-191 had the best prediction accuracy (68.2% sensitivity with 78.6% specificity).

Table 4. Comparison of AML vs. others.

p-Value × 4
× 406

CV
Accuracy

CV
Sensitivity

CV
Specificity CV AUC

miR-150:miR-221 +
miR-100:miR-24 +
miR-181a:miR-191

0.833 0.818 0.843 0.868 (0.803, 0.934)

miR-150:miR-221 +
miR-100:miR-124 +

miR-26a:nf3
0.825 0.841 0.814 0.882 (0.821, 0.944)

miR-150:miR-100 +
miR-181a:miR-221 +

miR-24:nf3
0.825 0.818 0.829 0.872 (0.807, 0.937)

miR-150:miR-100 +
miR-181a:nf3 +

miR-221:miR-24
0.825 0.818 0.829 0.882 (0.819, 0.944)
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Table 4. Cont.

p-Value × 4
× 406

CV
Accuracy

CV
Sensitivity

CV
Specificity CV AUC

miR-150:miR-21 +
miR-18a:miR-92a +
miR-26a:miR-191

0.825 0.795 0.843 0.831 (0.754, 0.908)

miR-150:nf3 +
miR-20a:miR-92a +
miR-100:miR-124

0.825 0.795 0.843 0.843 (0.765, 0.921)

miR-223:miR-100 +
miR-146a:miR-103a +

miR-221:miR-451a
0.825 0.795 0.843 0.836 (0.755, 0.917)

miR-223:miR-103a +
miR-100:miR-451a +
miR-146a:miR-221

0.825 0.795 0.843 0.823 (0.741, 0.905)

miR-100:miR-126 +
miR-146a:miR-221 +

miR-26a:miR-21
0.825 0.773 0.857 0.822 (0.736, 0.908)

miR-128:miR-221 +
miR-20a:miR-100 +

miR-24:nf3
0.825 0.773 0.857 0.812 (0.726, 0.898)

miR-150:miR-221 +
miR-196b:miR-24 +
miR-100:miR-99a

0.825 0.773 0.857 0.819 (0.730, 0.907)

miR-181b:miR-100 +
miR-146a:miR-103a +

miR-221:miR-451a
0.825 0.773 0.857 0.834 (0.752, 0.915)

miR-150:miR-221 +
miR-26a:miR-103a 0.798 0.795 0.800 0.837 (0.763, 0.911)

miR-150:miR-191 +
miR-124:miR-221 0.781 0.773 0.786 0.789 (0.700, 0.878)

miR-150:miR-21 +
miR-26a:miR-191 0.781 0.750 0.800 0.823 (0.745, 0.901)

miR-150:miR-191 +
miR-210:miR-21 0.781 0.727 0.814 0.803 (0.719, 0.887)

miR-150:miR-191 +
miR-181b:miR-124 0.781 0.705 0.829 0.780 (0.689, 0.872)

miR-150:miR-100 +
miR-26a:miR-378 0.781 0.682 0.843 0.808 (0.728, 0.889)

miR-150:nf3 0.000022 0.737 0.636 0.800 0.794 (0.712, 0.876)

miR-150:miR-191 0.000057 0.746 0.682 0.786 0.786 (0.699, 0.874)

miR-150:miR-378 0.00016 0.711 0.614 0.771 0.775 (0.690, 0.860)

miR-150:miR-100 0.0011 0.702 0.659 0.729 0.757 (0.665, 0.849)

miR-150:miR-221 0.0015 0.719 0.659 0.757 0.756 (0.659, 0.854)

miR-150:miR-103a 0.0072 0.719 0.682 0.743 0.741 (0.646, 0.837)

miR-150:miR-196b 0.0072 0.684 0.568 0.757 0.741 (0.645, 0.838)

miR-150:miR-21 0.0076 0.684 0.682 0.686 0.739 (0.645, 0.833)

miR-150:miR-92a 0.020 0.711 0.636 0.757 0.729 (0.631, 0.828)

miR-221:miR-24 0.022 0.711 0.636 0.757 0.728 (0.630, 0.825)

miR-26a:miR-21 0.028 0.711 0.636 0.757 0.726 (0.624, 0.829)

miR-221:miR-26a 0.042 0.693 0.636 0.729 0.718 (0.613, 0.822)
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Table 4. Cont.

p-Value × 4
× 406

CV
Accuracy

CV
Sensitivity

CV
Specificity CV AUC

miR-100:miR-26a 0.043 0.667 0.659 0.671 0.721 (0.624, 0.819)

miR-451a:nf3 > 1 0.649 0.614 0.671 0.675 (0.575, 0.775)

miR-26a:nf3 > 1 0.596 0.614 0.586 0.649 (0.547, 0.751)

miR-29b:nf3 > 1 0.623 0.705 0.571 0.634 (0.527, 0.740)

miR-126:nf3 > 1 0.570 0.568 0.571 0.630 (0.526, 0.734)

miR-210:nf3 > 1 0.623 0.636 0.614 0.629 (0.520, 0.737)

miR-221:nf3 > 1 0.605 0.568 0.629 0.613 (0.500, 0.725)

miR-128:nf3 > 1 0.544 0.636 0.486 0.604 (0.497, 0.712)

miR-100:nf3 > 1 0.588 0.477 0.657 0.608 (0.501, 0.715)

miR-223:nf3 > 1 0.596 0.477 0.671 0.591 (0.483, 0.699)

miR-18a:nf3 > 1 0.570 0.591 0.557 0.592 (0.483, 0.700)

miR-20a:nf3 > 1 0.570 0.500 0.614 0.584 (0.474, 0.694)

let7a:nf3 > 1 0.570 0.523 0.600 0.573 (0.467, 0.679)

miR-24:nf3 > 1 0.579 0.591 0.571 0.564 (0.456, 0.673)

miR-96:nf3 > 1 0.561 0.477 0.614 0.558 (0.449, 0.666)

miR-181a:nf3 > 1 0.421 0.182 0.571 0.777 (0.685, 0.869)

miR-155:nf3 > 1 0.342 0.227 0.414 0.867 (0.797, 0.936)

miR-9:nf3 > 1 0.500 0.341 0.600 0.572 (0.463, 0.682)

miR-92a:nf3 > 1 0.509 0.477 0.529 0.498 (0.380, 0.616)

miR-146a:nf3 > 1 0.491 0.318 0.600 0.629 (0.518, 0.740)

miR-99a:nf3 > 1 0.544 0.432 0.614 0.505 (0.388, 0.622)

miR-181b:nf3 > 1 0.570 0.455 0.643 0.486 (0.371, 0.602)

miR-21:nf3 > 1 0.465 0.432 0.486 0.586 (0.480, 0.693)

miR-196b:nf3 > 1 0.491 0.386 0.557 0.507 (0.393, 0.621)

miR-124:nf3 > 1 0.377 0.227 0.471 0.827 (0.745, 0.910)

In this table, sensitivity is the proportion of AML patients that are correctly identified as such, and specificity is the
proportion of NTP+ALL patients correctly identified as such.

According to Table 5, which lists the results for the comparison between ALL and AML, the best
prediction accuracy (86.4% sensitivity with 84.1% specificity) belonged to the classification model based
on covariates miR-100:miR-124, miR-24:miR-26a, and miR-24:miR-9, the model based on covariates
miR-100:miR-124, miR-24:miR-26a, and miR-26a:miR-9, and the model based on mirR-100:miR-124,
miR-24:miR-9, and miR-26a:miR-9.

Table 5. Comparison of ALL vs. AML.

p-Value × 4
× 406

CV
Accuracy

CV
Sensitivity

CV
Specificity CV AUC

miR-100:miR-124 +
miR-24:miR-26a +

miR-24:miR-9
0.848 0.864 0.841 0.893 (0.809, 0.976)

miR-100:miR-124 +
miR-24:miR-26a +

miR-26a:miR-9
0.848 0.864 0.841 0.893 (0.809, 0.976)
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Table 5. Cont.

p-Value × 4
× 406

CV
Accuracy

CV
Sensitivity

CV
Specificity CV AUC

miR-100:miR-124 +
miR-24:miR-9 +
miR-26a:miR-9

0.848 0.864 0.841 0.893 (0.809, 0.976)

miR-155:miR-181b +
miR-100:miR-124 +

miR-24:miR-26a
0.848 0.818 0.864 0.897 (0.810, 0.984)

miR-155:miR-124 +
miR-181b:miR-100 +

miR-24:miR-26a
0.848 0.818 0.864 0.893 (0.802, 0.983)

miR-20a:miR-9 +
miR-100:miR-124 +

miR-24:miR-26a
0.848 0.818 0.864 0.871 (0.781, 0.961)

miR-223:miR-124 +
miR-92a:miR-100 0.773 0.773 0.773 0.794 (0.682, 0.907)

miR-100:miR-124 +
miR-24:miR-26a 0.773 0.727 0.795 0.851 (0.756, 0.946)

miR-223:miR-124 +
miR-100:miR-26a 0.773 0.682 0.818 0.818 (0.715, 0.921)

miR-100:nf3 >1 0.652 0.636 0.659 0.692 (0.561, 0.824)

miR-196b:nf3 >1 0.591 0.591 0.591 0.657 (0.514, 0.800)

miR-181a:nf3 >1 0.576 0.318 0.705 0.560 (0.416, 0.703)

miR-210:nf3 >1 0.621 0.727 0.568 0.572 (0.428, 0.716)

miR-150:nf3 >1 0.530 0.591 0.500 0.568 (0.416, 0.721)

miR-223:nf3 >1 0.652 0.591 0.682 0.565 (0.408, 0.722)

miR-124:nf3 >1 0.530 0.545 0.523 0.544 (0.399, 0.690)

miR-9:nf3 >1 0.530 0.682 0.455 0.569 (0.426, 0.712)

miR-128:nf3 >1 0.606 0.409 0.705 0.568 (0.409, 0.727)

miR-221:nf3 >1 0.606 0.682 0.568 0.544 (0.401, 0.688)

miR-26a:nf3 >1 0.561 0.545 0.568 0.507 (0.351, 0.664)

miR-21:nf3 >1 0.485 0.500 0.477 0.472 (0.325, 0.619)

miR-146a:nf3 >1 0.515 0.227 0.659 0.438 (0.292, 0.584)

miR-181b:nf3 >1 0.606 0.409 0.705 0.496 (0.341, 0.650)

miR-155:nf3 >1 0.545 0.364 0.636 0.505 (0.349, 0.661)

miR-18a:nf3 >1 0.530 0.636 0.477 0.485 (0.333, 0.636)

miR-99a:nf3 >1 0.500 0.636 0.432 0.485 (0.345, 0.624)

miR-92a:nf3 >1 0.470 0.455 0.477 0.548 (0.404, 0.691)

miR-24:nf3 >1 0.455 0.364 0.500 0.518 (0.367, 0.668)

let7a:nf3 >1 0.485 0.409 0.523 0.586 (0.434, 0.738)

miR-29b:nf3 >1 0.424 0.455 0.409 0.689 (0.555, 0.823)

miR-126:nf3 >1 0.455 0.409 0.477 0.753 (0.625, 0.881)

miR-96:nf3 >1 0.515 0.364 0.591 0.644 (0.500, 0.787)

miR-451a:nf3 >1 0.470 0.500 0.455 0.679 (0.540, 0.818)

miR-20a:nf3 >1 0.485 0.591 0.432 0.595 (0.448, 0.742)

In this table, sensitivity is the proportion of ALL patients that are correctly identified as such, and specificity is the
proportion of AML patients correctly identified as such.
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4. Discussion

The expression of miRNA is always different between tumors and healthy tissues or a secondary
nontumor pathology. Additionally, differences in the miRNA profiles among different tumor types
and among different stages of the same malignant tumor are not uncommon [22,23]. Because miRNAs
are highly stable in tissues and body fluids, they appear to be promising diagnostic markers.

In this work, we compared the expression profiles of 25 miRNA in bone marrow samples from
new cases of AML, ALL, and NTPs.

Our study indicates that each of the aforementioned hematopoietic bone marrow disorders may be
identified through profiling of miRNAs. The results of our analysis show that some of our classification
variables are statistically significantly associated with the comparison groups.

The results from our multivariable models, even though they may be subject to overfitting to
some extent, cannot be explained by overfitting alone. For example, in the comparison of NTP
with ALL+AML, the best accuracy (93.8% sensitivity with 92.4% specificity) was shown by the
classification model based on covariates miR-150:miR-21, miR-20a:miR-221, and miR-24:nf3. In the
exact Mann–Whitney test comparing the values predicted by logistic regression during the leave-one-out
cross-validation between the comparison groups, we obtained a p-value < 2.2 × 10−16. On the other
hand, dividing 0.05 by the total number of comparisons yields 0.05/(4 × (11,153,835 + 406)) = 1.1 × 10−9,
which is at least 5 × 106 times greater than the above p-value.

As for individual miRNAs, NTP was best discriminated from ALL+AML by miR-150 (85.4%
sensitivity with 71.2% specificity for the corresponding variable, miR-150:nf3), ALL was best
discriminated from AML+NTP by miRNA-223 (59.1% sensitivity with 70.7% sensitivity for the
corresponding variable, miR-223:nf3), AML was best differentiated from ALL+NTP by miRNA-150
(63.6% sensitivity with 80.0% specificity for miR-150:nf3), and, finally, ALL was best differentiated from
AML by miRNA-100 (63.6% sensitivity with 65.9% specificity for miR-100:nf3), although expression
deregulation of these miRNAs has been described [14]. AML is a special case because changes in
the expression of miRNA-126, -29b, and -26a are reported more often [24–27] in comparison with
miRNA-150. In ALL, changes in the expression of miRNA-150 and -155 are detected more often [28–32]
as compared to miRNA-223.

Inconsistency between miRNA profiling results of different studies is a common problem.
This could be because different authors use dissimilar control groups; this is especially true for
the research on hematologic cancers. Another source of inconsistency is a relatively large error in
measurements of miRNA concentrations whether by RT-PCR or via microarray technologies. Because
of the measurement errors, potentially significant under-three-fold changes in miRNA concentrations
may not be taken into account accurately. Thus, in this study, the most reliable results, which at the
same time were most consistent between different studies, were obtained only for miRNAs whose
cancer-specific differences in concentration were the greatest.

Therefore, our results point to potential feasibility of (i) discriminating ALL+AML from NTP with
93% sensitivity of and 92% specificity using miR-150:miR-21, miR-20a:miR-221, and miR-24:nf3;
(ii) diagnosing ALL with 80% sensitivity and 81% specificity by means of miR-196b:miR-221,
miR-223:miR-378, and miR-100:miR-29b; and (iii) diagnosing AML with 80% sensitivity and 83%
specificity with the help of miR-150:miR-100, miR-181a:miR-191, and miR-221:miR-26a.

The results presented herein allow the miRNA expression profile to be used for differentiation
between AL and NTP, no matter what AL subtype.

Effective treatment for acute leukemias strongly depends on our understanding of the basics of
their genesis. One of the fundamental mechanisms underlying leukemias is the phenomenon known as
‘clonal selection’. This pathogenetic mechanism is in fact responsible for all the clinical features of tumor
relapse to come. One of the problems where the data obtained can be helpful is the detection of MRD.
There is little doubt that the use of any MRD detection method requires a biomarker or a combination
of biomarkers that can clearly differentiate between normal and cancer cells. Data obtained allow
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miRNAs to be seen as promising biomarkers with sufficient sensitivity and specificity to detect MRD,
no matter what clonal nature of the disease.

The aim of this publication is to present the results of the first, pilot stage of the research project.
With reliance on a wide spectrum of miRNAs, we have confirmed the feasibility of using analyses of
miRNA patterns for solving differential problems when analyzing bone marrow samples.

To this end, it is necessary to do testing with larger sample sizes. The obvious extension of this
work will be to analyze miRNA expression profiles after consolidation chemotherapy and to see
whether they correlate with the patient’s clinical data.

Supplementary Materials: The following are available online at http://www.mdpi.com/2227-9059/8/12/607/s1,
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