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ABSTRACT In densely populated urban environments, the distribution of microbes
and the drivers of microbial community assemblages are not well understood. In
sprawling metropolitan habitats, the “urban microbiome” may represent a mix of
human-associated and environmental taxa. Here we carried out a baseline study of
automated teller machine (ATM) keypads in New York City (NYC). Our goal was to
describe the biodiversity and biogeography of both prokaryotic and eukaryotic mi-
crobes in an urban setting while assessing the potential source of microbial assem-
blages on ATM keypads. Microbial swab samples were collected from three bor-
oughs (Manhattan, Queens, and Brooklyn) during June and July 2014, followed by
generation of Illumina MiSeq datasets for bacterial (16S rRNA) and eukaryotic (18S
rRNA) marker genes. Downstream analysis was carried out in the QIIME pipeline, in
conjunction with neighborhood metadata (ethnicity, population, age groups) from
the NYC Open Data portal. Neither the 16S nor 18S rRNA datasets showed any clus-
tering patterns related to geography or neighborhood demographics. Bacterial as-
semblages on ATM keypads were dominated by taxonomic groups known to be as-
sociated with human skin communities (Actinobacteria, Bacteroides, Firmicutes, and
Proteobacteria), although SourceTracker analysis was unable to identify the source
habitat for the majority of taxa. Eukaryotic assemblages were dominated by fungal
taxa as well as by a low-diversity protist community containing both free-living and
potentially pathogenic taxa (Toxoplasma, Trichomonas). Our results suggest that ATM
keypads amalgamate microbial assemblages from different sources, including the
human microbiome, eukaryotic food species, and potentially novel extremophilic
taxa adapted to air or surfaces in the built environment. DNA obtained from ATM
keypads may thus provide a record of both human behavior and environmental
sources of microbes.

IMPORTANCE Automated teller machine (ATM) keypads represent a specific and un-
explored microhabitat for microbial communities. Although the number of built en-
vironment and urban microbial ecology studies has expanded greatly in recent
years, the majority of research to date has focused on mass transit systems, city
soils, and plumbing and ventilation systems in buildings. ATM surfaces, potentially
retaining microbial signatures of human inhabitants, including both commensal taxa
and pathogens, are interesting from both a biodiversity perspective and a public
health perspective. By focusing on ATM keypads in different geographic areas of
New York City with distinct population demographics, we aimed to characterize the
diversity and distribution of both prokaryotic and eukaryotic microbes, thus making
a unique contribution to the growing body of work focused on the “urban micro-
biome.” In New York City, the surface area of urban surfaces in Manhattan far ex-
ceeds the geographic area of the island itself. We have only just begun to describe
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the vast array of microbial taxa that are likely to be present across diverse types of
urban habitats.

KEYWORDS: 16S rRNA, 18S rRNA, New York City, automated teller machine,
environmental sequencing, urban microbiome

In recent years, the growing accessibility of high-throughput sequencing technologies
has vastly expanded our knowledge of microbial communities on a global scale,

encompassing both natural and human-made ecosystems. Environmental sequencing
studies focusing on conserved, phylogenetically informative genetic loci (e.g., nuclear
markers encoding ribosomal subunits, such as the 16S rRNA gene in bacteria/archaea
and the 18S rRNA gene in eukaryotes [1]) have enabled rapid detection and description
of uncultivated taxa across diverse ecosystems. The majority of studies have sought to
describe microbial biodiversity and assess ecological patterns of “pristine” natural
habitats such as oceans (2), lakes (3), soils (4, 5), sea ice and glaciers (6), and even clouds
(7). More recently, however, a number of studies have aimed at directly assessing
human contributions and their impacts on microbial communities. Studies of the built
environment have sought to understand how building architecture and engineering, in
conjunction with human behavior, may influence the microbes that we encounter
during our time spent indoors (which represents 87% of our time on average [8]). Such
studies have aimed at capturing the microbial communities associated with both air
and surfaces in homes (9, 10), hospitals (11, 12), classrooms (13), offices (14, 15), and
restrooms (16), as well as community assemblages within plumbing systems (17–19)
and an expanding set of other indoor microhabitats.

In a similar but distinct vein, studies of urban ecosystems have aimed to understand
the processes and factors governing microbial communities in metropolitan areas
worldwide, where the density of humans is great but the ecosystems themselves are
more sprawling and open to the elements. In urban ecosystems, the distribution and
diversity of microbes may thus be shaped by a combination of both ecological and
human-mediated processes. To date, urban environmental sequencing work has
sought to describe microbial communities associated with urban air (20–24), rodents
(25), and urban soils in green roofs, city parks, and road medians (26, 27), as well as
surfaces within urban transit systems (28, 29). However, those studies captured only a
small part of the microbial diversity that is likely to be present in urban environments,
and there are many other types of locations, substrates, and surfaces which may serve
to deepen our knowledge of microbial ecology and public health in metropolitan areas.

To characterize microbial diversity and biogeography in a unique (but insufficiently
studied) component of the urban landscape, we carried out a baseline survey of
microbial community diversity associated with automated teller machine (ATM) key-
pads in New York City (NYC). The geography, population density, and accessibility of
demographic data in NYC provide a unique case study—in terms of floor space, the
“indoor biome” of Manhattan is three times as large as the geographic area of the island
itself (30). With this focus on NYC, we aim to facilitate the assessment of different factors
that may govern microbial biodiversity and community structure in specific urban
habitats. The ATM keypad can be considered a highly trafficked surface that routinely
comes into contact with human inhabitants, similarly to railings, seats, and turnstiles in
urban transit systems (28, 29). Several culture-based studies of ATMs around the world
have previously been carried out (31–33), but no study to date has yet applied
high-throughput sequencing methods to deeply characterize all taxa which may be
present on ATM keypads. In the present study, we sampled ATM keypads across eight
neighborhoods in three NYC boroughs, where US Census data indicated the presence
of demographically distinct populations of local residents (Fig. 1). Our goal was to
broadly characterize the microbial assemblages recovered from ATM keypads, using an
environmental sequencing workflow that concurrently recovered bacterial/archaeal
taxa (16S rRNA gene amplicons) as well as microbial eukaryote communities (18S rRNA
gene amplicons). The parallel collection of sample metadata and neighborhood census
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data also allowed us to assess whether microbial biogeography in NYC was correlated
with ATM characteristics, local population demographics, or geographic factors. Statis-
tical analyses were further implemented to determine the potential source of ATM
microbial assemblages (e.g., the human microbiome, air, food, etc.) as well as potential
biomarkers associated with different sample classes.

RESULTS
Influence of OTUs from control samples. We collected 66 samples from ATM keypads
across New York City (8 neighborhoods in Manhattan, Queens, and Brooklyn; Fig. 1),
including six control swabs that were exposed to ambient air at different sites. The
sampling strategy was designed to target geographic areas with distinct ethnic and
population demographics, known as neighborhood tabulation areas (NTAs), defined by
the NYC Department of City Planning (see Materials and Methods). The majority of
ATMs were sampled from indoor locations (62 samples were taken inside buildings or
vestibules); however, a small subset of ATM keypads represented outdoor sample
locations (4 samples [included in the 16S rRNA sequencing run only]). During initial
analysis of 16S and 18S rRNA datasets, control samples formed a distinct grouping
separate from the ATM samples in Unifrac principal-coordinate analyses (PCoAs) (see
Fig. S1 in the supplemental material). Upon further investigation, our initial Source-

FIG 1 Map and population demographic metadata of sample sites in New York City. Microbial swab samples were collected at automated
teller machines (ATMs) in eight neighborhood tabulation areas (NTAs), representing three boroughs of New York City (Manhattan, Queens,
and Brooklyn). NTA population demographics, representing 5-year estimates from the United States Census Bureau’s American Community
Survey (ACS) (2008 to 2012), were obtained from the NYC open data portal (https://nycopendata.socrata.com/). “ancestry” demographics
represent write-in responses from a small subset of survey respondents, enabling respondents to report ethnic origins that are not otherwise
captured in questions pertaining to race or foreign-born status in the ACS. Age data represent years. (Map data © 2016 Google.)
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Tracker analysis revealed that a significant proportion of ATM sequences represented
microbial operational taxonomic units (OTUs) that were also present in ambient air
controls (Fig. S2 and S3). Examination of OTU tables suggested that the microbial OTUs
present in control samples represent a mix of aerial microbes (e.g., fungal species and
bacteria attached to dust particles, pollen, etc.), microbes present in the cotton swabs
when purchased from the manufacturer, and “kit microbiomes” consisting of microbes
derived from laboratory reagents (we recovered many known kit-associated bacterial
genera such as Acinetobacter, Pseudomonas, Deinococcus, Sphingobium, and Corynebac-
terium [34]) or potential contamination introduced at some point during PCR and
sequencing protocols. The OTUs sequenced from blank control samples most likely
represent microbes from a combination of these sources; after assessing control
samples and conducting SourceTracker analysis, we adhered to stringent data filtering
protocols and subtracted all control sample OTUs from the entire data set.

Alpha and beta diversity analyses. Assessment of alpha diversity suggested that
the phylogenetic diversity of microbial communities on ATM keypads had been ade-
quately captured by the sequencing workflows in this study (Fig. S4). Rarefaction curves
calculated from stringently filtered OTU tables (subjected to abundance-based OTU
filtering and subtraction of all control OTUs) were observed to be almost flat (for
eukaryotic 18S rRNA data rarefied at 8,900 sequences per sample; Fig. S4B) or to be
beginning to level off (for 16S rRNA data rarefied at 1,700 sequences per sample;
Fig. S4A) within each of the eight NYC neighborhoods sampled. The differences in the
shapes of the rarefaction curves were most likely due to the increased sequencing
effort per sample for 18S rRNA amplicons and to the putatively lower phylogenetic
diversity of microbial eukaryote taxa in urban environments.

Taxonomy summaries for 16S and 18S rRNA showed that the major taxa recovered
from ATM samples were largely consistent across datasets (Fig. 2 and 3). However, the
presence or absence and relative abundances of other minor taxonomic groups were
much more variable across samples. In the 16S rRNA data set, the most abundant
bacterial phyla across most samples were Actinobacteria, Bacteroides, Firmicutes, and
Proteobacteria (Fig. 2A); these taxa are representative of human skin communities and
have been previously shown to dominate urban surfaces in the Boston subway system
(28). At the class level, Actinobacteria, Bacilli, Clostridia, Alphaproteobacteria, and Gam-
maproteobacteria showed the highest relative abundances across most samples
(Fig. 2B). The Alphaproteobacteria are considered a widespread and metabolically
diverse group of environmental bacteria and have also been shown to be associated
with urban transit system surfaces (28). Only nine archaeal OTUs were observed at low
relative abundances and restricted to a few samples in the final abundance-filtered OTU
tables. Further work is needed to determine whether Archaea can truly be considered
“rare taxa” on ATM keypads or, alternatively, whether the 16S rRNA primer set used in
this study prevented recovery of the majority of archaeal taxa; alternative primer sets
or shotgun metagenomic sequencing is needed to provide further insight. In the 18S
rRNA data set, fungal OTUs represented the largest taxonomic proportion in most
samples, with metazoa and unassigned OTUs (those with no BLAST hit) representing
two other taxonomic categories with high relative abundances across most samples
(Fig. 3). Protist lineages (Amoebozoa, Alveolata, Rhizaria) had low diversity, were present
at much lower relative abundances, and showed more variability across samples. The
majority of protist sequences were derived from Alveolata and represent free-living
ciliates, particularly Oligohymenophorea and Colpodea, which are taxa commonly found
in freshwater and soil habitats (35, 36). Three samples contained a �1% relative
abundance of Entamoeba species (samples 632, 637, and 661 from ATM keypads in
West Brighton and midtown), a genus of protists classed within the phylum Amoebozoa
and generally associated with the intestinal tract (37). One sample contained a �10%
relative abundance of Silicofilosea protists (sample 633 from West Brighton), an amoe-
bal member of the Rhizaria group known to be associated with bacterivory and
fungivory in soil ecosystems (38). Free-living trichomonads (Monotrichomonas carabina
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and Ditrichomonas honigbergii [39, 40]), as well as a gut-associated commensal (Pen-
tatrichomonas hominis) typically found in humans and other mammals (41) and a
species closely related to the human parasite Trichomonas vaginalis that was originally
isolated from avian sources (Trichomonas sp. strain 5 AP-2012; GenBank accession no.
JX512960), were also recovered from ATM keypads. Recent studies suggest that both of
these host-associated trichomonads may exhibit zoonotic characteristics (i.e., transmis-
sion between humans, domesticated animals, and wildlife) (42). Toxoplasma, another
zoonotic protist taxon (43), was also detected at �3% relative abundance on one ATM
keypad (sample 632 from West Brighton).

Beta diversity analyses of microbial communities revealed a lack of clear patterns
across ATM keypads in New York City, and this absence of any obvious groupings was

FIG 2 Relative abundances of bacterial/archaeal groups in 16S rRNA data set. (A) Microbial taxonomy summarized at phylum level. (B) Microbial
taxonomy summarized at the class level; the legend displays only the top 15 most abundant taxa in the bar chart. Plots were generated in QIIME using
abundance-filtered OTU tables with control OTUs subtracted. MH, Marble Hill; S., South; W., West.
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consistent across both prokaryotic (16S rRNA) and eukaryotic (18S rRNA) datasets
(Fig. 4). In weighted and unweighted principal-coordinate analysis (PCoA) using Unifrac
distances in QIIME, ATM samples showed no obvious clustering according to geogra-
phy (neighborhood or borough; Fig. 4A and D), type of site where an ATM was located
(bank, store, gas station, etc.; Fig. 4F), or local population demographic metadata
obtained from online sources (predominant race group, age group, etc., in each NTA;
Fig. 4B and E). Other factors such as date and time of sampling and material of ATM
keypad (metal or plastic) also did not reveal any clear clustering of microbial commu-
nities (data not shown). Four outdoor ATMs were included in our sample set but were
not included in 18S rRNA sequencing; while these four ATMs clustered together in 16S
rRNA PCoAs, the corresponding outdoor samples were obtained from the same neigh-
borhood (Chinatown, Manhattan). Small groups of samples from other neighborhoods
were also observed to cluster together in our 16S rRNA data set (Fig. 4A), making it
impossible to separate the influences of neighborhood and indoor/outdoor ATM
location.

Datasets were assessed using various bioinformatic filtering strategies (abundance-
based OTU filtering, differing levels of rarefaction), including approaches that both
included (Fig. S1) and subtracted (Fig. 4) the microbial OTUs present in blank control
samples. None of these methods produced strong groupings in PCoAs, suggesting that
the lack of sample clustering across NYC ATMs represents a biologically valid result.
However, permutational multivariate analysis of variance (PERMANOVA) tests revealed
that the majority of sample groupings in unweighted Unifrac PCoAs are nonetheless
statistically significant (Table 1). Borough and neighborhood were found to be statis-
tically significant for both 16S and 18S rRNA datasets; additionally, ATM location
(indoor/outdoor), population demographics (race), and Illumina run were statistically
significant only in the 16S rRNA data set, and site type was statistically significant only
in the 18S rRNA data set. These PERMANOVA results suggest that there may be some
subtle differences in microbial community fingerprints across sample groups (e.g., that
are revealed only by comparisons of Unifrac phylogenetic distances, as in this statistical

FIG 3 Relative abundances of eukaryotic groups in 18S rRNA data set. Summary of level 3 taxonomy data from the SILVA database, showing higher-level
eukaryotic ranks observed in the ATM keypad data set. The plot was generated in QIIME using abundance-filtered OTU tables with control OTUs
subtracted.
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test) that are not otherwise apparent in broader community comparisons such as those
performed by PCoAs (Fig. 2).

During analysis, the strongest clustering pattern observed in our data set was a
putative technical artifact resulting from 16S rRNA samples being split across two
Illumina MiSeq runs (Fig. 4C). Data filtering and rarefaction did not effectively reduce or
eliminate this technical artifact, and the Illumina run was found to be a strongly
statistically significant sample grouping in PERMANOVA tests of Unifrac distances (P �

0.0001; Table 1). The persistence of such a technical artifact has been similarly reported

FIG 4 Beta-diversity analyses of microbial taxa recovered from ATM keypads. Data represent results of unweighted Unifrac PCoAs for 16S rRNA for
bacteria/archaea (A to C) and 18S rRNA for eukaryotes (D to F), showing no obvious clustering of microbial assemblages according to NYC neighborhood
(A and D), census population demographics (race group with highest proportion in each neighborhood) (B and E), or type of site where ATM was located
(F). The strongest clustering pattern in the data set was a technical artifact observed for 16S rRNA samples sequenced across two Illumina MiSeq
runs (C).
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in other recent studies (14). However, in our case, the 18S rRNA amplicons from
eukaryotic communities were sequenced on a single Illumina run and thus provided an
independent assessment of PCoA patterns. Eukaryotic PCoAs did not show any large
differences in the microbial patterns by site (Fig. 4D and F).

Source of microbial communities on ATM keypads. SourceTracker analysis
carried out on the 16S rRNA data set indicated that the majority of microbes on each
ATM keypad were derived from an unknown source (Fig. 5). For the majority of ATM
samples, �25% of the microbial community was assigned to an identified source,
although four samples (samples 627, 635, 646, and 649) were shown to have �50% of
microbes assigned to known sources. Although this study included only four ATMs
located outdoors (gold stars in Fig. 5), ATM location did not seem to influence the
proportion of “unknown” sources for microbial OTUs, which was high across most
samples. The most common identified sources of microbes on ATM keypads appeared
to be household surfaces such as televisions, restrooms, kitchens, and pillows. In our
SourceTracker analysis, we included data previously obtained from human hands and
palms (44) as well as from other body sites such as the nose, ear, and gut (45). However,
human skin and other body sites were not identified as dominant sources of ATM
microbes in our SourceTracker analysis, despite the inclusion of 46 samples from two
studies representing human skin (44, 45).

Microbial biomarkers from LEfSe analysis. Linear discriminant analysis (LDA)
effect size (LEfSe) analysis suggested the presence of a number of significant microbial
biomarker taxa across different sample groupings (Table 2). In 16S rRNA datasets,
geographic location (borough/neighborhood) represented the only sample grouping
exhibiting no significant enrichment or depletion of microbial taxa. However, this
pattern was not consistent for eukaryotes, where 7 to 36 biomarker taxa were attrib-
uted to geographic location in the 18S rRNA data set. Among all sample groups, the
highest numbers of biomarker taxa were reported for “location” of ATMs within the 16S
rRNA data set (keypads located indoors versus outdoors; Fig. S5); however, the type of
site (bank, restaurant, gas station, etc.) and the population demographics associated
with each NTA (predominant race group) were also associated with a low number of
biomarker taxa in both 18S and 16S rRNA data (Fig. 6). Fungi comprised the majority
of eukaryotic biomarkers identified in the 18S rRNA data set (Fig. 6A) and included both
common species and specialized taxa. For example, the fungal species Aspergillus niger
and Occultifur externus were both found to be enriched on ATM keypads sampled in
Central Harlem South. Aspergillus species are ubiquitous and widespread fungal species
associated with outdoor and indoor air (46, 47), and A. niger is a species heavily utilized
in industrial processes (48) and the cause of black mold disease in many fruit and
vegetable crops (49). In contrast, O. externus is a recently described novel species
originally isolated from plant litter in Portugal (50). Furthermore, the xerophilic food-
borne mold Xeromyces bisporus was reported as another fungal biomarker in NYC
neighborhoods with predominately white population demographics (Fig. 6A); this

TABLE 1 PERMANOVA test for statistical significance of sample groupingsa

Category

16S rRNA
(Bacteria/archaea)

18S rRNA
(eukaryotes)

Pseudo-F value P value Pseudo-F value P value

Borough 1.2744 0.0279 1.3959 0.0028
Neighborhood 1.3184 0.0003 1.1880 0.0043
Site type

(Bank, store, etc.)
1.0497 0.2593 1.1942 0.0257

ATM location (indoor/outdoor) 1.7337 0.0048 NA NA
Population demographics (race) 1.3559 0.0038 1.1141 0.1040
Illumina run 3.2439 0.0001 NA NA
aStatistical tests were performed on unweighted Unifrac distance matrices (where PCoAs were generated
from abundance-filtered OTU tables with control OTUs subtracted), using 10,000 permutations per test. Bold
numbers represent significant P values of �0.05. Pseudo-F numbers represent F values by permutation.
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fungal species has been reported to grow at extremely low water activity levels that are
lower than those seen with any other known organism (51).

A number of eukaryotic metazoan taxa appeared to be associated with population
demographics in different NYC neighborhoods. Notably, bony fish (Teleostei) and
molluscs (Bivalvia) were significantly enriched in ATM samples obtained from predom-
inantly Asian neighborhoods (Flushing/Chinatown), while chickens (Gallus gallus) were
significantly enriched in ATM samples obtained from a predominantly black neighbor-
hood (Central Harlem South). In the 16S rRNA data set, ATM keypads located in
laundromats and stores exhibited the highest number of biomarker taxa, with Lacto-
bacillales significantly enriched across both site types (Fig. 6B). Overall, the number of

FIG 5 SourceTracker analysis of bacterial/archaeal assemblages on ATM keypads. Closed-reference OTUs (16S rRNA only) from this study were compared
to 12 published datasets representing a range of potential source habitats (human body, building surfaces, indoor/outdoor air). The majority of microbes
on each ATM keypad were derived from an unknown source. The most common identified source across all ATMs appeared to be household surfaces (rest
room, kitchen, pillows, and televisions) and outdoor air. Gold stars denote the four ATMs in this study located at outdoor sites.
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significantly discriminative taxa was very low in LEfSe results from the 16S rRNA data
set, with oftentimes only one enriched taxon reported per metadata class (Table 2).

DISCUSSION

Here we present the first broad assessment of microbial communities associated with
ATM keypads in New York City, characterizing assemblages of bacteria/archaea (66
samples) and microbial eukaryotes (48 samples) from eight NYC neighborhoods across
Brooklyn, Queens, and Manhattan. This data set represents an important addition to the
growing body of research focused on urban microbial ecology and specifically com-
plements work performed in New York City which to date has focused on green roofs
and park/median soils (26, 27), sewage (J. M. Maritz, K. H. Rogers, T. M. Rock, N. Liu, S.
Joseph, K. M. Land, and J. M. Carlton, submitted for publication), rodents (25), and both
air and surfaces within the NYC subway system (23, 24, 29). The results are of particular

FIG 6 Linear discriminant analysis (LDA) effect size (LEfSe) analysis to determine microbial biomarker taxa across sample groups. (A) Eukaryotic 18S rRNA
OTUs significantly enriched across census population demographics (predominant race group in each NTA). (B) Bacterial/archaeal genera significantly
enriched across different ATM site types in 16S rRNA data set.

TABLE 2 Number of significantly discriminative taxa reported in LefSe analysis (absolute
LDA score, �2.0)a

Category

No. of significantly discriminative taxa

16S rRNA
(Bacteria/archaea)

18S rRNA
(eukaryotes)

L5 taxa
(family)

L6 taxa
(genus) OTUs

L5 taxa
(family)

L6 taxa
(genus) OTUs

Borough/neighborhood 0 0 0 7 11 36
Site type

(Bank, store, etc.)
2 9 3 3 5 25

ATM location (indoor/outdoor) 93 235 148 NA NA NA
Population demographics (race) 1 2 1 3 6 16
aLefSe analyses were performed on normalized BIOM tables from open reference OTU picking, following
abundance-based filtering and removal of OTUs present in kit control samples. LefSe analyses were
performed on OTU tables summarized at the L5 (family) and L6 (genus) taxonomy levels, as well as on
unsummarized OTU tables. NA, ATM location comparisons were not possible for 18S rRNA, as only indoor
ATMs were included in the eukaryotic data set.
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relevance with respect to humans, since the surfaces studied are touched by people
and could potentially mediate interpersonal transfer of microbes or microbial DNA.

Unifrac principal-coordinate analysis indicated an overall lack of biogeographic
patterns structuring microbial communities on ATM keypads in NYC (Fig. 4). This lack
of any obvious pattern was consistent across both bacteria/archaea (16S rRNA) and
microbial eukaryote (18S rRNA) datasets, suggesting that microbial community struc-
ture is not governed by any of the broad metadata categories (e.g., geography,
population demographics, site type, data/time of sample collection, etc.) that we
assessed during this study. The absence of biogeographic patterns could be explained
by a number of factors. ATMs are subject to high use in urban areas such as NYC and
could be subject to human-driven homogenization of the microbial communities
present on keypads. In any given neighborhood, transient users of ATMs (tourists,
commuters, visitors from other NTAs, etc.) might be common and might reduce/
eliminate any specific microbial community signatures which might be associated with
the population demographics in a given NTA (e.g., those related to age group, ethnicity,
etc.). Furthermore, periodic cleaning or disinfection of ATMs, if implemented, may
severely reduce the microbial diversity and prevent unique assemblages from accu-
mulating or differentiating on ATM keypads across space and time.

Despite the lack of distinct clusters in Unifrac PCoAs (Fig. 4), LEfSe analyses identified
a number of microbial biomarkers indicative of certain metadata classes in both 16S
and 18S rRNA datasets. Across all metadata categories in the 18S rRNA data set, LEfSe
analyses reported a large number of fungal biomarker taxa (e.g., Fig. 6). This suggests
that localized enrichment of some fungal taxa—for example, enrichment of specific
taxa that might represent a small fraction of the microbial community and thus might
not represent strong enough enrichment to allow differentiation of overall microbial
communities on Unifrac PCoAs—may be driving subtle biogeographic patterns in
microbial eukaryote communities on ATM keypads. Previous studies have reported
geographic partitioning and localization of urban fungal assemblages in NYC soils (27).
It is unclear whether the fungal biomarkers on ATM keypads represent truly localized
fungal diversity, or alternatively, stochastic enrichment of human-transported or air-
borne taxa.

In the eukaryotic data set, the most striking biomarkers appear to indicate a
“molecular echo” (52) of food species on ATM keypads in certain neighborhoods (the
domestic chicken Gallus gallus in Central Harlem South and bony fish [Teleostei] and
mollusk [Bivalvia] species in Chinatown/Flushing; Fig. 6), potentially reflecting the
concentrations of specialized restaurants in different areas of NYC. These food species
appeared in the LEfSe results as significantly enriched OTUs within each respective
neighborhood. While our study design does not allow us to pinpoint the exact source
of such DNA, one reasonable explanation is that residual DNA from a recent local meal
may persist on a person’s hands and be transferred to the ATM keypad upon use.

In addition to obvious species, another potential food biomarker is the fungal
species X. bisporus, which was significantly enriched in midtown and other NYC
neighborhoods with predominantly white population demographics. X. bisporus is a
foodborne mold originally isolated from licorice and associated with spoilage of
high-sugar foods such as cakes and confectionaries (51). Although we cannot confirm
the original source of X. bisporus OTUs on ATM keypads, it seems plausible that this
fungus had been transferred from people who had recently handled baked goods,
particularly in a commuter-heavy area such as midtown Manhattan, where there are
many nearby convenience stores and cafés selling this type of food product to business
workers. A previous metagenomic analysis of the NYC subway system also detected
food signatures across surfaces in the urban transit system (29), suggesting that
genomic material from meals is routinely transferred around NYC by human inhabitants
and may thus represent a common component of the urban microbiome.

The human microbiome represents an obvious source of microbial communities on
ATM keypads; however, SourceTracker analysis did not pinpoint human skin or any
other body site as a primary source of microbes (Fig. 5). In contrast, outdoor air and
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household surfaces— kitchens, restrooms, pillows, and televisions—were the most
commonly identified source habitats. Household surfaces may effectively collect mi-
crobial communities from various sources (food, family members, pets, dust) and thus
represent a pool of microbes originating from different habitats. This is in contrast to
swab samples collected directly from human body sites (see, e.g., the published
datasets [44, 45] used as human sources in this study), which represent the personal-
ized microbiome associated with a single person. Since each ATM keypad in New York
City is most likely utilized by hundreds of people each day (and may come into contact
with air, water, and microbes from different urban surfaces), the microbial communities
obtained in this study may represent an “average” community that is effectively pooled
from vastly different sources (14). An alternative and potentially more plausible hy-
pothesis is that the SourceTracker algorithm may be highly sensitive to the primer
region and sequencing platform used to generate the “source” training sequences. The
samples from the household surfaces representing the majority of assigned sources for
ATM keypads were generated using the same primer set and sequencing technology
utilized in this study (Illumina HiSeq/MiSeq data using the 515F/806R primers to amplify
the 16S rRNA gene [10, 53]), which may explain why these household surfaces were
identified as source habitats. In contrast, human microbiome “source” samples were
generated using different primer sets and sequencing platforms (e.g., Roche 454), and
the distinct rRNA region and lower-throughput nature of the sequencing technology
may confound the ability of SourceTracker to assess source/sink habitats between these
samples. Overall, the vast majority of ATM microbial communities were derived from an
“unknown” source, and it is also possible that this unassigned community fraction
represents human-associated microbes that SourceTracker was unable to recognize.

Caveats. In the present study, we encountered a number of issues that confounded
data analysis and were challenging to circumvent. Technical artifacts in the 16S rRNA
data set were obvious and persistent (Fig. 4C); future studies should aim to sequence
all samples on a single Illumina run, in order to avoid the introduction of technical
artifacts that may confound data analysis. Low-diversity microbial communities were
unexpectedly recovered from “control” samples, requiring stringent data filtering to
remove all potential contaminant OTUs. The collection protocol for ambient air control
samples may have inadvertently collected species from airborne dust; alternatively, the
manufactured swab samples we utilized may not have been entirely sterile. Regardless,
our stringent data filtering protocol ultimately resulted in a significant reduction of
sequences per sample—representing a level of coverage that was sufficient for micro-
bial ecology analyses but a sequencing depth that was far from ideal (particularly for
the 16S rRNA amplicons which were not sequenced as exhaustively as those of the
eukaryotic 18S rRNA). Thus, our analyses may have failed to detect some microbial
diversity and community patterns that might only have become apparent with ex-
tremely deep sequencing of ATM keypads (e.g., rare biosphere biomarker taxa), espe-
cially in lower-coverage bacterial/archeal samples.

Future work. The present study aimed to solely characterize microbial diversity
(living or dead) on ATM keypads; we had no way of measuring levels of active versus
dormant microbes or of assessing what could be considered “residual” or “transitory”
species aside from obvious food species (e.g., microbes/fungi transported through
air/dust). Additional, complementary analyses will be needed to determine whether the
detected species are metabolically active and whether some species can survive on
ATM keypads for extended periods of time. Although we detected DNA signatures from
potential pathogens on ATM keypads, more-targeted studies will be needed to confirm
the source, viability, and distribution of such pathogenic species on urban surfaces. For
example, the human pathogen Trichomonas vaginalis cannot be differentiated from
closely related zoonotic species using 18S rRNA loci alone (Maritz et al., submitted) and
in this study we could not confirm the likely source of eukaryotic pathogen species.
Future studies of the urban microbiome should also include an expanded examination
of ATMs in both indoor and outdoor locations. LEfSe biomarkers in our 16S rRNA data
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set (see Fig. S5 in the supplemental material), as well as previous studies of urban
transit systems (28), have indicated that indoor/outdoor location is a significant factor
structuring microbial communities. Depletion/enrichment of indoor and outdoor bio-
markers may be especially relevant for eukaryotic taxa, especially for pollen and
airborne fungal spores. Unfortunately, we were unable to assess such patterns in the
present study, as the subset of eukaryotic 18S rRNA data included only samples from
indoor ATMs. In addition, there is a need for expanded studies that investigate shifts in
ATM microbial communities over time, as well as for more-intense sampling covering
a wider geographic area (including sample collection across other cities worldwide).
Our study provided only a small snapshot of microbial communities, in terms of time
points and the number of ATMs sampled. Nonetheless, the present data set has
provided a significant baseline for microbial diversity on ATM keypads, broadly encom-
passing two taxonomic domains. The detection of microbial biomarker taxa in this
study provides a jumping-off point for future study design and hypothesis testing,
hinting at potential large-scale trends that may influence the distribution and persis-
tence of microbes on highly trafficked urban surfaces.

MATERIALS AND METHODS
Sampling and metadata collection. Microbial swab samples were collected during June and July 2014
at automated teller machines (ATMs) in eight neighborhood tabulation areas (NTAs) of New York City,
representing three boroughs (Manhattan, Queens, and Brooklyn; Fig. 1). NTAs are geographic units
designated by the Department of City Planning that are used to project population size and demo-
graphics at the small-area level (http://www1.nyc.gov/site/planning/data-maps/open-data/dwn-
nynta.page). NTAs are units with a minimum population size of 15,000 and are used to collect and collate
census/survey data; they do not necessarily reflect historical boundaries of NYC neighborhoods. In this
study, sampling locations were preselected based on known neighborhood demographics, and ATM
keypads were sampled randomly within areas proximate to a subway station within each NTA.

ATMs were sampled using sterile cotton swabs individually packaged in pairs (Covidien cotton-
tipped applicators; Fisher Scientific catalog no. 22-037-924) and premoistened with 0.15 M NaCl solution–
0.1% Tween 20. Each ATM keypad was sampled using 2 cotton swabs at a time, scrubbing all keys for
a total of 10 s. A total of six control swabs were collected across different NTAs. For each control sample,
a cotton swab was removed from sterile packaging, dipped in buffer solution, and held in ambient air
for 10 s.

At each sampling location, the following metadata were also recorded: date, time, neighborhood
(NTA), NYC borough, type of ATM keypad (metal or plastic), ATM location (indoor or outdoor), and site
type (hospital, bank, convenience store, etc.). Global Positioning System (GPS) coordinates were not
collected during sampling, in order to anonymize the location of all ATMs used in this study.

In order to analyze microbial community patterns in conjunction with NYC neighborhood
demographics, additional metadata about each sampling area were collated from online sources.
Demographic information for each NTA was obtained from the New York City Open Data portal
(Fig. 1; public data set: https://data.cityofnewyork.us/City-Government/Demographics-and-profiles-at-
the-Neighborhood-Tabu/hyuz-tij8), where all population information is derived from 5-year estimates
(2008 to 2012) from the United States Census Bureau’s American Community Survey (https://www.cen-
sus.gov/programs-surveys/acs/). For this study, we selected a subset of metadata that was potentially
relevant to the assessment of microbial community patterns on ATM keypads, such as population
density, and indicators of genetic factors, lifestyle, or habits that may be influenced by cultural or age
demographics of the population within each NTA. The following broad population statistics were
obtained for each NTA: population recorded during the 2000 United States Census; population recorded
during the 2010 United States Census; and population change (both number and percent change)
between the 2000 United States Census and the 2010 United States Census. An additional set of
population demographics related to race, ancestry, and age was also obtained for each NTA as follows:
percentage of the population who reported belonging to a single race; top three race groups comprising
the largest numbers and percentages of the population; top three age groups comprising the largest
percentages of the population (quantified by age group and percentage); percentage of foreign-born
residents; geographic origin of the primary foreign-born group (quantified by race); and predominant
ancestry group (self-reported ethnic origin recorded for a small subset of the population).

DNA extraction, PCR amplification, and sequencing. We extracted DNA using a MoBio PowerLyzer
PowerSoil extraction kit (catalog no. 12855-100) according to manufacturer instructions. One cotton
swab from each sample site was clipped and placed into an individual well of a 96-well bead plate for
DNA extractions (the second swab from each sample site was retained in frozen storage for future
studies). For each ATM sample, the same environmental DNA extraction method was used to generate
PCR amplicons for both the 16S rRNA and 18S rRNA genes.

The V4 fragment of the 16S rRNA gene was amplified using the 515F/806R primer set (54). All primers
and protocols used for amplification and sequencing represent standardized workflows obtained from
the Earth Microbiome Project (EMP) website (http://www.earthmicrobiome.org/emp-standard-protocols/
16s/). Amplification was done in triplicate following the EMP protocol. After amplification, reactions were
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quantified using a Pico Green (Invitrogen) assay kit, equal amounts of amplicons were pooled, and the
final pool was cleaned using a QIAquick PCR purification kit (Qiagen). Amplicons were sequenced using
a paired-end Illumina MiSeq platform, as previously described (54).

The V9 fragment of the 18S rRNA gene was amplified using Illumina primer constructs containing the
universal primers 1391f-EukBr. Library synthesis and amplification using 2 �l of input DNA were done in
triplicate following the EMP protocol, available online (http://www.earthmicrobiome.org/emp-standard-
protocols/18s/). After amplification, triplicate PCRs were pooled prior to purification and quantification
and prepared for sequencing following the protocol described by Maritz et al. (submitted for publica-
tion). Purified libraries that showed high proportions of adapter dimers were size selected using a 2%
agarose dye-free gel on a BluePippin instrument (Sage Science).

All barcoded rRNA libraries were subsequently sequenced on an Illumina MiSeq platform (2-by-150
paired-end reads, with a 5 to 10% PhiX spike-in, based on the strategy outlined in reference 54). The 16S
rRNA samples were sequenced on two separate MiSeq runs (as they represented two distinct sampling
time points), while all 18S rRNA samples were pooled and sequenced together on a single MiSeq run
(2-by-100 paired-end reads with a 6% PhiX spike-in).

Data filtering and processing. For both the 16S rRNA and 18S rRNA datasets, the majority of data
filtering and processing steps were carried out using QIIME v1.8 (55). To process raw Illumina data,
paired-end reads were merged using join_paired_ends.py, a minimum overlap of 10 bp, and a 15% error
rate in the overlapping bases. Joined reads were subsequently demultiplexed using split_libraries-
_fastq.py with the rev_comp_mapping_barcodes flag; a minimum Phred quality score of 20, allowing 5
poor-quality bases before read truncation; and an 0.70 minimum fraction of consecutive high-quality
base calls to include reads. Merged sequences that passed quality filtering thresholds were subsequently
clustered into operational taxonomic units (OTUs) using the pick_open_reference_otus.py workflow (56)
with 10% subsampling and de novo clustering of failure reads. Any resulting singleton OTUs were
discarded (the minimum cluster size was set at 2 reads). A 97% clustering cutoff was used for 16S rRNA
OTU picking, representing a standard approach in microbial ecology studies of bacteria/archaea. A more
stringent 99% clustering cutoff was used for 18S rRNA OTU picking, as the 18S rRNA gene is typically
more conserved and less variable in eukaryotic genomes (57) and because the use of a higher clustering
cutoff is also in line with many comparable environmental sequencing studies of eukaryotes (58). For
OTU picking, initial reference-based OTU clustering was carried out against Greengenes 13_8 (97% OTUs)
for 16S rRNA data (59) and SILVA 119 (99% OTUs) for 18S rRNA data (60). Summaries of OTUs and
quality-processed reads obtained across samples are provided in Fig. S6 (16S rRNA) and Fig. S7 (18S
rRNA) in the supplemental material, and a more detailed record of demultiplexing and processing is
provided in Table S1 in the supplemental material.

For 16S rRNA OTUs, taxonomy was assigned to representative sequences using QIIME’s uclust
consensus taxonomy assigner and Greengenes rRNA database version 13_8 (97% OTU representative
sequences). For 18S rRNA OTUs, taxonomy was assigned in two steps (based on methods described in
reference 61). First, BLAST was used to compare OTU representative sequences to a manually curated
version of the SILVA 111 database, containing only eukaryotic sequences. In this curated database,
taxonomic hierarchies were standardized and corrected, and some protist sequences were manually
added to improve representation of some groups (Maritz et al., submitted). The taxonomy from the top
BLAST hit was taken for any OTUs matching the curated database. Second, any OTUs without a BLAST
hit were subsequently compared to the entire SILVA 111 database (99% OTU representative sequences)
containing reference sequences from all three domains. The taxonomy from the top BLAST hit was again
accepted for any OTUs matching the reference database, and failed sequences were denoted as
“unassigned.” In both taxonomy assignment steps, the minimum E value cutoff for BLAST searches was
set at 1e-20, and the top BLAST hit was taken for each representative OTU sequence; sequences were
denoted as “unassigned” if they did not return any results meeting this E value cutoff criterion.

Representative OTU sequences from all ATM samples were subsequently aligned using the PYNAST
aligner (62) and the same reference databases used for OTU picking. Chimera checking was also carried
out using ChimeraSlayer (63) for 16S rRNA and 18S rRNA data (a database-dependent method) and
additionally using the Blast Fragments method in QIIME for 18S rRNA data (a database-independent
chimera checking method, given the sparse nature of 18S rRNA databases and the less variable nature
of eukaryotic rRNA genes).

Before any microbial community diversity analyses and comparisons were carried out, the initial OTU
tables resulting from open-reference OTU picking were filtered to remove unwanted and poor-quality
sequences. First, nontarget OTUs were filtered from each rRNA data set on the basis of taxonomic
assignments. Chloroplast, mitochondrial, and “Unassigned” sequences were removed from the 16S rRNA
data set. Bacterial, archaeal, and Archaeplastida sequences were removed from the 18S rRNA data set.
Next, any OTUs that failed to align to reference rRNA databases or were flagged as chimeric were
removed. OTU tables were subsequently subjected to abundance-based filtering, removing low-
abundance OTUs representing less than 0.0005% of total reads in the data set (using the min_count-
_fraction 0.000005 flag in QIIME for filter_otus_from_otu_table.py, following the methods described in
reference 64). Finally, initial exploration of data and SourceTracker analysis (see below) suggested that
a large proportion of environmental OTUs were derived from blank samples sequenced as controls. For
maximal stringency, we additionally removed all OTUs that appeared in control samples, resulting in
significant data reduction for both 16S and 18S rRNA (Table S1).

Microbial community analyses. For representative sequences of OTUs that satisfied all filtering
criteria, phylogenetic trees were constructed from gap-filtered alignments using the FastTree algorithm
(65) with default parameters. Alpha diversity metrics, including rarefaction curves and taxonomy sum-

Bik et al.

Volume 1 Issue 6 e00226-16 msphere.asm.org 14

http://www.earthmicrobiome.org/emp-standard-protocols/18s/
http://www.earthmicrobiome.org/emp-standard-protocols/18s/
msphere.asm.org


maries, were calculated using the alpha_rarefaction.py script in QIIME. Beta diversity analyses, including
weighted and unweighted Unifrac principal-coordinate analyses, were carried out using the beta_diver-
sity_through_plots.py workflow script in QIIME. For both alpha and beta diversity analyses, OTU tables
were rarefied on the basis of the sample with the lowest number of total sequence reads (the minimum
rarefaction levels were 1,700 sequences for 16S rRNA data and 8,900 sequences for 18S rRNA data).
Distance matrices from Unifrac PCoAs were imported into R studio and visualized using the phyloseq (66)
and ggplot2 packages. To further test for dissimilarity between sample groups in unweighted Unifrac
beta diversity analyses, we carried out nonparametric PERMANOVA tests (using compare_categories.py
in QIIME) and assessed intragroup and intergroup distances using nonparametric t tests (make_distan-
ce_boxplots.py in QIIME).

The 16S rRNA data set was additionally subjected to SourceTracker analysis (67), in order to identify
the potential origin of microbial communities on ATM keypads. OTUs obtained from this study were
compared to 12 public datasets compiled for a previous meta-analysis study (68). The chosen published
datasets represent a range of potential source environments, including the human body (44, 45, 69, 70),
surfaces in the built environment (10, 15, 16, 53, 71), soils (72), and indoor/outdoor air samples (13, 73).
Demultiplexed 16S rRNA sequences from ATM keypads were subjected to closed-reference OTU picking
(using the pickTheseOTUs.sh script as described in reference 68), and the resulting OTU table was
merged with closed-reference tables from published studies (downloaded from GitHub: https://github-
.com/jfmeadow/BEMAFinalAnalysis/tree/master/individual_biom_tables). Closed-reference OTU picking
was necessary for SourceTracker analysis, as this database-dependent approach avoids potential erro-
neous/chimeric OTUs and further enables the concurrent analysis of datasets obtained using different
16S rRNA primer sets, read lengths, and sequencing platforms. Among the ATM samples in this study,
blank controls were also marked as potential sources of microbial communities in order to identify any
potential contamination introduced during PCR and sequencing. Unfortunately, SourceTracker analysis
was not possible for our eukaryotic data set because of the comparative lack of published 18S rRNA
studies from urban and built environments, database limitations, and the prevalence of other markers
used for other eukaryotic studies (internal transcribed spacer [ITS] rRNA, etc.).

Linear discriminant analysis (LDA) effect size (LEfSe) analysis (74) was carried out on both 16S and 18S
rRNA datasets, to assess whether any microbial biomarkers could be identified across sample categories.
LEfSe analyses were carried out using an online Galaxy server (http://huttenhower.sph.harvard.edu/
galaxy/). Per-sample normalization was carried out on all input OTU tables, and LDA effect size was
calculated using the strict “all-against-all” strategy for multiclass analysis and default parameters and
thresholds.

Accession number(s). Raw Illumina sequence data for both 16S and 18S rRNA genes have been
deposited in the NCBI SRA under BioProject PRJNA330663 (SRA accession no. SRP079707). Additional
documentation of all QIIME workflows, parameters, and OTU picking outputs has been compiled and
deposited in FigShare (10.6084/m9.figshare.3498206).

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at http://dx.doi.org/10.1128/
mSphere.00226-16.

Table S1, PDF file, 0.1 MB.
Figure S1, PDF file, 0.1 MB.
Figure S2, PDF file, 0.2 MB.
Figure S3, PDF file, 0.1 MB.
Figure S4, PDF file, 0.4 MB.
Figure S5, PDF file, 1.7 MB.
Figure S6, PDF file, 0.2 MB.
Figure S7, PDF file, 0.2 MB.
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