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Abstract

Cherubism is a rare bone dysplasia that is characterized by symmetrical bone resorption limited to the jaws. Bone
lesions are filled with soft fibrous giant cell-rich tissue that can expand and cause severe facial deformity. The
disorder typically begins in children at ages of 2-5 years and the bone resorption and facial swelling continues
until puberty; in most cases the lesions regress spontaneously thereafter. Most patients with cherubism have
germline mutations in the gene encoding SH3BP2, an adapter protein involved in adaptive and innate immune
response signaling. A mouse model carrying a Pro416Arg mutation in SH3BP2 develops osteopenia and expansile
lytic lesions in bone and some soft tissue organs. In this review we discuss the genetics of cherubism, the
biological functions of SH3BP2 and the analysis of the mouse model. The data suggest that the underlying cause
for cherubism is a systemic autoinflammatory response to physiologic challenges despite the localized appearance
of bone resorption and fibrous expansion to the jaws in humans.

Introduction
“Bone dystrophies paint queer and irregular pictures
throughout the skeleton and have been reported in most
bones” W.A. Jones begins his 1950 review, where he pro-
posed the name “cherubism” for the multilocular cystic
disease of the jaws that he had first described 17 years ear-
lier [1,2]. In 2011 we still lack good explanations for the
bilateral expression of cherubism [MIM 602104] lesions.
Other areas of investigation are the limitation of the
aggressive bone resorption and expansion of fibrous
tissues in the maxilla and mandible as well as the age-
dependent onset in children at age 2-5 years, and in most
cases the spontaneous regression of the fibrous growths
after puberty [3]. Cherubism typically begins with a swel-
ling of submandibular lymph nodes. The phenotype
comes to the attention of health care providers, often den-
tists, at its early stages when excessive bone resorption in
the jaws causes characteristic symmetrical cystic lesions

that can be detected by routine panoramic radiographs.
The “cherubic” swelling of cheeks occurs when the fibrous
tissue filling the cysts expands and deforms the cortical
shell.
Clinical management of cherubism has progressed sig-

nificantly but therapeutic approaches to inhibit or delay
the progression of cherubic lesions are not available. The
gaps in our understanding of the natural history of cher-
ubism, and the molecular mechanism that initiates and
maintains bone resorption as well as the replacement of
bone with tumor-like fibrous tissue are now being
addressed by several research groups. In this review we
will assess the many functions of the cherubism gene
SH3BP2 [MIM 118400] in immune cells and osteoclasts
and discuss how animal models and in vitro studies can
help to understand the human disease.

SH3BP2: genetic aspects
Cherubism is classically transmitted as an autosomal
dominant trait, but there are indications that a recessive
form may also exist. Based on a thorough statistical ana-
lysis of 21 previously published families by Anderson and
McClendon, 100% penetrance in males and reduced
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penetrance (70 - 50%) in females has been reported [4].
However, the authors concede in this retrospective study
that only 50% of the adult female family members which
were considered unaffected underwent radiographic
examination. The apparently reduced female penetrance
may also be due to examination of some children before
they developed clinical signs of cherubism. Unfortu-
nately, this paper has been cited many times since then
without acknowledging these caveats. In the experience
of our group, we cannot confirm incomplete penetrance
but we have seen variable expressivity within families. It
should be noted that older patients with a mild form of
cherubism may have bone lesions that have been remo-
deled with normal mandibular bone and therefore signs
of cherubism may no longer be detected by radiographs
[5]. Based on published case reports of cherubism as well
as patients referred to our clinics and research environ-
ment there appears to be no obvious difference in the
prevalence of the disorder among different racial or eth-
nic groups. Adequate epidemiologic data for cherubism
do not exist.
Approximately 50% of cases seen in our laboratory at

UCHC are sporadic and represent de novo mutations.
The genetic interval for the autosomal dominant form of
cherubism was first identified in 1999 by linkage and
haplotype analysis to be on chromosome 4p16.3 [6,7].
The 1.5 Mb cherubism locus is contained within the
locus for Wolf-Hirschhorn disease [8].
Wolf-Hirschhorn syndrome is caused by heterozygous

chromosomal deletions that cause craniofacial malforma-
tions, intellectual disability, muscle hypotonia and heart
defects [9]. This chromosomal region is also commonly
deleted in bladder cancer [10]. Since a cherubism-like
phenotype is not part of the Wolf-Hirschhorn syndrome,
Tiziani at al. concluded that a cherubism mutation must
be a gain-of-function mutation [6]. In 2001 Ueki at al.
identified heterozygous mutations for cherubism in 12
families in the gene for the signaling adapter SH3-domain
binding protein 2 (SH3BP2) [11].
SH3BP2 was initially identified as a c-Abl binding

protein in mice and humans [10,12]. The SH3BP2 gene
product is expressed in most cell types. It acts as an adap-
ter protein to control intracellular signaling by interacting
and forming complexes with binding proteins [13] and
with scaffolding proteins [14,15]. The 561 amino acid (aa)
protein (559 aa in mouse) is highly conserved in mammals
with 87% amino acid sequence homology between human
and mouse [10] and 84% homology on the nucleotide
level. The 48kb SH3BP2 gene contains 13 exons that code
for a 62 kDa protein with 561 amino acids (Figure 1). As
is the case with most adapter proteins, SH3BP2 has a
modular domain structure and consists of an N-terminal
pleckstrin homology (PH) domain, a proline-rich (PR)

domain and a C-terminal Src-homology 2 domain (SH2).
SH3BP2 is thought to bind to cell membrane lipids via its
PH domain and to interact with the SH3 domains of bind-
ing partners via SH3 binding motives in the proline-rich
domain. The SH2 domain can interact with a number of
binding partners carrying a Tyr-Glu-Asn (YEN) binding
motif (reviewed in [13]).
The mutations identified by Ueki et al. were located in

exon 9, within a 6 amino acid interval (RSPPDG) in the
proline-rich domain proximal to the SH2 domain of
SH3BP2 (Figure 1; Table 1) [11]. All mutations were
transitions or transversions of single nucleotides that led
to the substitution of amino acids Arg415, Pro418 or
Gly420. These mutations account for 100% of the muta-
tions detected in the laboratory at UCHC. Additional sin-
gle nucleotide substitutions were found in Gly420,
Pro418 and Asp419 (Table 1; see also http://fmf.igh.cnrs.
fr/ISSAID/infevers/) [16-19]. Carvalho et al. described
unusual mutations in the pleckstrin homology domain in
two Brazilian cherubism patients. A point mutation in
exon 4 resulted in a Thr107Met substitution that was
detected in blood (germline) and in tumor tissue [20]. In
the tumor tissue of another patient the same group
found a variant of what appears to be a deletion of
nucleotide 147 (c.147delC) which led to a frame shift
over 26 aa and a premature stop codon at position 325
(p.Arg49ArgfsX26) [21]. This patient suffered from a
severe case of cherubism and is to our knowledge the
only patient who had a fatal form of cherubism [22]. The
mutation found in this patient could conceivably have led
to a severe and rapidly progressing form of cherubism if
the partial gene product (the N-terminal 48 amino acids)
is translated. A truncated protein may have a dominant
negative effect on disease mechanisms or exacerbate the
disease progression by activating expression of certain
(yet unknown) proteins. It is unlikely that the mutant
protein is not expressed because hemizygosity, as in
Wolf-Hirschhorn syndrome, is not expected to cause any
cherubism-like phenotype. For all other patients with
commonly detected cherubism mutations in SH3BP2 seen
in our clinics or in the research laboratory we were unable
to establish any genotype – phenotype correlation.
Cherubism-like multilocular cysts can also be found in

Noonan-like/multiple giant-cell lesion syndrome [23],
which is now considered part of the Noonan spectrum
of phenotypes (NS/MGCLS) (NLS; MIM 163950)
[24-26]. Characteristic features of Noonan syndrome
include short stature, webbed neck, craniofacial malfor-
mations, cardiac abnormalities and cryptorchidism.
There is considerable phenotypic variability and cherub-
ism-like cysts that occur unilaterally or bilaterally in the
mandible or maxilla or in other mineralized or soft tis-
sues can be part of the Noonan spectrum. Mutations in
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NS/MGCLS have been found in the SHP2-coding gene
PTPN11 and in SOS1 [24,27-31]. Both gene products act
in the RAS-mitogen-activated protein kinase signaling
pathway and it is therefore conceivable that SH3BP2
may also play a role in this pathway. It may be worth-
while to test whether those patients who were diagnosed
with cherubism and were negative for a mutation in
SH3BP2 have mutations in other genes within the RAS-
MAPK axis. Interestingly, bilateral mandibular cherub-
ism-like lesions and giant cell lesions in the mandible
and in long bones have been described in neurofibroma-
tosis patients [32,33], and are associated with mutations
in the neurofibromin gene, NF1. NF1 is known as a reg-
ulator of the RAS pathway and mutations in NF1 are

associated with neurofibromatosis and Noonan syn-
drome [34,35].
To date there is only one report of a somatic mutation

of SH3BP2 in a central giant cell lesion (CGCL) [20].
The described mutation is not identical with canonical
cherubism mutations in exon 9 but is a point mutation
in exon 11 leading to a Glutamine 481 to Leucine
exchange in the SH2 domain of SH3BP2.
Alternative splicing variants of SH3BP2 have been iden-

tified experimentally and by computational delineations.
However, it is not known whether any of these variants
are biologically relevant [10,36] (see also http://genecards.
org). Regulation of SH3BP2 transcription is largely
unknown but recently evidence emerged that SH3BP2

Figure 1 Gene map and protein structure of human SH3BP2 indicating mutations in the canonical cherubism mutation interval (amino acids
415-420) and mutations reported in the pleckstrin homology (PH) domain. The mutation in the SH2 domain has been found in tumor tissue of
a patient with giant cell tumor. (Modified after Ueki et al., 2001)

Table 1 Mutations in SH3BP2

Nucleotide change Amino acid change Exon Phenotype Detection Literature

c.1244G>C p.Arg415Pro 9 cherubism germline Ueki et al. (2001)

c.1244G>A p.Arg415Gln 9 cherubism germline Ueki et al. (2001)

c.1253C>T p.Pro418Leu 9 cherubism germline Ueki et al. (2001)

c.1253C>G p.Pro418Arg 9 cherubism germline Ueki et al. (2001)

c.1253C>A p.Pro418His 9 cherubism germline Ueki et al. (2001)

c.1252C>A p.Pro418Thr 9 cherubism germline de Lange et al. (2007)

c.1256A>G p.Gln419Gly 9 cherubism germline Li and Yu (2006)

c.1255G>A p.Asp419Asn 9 cherubism germline Lietman et al. (2006)

c.1258G>C p.Gly420Arg 9 cherubism germline Ueki et al. (2001)

c.1258G>A p.Gly420Arg 9 cherubism germline Lo et al. (2001)

c.1259G>A p.Gly420Glu 9 cherubism germline Ueki et al. (2001)

c.147delCtranslation stop at nt325 (TGA) p.Arg49ArgfsX26 3 severe cherubism germline Carvalho et al. (2008)

c.320C>T p.Thr107Met 4 cherubism germline Carvalho et al. (2009)

c.1442A>T p.Gln481Leu 11 giant cell granuloma somatic Carvalho et al. (2009)
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expression is differentially regulated by hypoxic conditions
in tumor cells [37]. More is known about the role its gene
product plays during immune response.

SH3BP2 function in immune cells
Before its identification as the principal disease-causing
gene for cherubism, SH3BP2 had been of interest to
immunologists because of its multiple roles in hemato-
poietic and immune cells. Therefore a number of aliases
(SH3-domain binding protein 2; SH3BP2; 3BP2; CRBM;
CRPM; RES4-23; FLJ42079; FLJ54978) and various pro-
tein names (SH3BP2; Abl-SH3 binding protein 2;
TNFAIP3 interacting protein 2) can be found in the
literature.
Early investigations examined the function of SH3BP2 in

hematopoietic cells and found that SH3BP2 induced B cell
receptor activation, NK cell mediated cytotoxicity and
basophilic cell degranulation [38-43]. The modular struc-
ture of SH3BP2 suggests that it may function as an adap-
tor protein [11,39,40,44] particularly as it lacks known
catalytic activity. In various studies, investigators have
examined the proteins that interact with SH3BP2 to derive
clues about its function(s). A direct interaction between
SH3BP2 and Syk was identified in a yeast 2-hybrid screen
of a T lymphocyte library for Syk kinase-interacting pro-
teins, and the role of SH3BP2 in modulating Syk activity
has been examined in lymphocytes and Jurkat TAg cells
[44]. In lymphocytes, SH3BP2 binds to 14-3-3, Vav1 and
2 and PLCg1 [40,44]. In addition, an SH3BP2 mutant
incapable of binding to 14-3-3 showed increased NFAT
(nuclear factor of activated T cells) activation, indicating
that the interaction of 14-3-3 with SH3BP2 can block its
function [40]. Vav proteins are guanine nucleotide
exchange factors that activate the small GTPases Ras and
Rac1, which in turn activate AP-1 and NFAT, respectively
[39,40,45,46]. Vav1 and Vav2 functionally cooperate with
SH3BP2 in Jurkat TAg cells [39] and Vav3 is known to
regulate osteoclast function [45,47].
Cbl and the Cbl interacting protein CIN85 have also

been identified as proteins which directly or indirectly
bind to SH3BP2 [15,44]. Cbl expression is enriched in the
podosome belt in osteoclasts at sites of cell attachment
and as a result c-Cbl-/- osteoclasts have impaired motility
[48]. CIN85 overexpression decreases intracellular calcium
signaling and decreases PLCg1 and 2 phosphorylation [49].
SH3BP2 can be modified by tyrosine and serine phos-

phorylation and therefore alter its activity and binding
properties. SH3BP2 phosphorylation of Tyr183 is required
for interaction with Vav1 and phosphorylation of Tyr 446

of SH3BP2 is required for SH3BP2 interaction with the
SH2 domain of Lck [39,46]. Phosphorylation of Ser225

and Ser277 are required for 14-3-3 binding, and a
SH3BP2 protein lacking these serines was shown to have
increased activity in Jurkat TAg cells [40]. In T cells,

SH3BP2 is phosphorylated on tyrosine448 in response to
T cell receptor stimulation and this phosphorylation is
required for T cell signaling as indicated by NFAT acti-
viation [50]. Further, phosphorylation of SHP1 phospha-
tase causes recruitment and dephosphorylation of
SH3BP2 and termination of T cell signaling [50].
SH3BP2 phosphorylation is also induced by CD244 liga-
tion and tyrosine337 phosphorylation of CD244 regulates
its interaction with SH3BP2 in NK cells [51]. Mutant
SH3BP2 alters the phosphorylation of other proteins. For
example, replacement of amino acids Tyr183 and Tyr446

or Arg486, which are phosphorylation sites, with other
amino acids reduces the ability of SH3BP2 to respond to
signals that activate NFAT. Moreover, heterozygous and
homozygous Sh3bp2 knockin cells that contain the
P416R mutation found in cherubism patients show
increased phosphorylation of ERK1/2 and Syk (at Tyr346)
after stimulation with M-CSF and RANKL [52].
In summary, SH3BP2 can be differentially phosphory-

lated depending on the functions it fulfills in the various
immune cell types thus attracting specific protein binding
partners and regulating downstream signaling pathways.
In osteoclasts, another cell type of hematopoietic origin,
SH3BP2 is a major regulator of bone resorption. Muta-
tions in SH3BP2 result in osteoclasts that lead to increased
bone resorption in jaws of cherubism patients, whereas in
a mouse model bone resorption is more general [11,52].

SH3BP2 in osteoclasts
The limited distribution of bone lesions in patients with
cherubism is unexpected as the disorder is associated
with the heterozygous germline mutations in SH3BP2,
which is widely expressed throughout the osteoimmune
system. The precise function of the six-amino acid region
where most of the known mutations occur remains
unclear, but recent work suggests that the cherubism
missense mutations lead to a gain-of-function rather
than a loss of activity [16,52,53]. Mutations in cherubism
that result in a gain-of-function for SH3BP2 is consistent
with prior observations that deletions of 4p16.3 in
patients with Wolf-Hirschhorn syndrome, which result in
loss of one copy of SH3BP2, do not cause a bone resorp-
tive phenotype [54-56].
Osteoclasts are the principal bone-resorbing cells and

are important regulators of bone morphogenesis and
remodeling. Osteoclasts arise from hematopoietic precur-
sors by processes that involve growth factors, cytokines,
peptides, and steroid hormones. A powerful cytokine,
RANKL, binds the TNFR-related protein receptor activa-
tor of NF�B (RANK; TNFRSF11B), that is expressed on
the surface of osteoclast progenitor cells. RANKL stimu-
lates changes in preosteoclast gene expression that induce
osteoclast differentiation and result in generation of
mature, bone-resorbing osteoclasts. The formation of
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mature osteoclasts requires RANKL, indicating that this
cytokine, in addition to colony-stimulating factor 1 (CSF-
1)/macrophage colony-stimulating factor (M-CSF), is a cri-
tical differentiation factor that specifies the osteoclast
maturation program, and hence induction of bone resorp-
tion. Although RANKL (in conjunction with M-CSF) has
been recognized as one of the key osteoclastogenic signals
expressed by osteoblasts and stromal cells, the down-
stream signaling pathways activated by this cytokine have
not been fully characterized.
RANKL induces osteoclast formation via transcription

and activation of NFATc1, the master “switch” for osteo-
clastogenesis [57-59]. NFATc1 is activated by calcineurin,
a calcium-calmodulin dependent phosphatase, via depho-
sphorylation, which facilitates translocation of NFATc1
into the nucleus [57-62]. In addition to NFATc1 there are
other NFAT isoforms, termed NFATc2, NFATc3, and
NFATc4, but these proteins are not expressed at signifi-
cant levels in pre-osteoclast cells [59].
RANKL can induce intracellular calcium oscillations to

activate calcineurin in bone marrow macrophages (BMMs,
BMM cells) [57] and the mouse osteoclast precursor cell
line RAW 264.7 [61]. However, it is increasingly clear that
other signaling pathways can also increase concentrations
of cytosolic Ca2+, and can also activate calcineurin and
NFATc1. For example, membrane proteins with immu-
noreceptor tyrosine-based activating motifs (ITAMs), such
as FcRg1 and DAP12 interact with their own ligands as
well as activated RANK to increase cytosolic Ca2+

[57,63-65]. Mechanistically, activation of these immunore-
ceptors in concert with RANK signaling leads to phos-
phorylation of the ITAM domains, which in turn recruit
Syk to the membrane with subsequent activation of PLCg.
Activation of PLCg leads to the generation of IP3, which
releases Ca2+ from the endoplasmic reticulum and thereby
stimulates calcineurin-dependent dephosphorylation of
NFATc1 and consequently translocation of NFATc1 into
the cell nucleus [63,65].
Overexpression of wild-type and mutant SH3BP2 in B

and T cells leads to transactivation of a luciferase reporter
gene that is under the control of the NFAT binding
sequence from the interleukin 2 (IL-2) gene promoter
[16,39,40,44]. Moreover, overexpression of a constitutively
active form of NFATc1 in the RAW 264.7 osteoclast pre-
cursor cell line is sufficient to induce osteoclast differentia-
tion [11,57,59,63]. Based on these observations Lietman
and coworkers examined whether wild-type SH3BP2
increased NFAT translocation, and activation and TRAP
activation in RAW 264.7 cells and whether SH3BP2
mutants found in cherubism patients further increased
NFAT and TRAP activation to induce the osteoclastic
bone lesions of cherubism [53,66]. Indeed, wild-type
SH3BP2 increased NFAT and TRAP activation in RAW
264.7 cells [66]. This effect was dependent upon sRANKL,

which induced expression of endogenous NFATc1 and
was inhibited by 2-APB, U73122, and cyclosporine A,
which act upstream of NFATc1 activation [57] (Figure 2).
SH3BP2 specifically stimulated translocation of NFATc1
into the nucleus [66]. Moreover, isoforms of SH3BP2 car-
rying cherubism mutations further increased NFAT and
TRAP activation and therefore these mutant forms may be
a sufficient stimulus to induce the osteoclastic bone
lesions of cherubism in a manner consistent with a gain-
of-function mutation. At low concentrations, mutant
SH3BP2 led to higher increases of NFATc1 than wild-type
SH3BP2 until NFAT activity reached a plateau, which sug-
gests that mutant SH3BP2 is more efficient in inducing
osteoclastogenesis [67].
Because nuclear translocation of NFAT requires depho-

sphorylation by calcineurin, one may hypothesize that
SH3PB2, which lacks catalytic activity, requires intermedi-
aries to stimulate calcineurin activity. One such candidate
is the SH3BP2 binding partner PLCg. PLCg1 is phosphory-
lated by sRANKL [15,39,66,68]. PLCg, as well as other
forms of PLC, cleave the membrane phospholipid phos-
phatidyl inositol-4,5-biphosphate (PIP2) into the second
messenger molecules inositol-1,4,5-triphosphate (IP3) and
diacylglycerol (DAG) [69]. IP3 directly increases intracellu-
lar calcium levels by inducing the release of endoplasmic
reticulum calcium stores, which leads to activation of cal-
cineurin. There are two forms of PLCg (1 and 2)
[68,70-72]. While PLCg1 is widely distributed, expression
of PLCg2 is primarily limited to cells of hematopoietic
lineage [70]. Both PLCg isoforms require phosphorylation
on specific tyrosine residues for their catalytic activity [71].
Targeted deletion of Plcg2 but not Plcg1 in mice results

in an in vivo osteopetrotic phenotype [68], suggesting
that PLCg2 is the critical isoform for sRANKL-induced
osteoclastogenesis. PLCg2 has four tyrosine phosphoryla-
tion sites (Tyr753, Tyr759, Tyr1197, Tyr1217) [73-75]. In
separate experiments the mutation of all four of these
tyrosines had a dramatic effect on PLCg2 activation as
measured by intracellular calcium mobilization in B cells
[73]. Forced expression of wild-type and mutant SH3BP2
in RAW 264.7 cells led to an increase in the relative
amount of both phospho-PLCg1 and phospho-PLCg2,
with no alteration in the total amount of either protein,
and mutant SH3BP2 was more active than the wild-type
[57,63,76]. Overexpression of SH3BP2 also augmented
sRANKL-dependent phosphorylation of SYK, but there
were no differences between wild-type and mutant
SH3BP2 proteins in SYK phosphorylation. However in
the SH3BP2 knockin mouse there were increases in SYK
phosphorylation relative to wild-type mice [52]. Similarly,
both wild-type and mutant SH3BP2 produced compar-
able increases in sRANKL-induced activation of VAV3 in
in vitro experiments, which is phosphorylated by SYK.
Thus, RANKL-induced phosphorylation of all four of
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these interacting proteins is enhanced by SH3BP2, but
under the conditions that were used to replicate cherub-
ism i.e. low dose transfections [66], mutant SH3BP2 pro-
teins have a specific activating effect that appears to be
limited to PLCg1 and PLCg2. The increase of PLCg2
phosphorylation (and by inference activation) by the
mutant forms of SH3BP2 compared to the wild-type is
consistent with the recent finding that PLCg2 activation
can be dependent on Tec nonreceptor kinases rather
than Syk [77]. Thus the effect of mutant SH3BP2 on
increased osteoclastogenesis could be downstream of Syk
activation (since Syk stimulation is not further increased
but PLCg is in this in vitro model) [66]. No SH3BP2
mutant was consistently more active than the others in
terms of phosphorylation of PLCg2, and stimulation of
NFAT and TRAP or TRAP staining of multinucleated

cells [66] (Figure 2). Based on these findings we think
that SH3BP2 functions in the cytoplasm most directly by
increasing phosphorylation of PLCg2 at critical tyrosine
residues. The mechanism for the PLCg2 activation and
the NFATc1 activation by SH3BP2 remains unknown.
Our knowledge of SH3BP2 in the various cell types that

contribute to the cherubism phenotype is still only frag-
mentary. While in vitro studies offer valuable insights into
the regulation, modification and molecular interaction of a
protein, animal models are needed to investigate disease
mechanisms, which in turn can be tested by in vitro
experiments.

Animal models
Ueki et al., created a mouse model for cherubism by
using homologous recombination to introduce a

Figure 2 Schematic diagram of SH3BP2 interactions and pathway for SH3BP2-induced increase in osteoclastogenesis.
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proline-to-arginine substitution in SH3BP2 codon 416
that corresponds to Pro418 in humans [52]. Knockin
mice were bred into a C57Bl6/J background to avoid
variability due to strain differences. Heterozygous mice
looked and behaved like wild type mice on gross exami-
nation. Although heterozygous mice developed osteope-
nia of all bones, they did not show cherubic lesions or
detectable swellings of lymph nodes as the homozygous
mice did. Homozygous mice were smaller at birth and
failed to thrive [52,78]. They were smaller, weighed less
than wild-type littermates and had an average life span
of 6 months. In contrast to heterozygous littermates
they developed cystic lesions with fibrous inflammatory
infiltrates in the skeleton as well as in organs such as
lung and liver [52].
Cherubism occurs as an autosomal dominant (AD)

trait in humans whereas mice express cherubic lesions
only as homozygotes. Severe phenotypes in mouse mod-
els for autosomal dominant human disorders are fre-
quently found only in homozygote mice [79-82]. This
apparent contradiction may be due to species-specific
phenotypic thresholds, genetic redundancy and lifespan.
The bone-loss phenotype in homozygous mice was

manifested by significant reduction of bone volume in
calvaria, jaws and long bones. Exogenous bone resorption
(pitting) was especially pronounced in jaw bones and at
the distal end of femurs. Excessive bone resorption at the
metaphyses of long bones affected cortical as well as tra-
becular bone and already became apparent at young age.
Static histomorphometry of long bones indicated that the
number of osteoblasts in homozygous mice tripled and
the number of osteoclasts doubled, which suggests a pos-
sible increase in osteoblast and osteoclast activities. In
vitro studies showed that mutant osteoclasts not only
respond to much lower levels of the inductive cytokines
RANKL and MCSF, but respond to the signals with
highly increased osteoclast numbers, increased number
of nuclei per osteoclast and subsequently with greater
bone resorption [52]. The increased bone resorption is
attributed to increased osteoclastogenesis and resorptive
activity of osteoclasts and not to increased numbers of
osteoclast progenitors. Osteoclast progenitor numbers
are not changed between wild-type, heterozygous and
homozygous mutant mice [78].
Heterozygous and homozygous mice lack sufficient

numbers of mature osteoblasts [83]. The authors investi-
gated the ratio of mature osteoblasts to immature osteo-
blasts in vivo in crosses of Sh3bp2KI/KI mice with mice
expressing GFP driven by a 3.6 kb promoter of collagen I
(indicator of immature osteoblasts; pOBCol3.6GFPtpz) to
crosses with a marker for mature osteoblasts (pOB-
Col2.3GFPemd) [84]. They found a 3-fold increase in
osteoblast perimeter to bone perimeter due to overex-
pression of immature osteoblasts and that the mature

form of osteoblasts (2.3GFP positive) is actually almost
20% lower than in wild-type mice. Similar results were
seen in vitro in calvarial osteoblast cell culture experi-
ments. As a result of insufficient osteoblast differentia-
tion, mutant osteoblasts lay down undermineralized bone
matrix in the mouse model [52,83]. Gene expression pro-
filing in mutant mice showed some important differences
in mutant osteoblasts, one of which was the reduced
expression of osteoprotegerin, the soluble RANKL decoy
receptor. The difference in the RANKL/OPG ratio may
be the reason for increased osteoclastogenesis in wild-
type and in knock-in osteoclasts when co-cultured with
knock-in osteoblasts [83]. The studies by both groups
showed that Sh3bp2 has different functions in osteoblasts
and osteoclasts. To test the relevance of the in vivo and
in vitro osteoblast studies that have been performed in
the mouse model it would be interesting to study osteo-
clasts and osteoblasts isolated from cherubism patients.
Infiltrative lesions in bone and soft-tissue organs were

rich in spindle-shaped fibroblastoid cells, macrophages
and TRAP-positive multinucleated osteoclast-like cells
[52] and closely resembled human cherubism lesions.
Because macrophages are known to produce the pro-
inflammatory cytokine tumor necrosis factor-alpha (TNF-
a), the authors measured TNF-a levels in serum and in
isolated peritoneal macrophage populations and discov-
ered highly increased TNF-a levels in homozygous mice
while levels in heterozygous mice and wild-type mice were
not measurable. In macrophage cultures, however, the het-
erozygous macrophages began to secrete similarly high
TNF-a levels within 2 days of culture. While studying
downstream effects of increased TNF-a levels, the authors
found that mutant macrophages expressed higher levels of
the intracellular signaling components ERK, p38, and
IқBa and showed increased phosphorylation of SYK,
which is a regulator of osteoclastogenesis. Additional
experiments conducted in differentiating osteoclasts
showed similar results and suggested that the Sh3bp2
mutation indeed elicits a gain-of-function effect.
To study the influence of possible immune reactions on

the development of inflammatory lesions, Sh3bp2KI/KI

mice were crossed with RAG1-deficient mice, which lack
B- and T cells. Mice homozygous for both mutations had
the same bone phenotype and inflammatory infiltrates in
bones and soft-tissue organs, which suggested that
immunoregulation by B- and T-cells is not involved in
the cherubism phenotype. When Sh3bp2KI/KI mice were
crossed with mice lacking the cytokine M-CSF (op/op)
the authors could show that bone loss and tissue infil-
trates were virtually non-existent but TNF-a expression
was still high. This strongly suggested that macrophage
differentiation in this mouse model must be regulated by
an M-CSF-independent pathway. When Sh3bp2KI/KI

mice were crossed with mice that lack TNF-a, the
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infiltrative lesions disappeared and the bone phenotype
was partially rescued, although bone marrow stromal
cells from double mutants still responded with increased
osteoclastogenesis to M-CSF and RANKL stimulation.
The double mutant Sh3bp2KI/KI / TNF-a-/- mice
resembled heterozygote Sh3bp2KI/+ mice and had a nor-
mal life span.
These results point to the existence of at least 2

mechanisms that are involved in the phenotype of the
Sh3bp2KI/KI mouse. The authors hypothesize that the
effect of the mutation elicits macrophage hyper-reactivity
through ERK signaling via a positive autocrine feedback
loop, which leads to the increased TNF-a production
and inflammatory reactions (Figure 3). The other effect is
the generation of hyper-reactive osteoclasts via a Syk-
related pathway that leads to increased bone resorption.
While TNF-a may have a direct effect on osteoblast dif-
ferentiation in vivo, there is also a cell-autonomous effect
on osteoblast precursors that can be seen when mutant
osteoblasts are cultured in the absence of TNF-a -
producing cells [83].
As already discussed in the previous section, NFATc1

is a downstream target of RANKL signaling and a master
regulator of osteoclastogenesis. The role of NFATc1 in
the cherubism phenotype has been examined by crossing
Sh3bp2KI/KI mice with Nfatc1 conditional knockout mice
[85]. Cre-mediated deletion of Nfatc1 with Mx1-Cre in
all myeloid cells of 10-day-old mice resulted in an osteo-
petrotic phenotype due to lack of osteoclastogenesis.
However, the skeletal Sh3bp2KI/KI phenotype in double
mutant mice was fully rescued in the absence of NFATc1
and the mice actually displayed an osteopetrosis-like phe-
notype. The authors showed that NFATc1 is a target of

SH3bp2. NFATc1 is upregulated in RANKL/M-CSF-sti-
mulated osteoclast precursors by mutant SH3BP2, which
led to the formation of excessive numbers of osteoclasts.
In the absence of NFATc1 there was no in vitro osteo-
clast formation. However, the Sh3bp2KI/KI / Nfatc1-/-

double mutants still developed inflammatory infiltrates in
lungs, livers and other soft-tissue organs as TNF-a levels
were still high in those mice.
These experiments confirmed that the Sh3bp2KI/KI phe-

notype is caused by at least two mechanisms. Mutant
SH3BP2 stimulates excessive osteoclastogenesis by
increasing NFATc1 expression, which leads to increased
bone resorption. Since TNF-a levels are still high in dou-
ble mutants but osteoclastogenesis is disrupted, one can
conclude that any effect of TNF-a on bone resorption in
the cherubism model must go through NFATc1 while
signs of inflammatory reactions without osteoclast invol-
vement are independent of NFATc1. TNF-a is regulated
by SH3BP2 through a mechanism not involving NFATc1
but possibly other NFAT family members [86].
Aliprantis and coworkers also showed that NFATc1

has an inhibitory function on the expression of osteopro-
tegerin in stimulated bone marrow osteoclast precursor
cells. It is still to be determined whether the reduced
level of OPG in osteoblasts of Sh3bp2KI/KI mice [83] also
depends on NFATc1.
Mice in which Sh3bp2 was ablated showed deficiencies

mainly in the adaptive immune system. Sh3bp2 is required
for functional B-cell receptor (BCR) signaling while it is
not needed for T-cell receptor (TCR) signaling [38]. The
delayed B-cell response may be explained in part by
reduced proliferation and increased apoptosis induced by
B-cell receptor signaling [87]. Investigating skeletal

Figure 3 The role of TNF-a, M-CSF and RANKL in the pathogenesis of cherubism. (Modified after Ueki et al., 2007)
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responses to Sh3bp2 ablation may further illuminate the
functions of Sh3bp2 although results have not yet been
made public.
While initial investigations of the cherubism mouse

model focused on the skeletal phenotype and abnormal
osteoclast and osteoclast differentiation, it became soon
apparent that the phenotype in the Sh3bp2KI/KI mice is at
least in part based on abnormal immune response. Then,
Ueki and coworkers showed that the generalized chronic
inflammation in the Sh3bp2KI/KI mouse is elicited by
TNF-a and is independent of B- or T-cell involvement.
The disease phenotype can be transferred by myeloid
cells (monocytes, macrophages) and it can therefore be
argued that the disease phenotype is mediated by abnor-
mal innate immune response and should be included in
the list of autoinflammatory diseases with known genetic
origin [88].

Cherubism as an inflammatory disorder
Autoinflammatory disorders are defined by multisystem
inflammation without the production of high-titer auto-
antibodies or identifiable pathogens [89-91]. Cherubism
fulfills these criteria in the mouse model where infiltrat-
ing inflammatory lesions are found in many organs and
in human patients where bone lesions are limited to the
jaws but swelling of lymph nodes is found during or
prior to cherubic episodes. Because the process is (at
least in the mouse) driven by high levels of TNF-a it
could be argued that cherubism is as much a systemic
disorder of myeloid cells as it is a matrix disorder [92].
Pro-TNF-a is a plasma membrane protein and the solu-
ble form of TNF-a is released by matrix metalloprotei-
nases. The various responses to membrane-associated
and soluble TNF-a are elicited upon binding of TNF-a
to its transmembrane receptors TNFR1 and TNFR2 and
the subsequent activation of distinct signaling pathways
[93].
TNF-a is also a key player in the host defense to bacter-

ial, viral and parasitic infections [93] where it mediates the
normal response to the infective agent. However, excessive
TNF-a expression or a temporally or spatially inappropri-
ate expression can have damaging effects to the organism,
which results in osteopenia and infiltrative inflammatory
lesions in the Sh3bp2KI/KI mouse.
It has long been hypothesized that the limitation of

bone-resorptive lesions to the jaws in human cherubism
patients is connected to rapid bone remodeling during
the development and eruption of the secondary dentition
in children [2,11]. The bone remodeling needed in the
process of tooth eruption elicits the expression and
recruitment of a host of cytokines. It could be those cyto-
kines and the hypersensitivity of myeloid cells that trigger
a self-sustaining loop of TNF-a expression that leads to
osteoclastogenesis, soft fibrous tissue proliferation and

swollen lymph nodes. In an ongoing study, Ueki and co-
workers offer a new hypothesis for the restriction of cher-
ubism lesions to the jaws. They suspect that the trigger
for cherubism in patients that are heterozygous for a
Sh3bp2 mutation could be a hyper-reactive host response
to oral pathogens or physical damage that occurs on a
regular basis in the oral cavity [94].
Lipopolysaccharide (LPS) produced by Gram-negative

commensal bacteria is known to induce osteoclastogen-
esis, TNF-a expression and bone loss [95]. It is conceiva-
ble that cherubism patients are predisposed to osteolytic
reactions in the jaws once a certain threshold for indu-
cing agents (from intense bone remodeling in addition to
commensal bacterial load) has been reached. LPS can
enhance osteoclastogenesis in RANKL -induced osteo-
clast precursors [96]. LPS can also inhibit osteoblast dif-
ferentiation [97,98] through the Toll-like receptor
expressed on osteoblasts and its interaction with myeloid
differentiation factor 88 (MyD88) [99]. The myeloid dif-
ferentiation marker MyD88 is an adaptor protein that
mediates host response to damage- and pathogen-asso-
ciated molecular events. MyD88 is known to act down-
stream of Toll-like receptors and the interleukin-1
receptor by interacting with their intracellular Toll/IL-1
receptor homology domains [100]. Current literature
suggests that the role of MyD88 in LPS-stimulated osteo-
clastogenesis is mainly via RANKL stimulation in osteo-
blasts and by supporting the survival of differentiated
osteoclasts [101].
Ueki and coworkers are now investigating why crosses

of Sh3bp2KI/KI and MyD88 deficient mice show less
inflammatory infiltrates in bone and other organs and
significant improvement of facial swellings and bone
resorption [94]. While the importance of LPS or other
bacterial products in this partial “rescue” is not yet
known, it is obvious that MyD88 plays a major role in
the cherubism phenotype of the mouse model and
MyD88-independent pathways are likely to contribute as
well. Future research will show whether this TLR/IF-1
pathway is needed only for the early stage of cherubism
to generate sufficient pro-inflammatory signals and
whether some auto-stimulatory loop takes over or
whether it is required to maintain the phenotype. What-
ever the outcome of this exciting work in progress may
be, it is likely to lead to new targets for treatment or pre-
vention of cherubism.
This review covers the current knowledge on genetic

and molecular aspects of SH3BP2 and the lessons from
mouse models. While it is evident that SH3BP2 is an
important player in bone remodeling in the mouse and
that SH3BP2 acts through NFATc1 to stimulate osteoclas-
togenesis, other details of the SH3BP2/ NFATc1 axis are
still elusive. Inflammatory responses elicited by the Pro416
mutation in the Sh3bp2 knock-in mouse are independent
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of NFATc1 and are likely to be the major drivers for con-
tinued bone resorption. There is no current evidence that
suggests that immune response in cherubism patients is
abnormal. However, cherubic bone resorption is preceded
or accompanied by submandibular lymph node swelling,
which has not yet been thoroughly investigated. Further
immunologic research is needed to study the initiation of
bone resorption in the mouse model and how the extra-
skeletal inflammatory infiltrations develop. The ultimate
goal is to test those findings in cherubism patients and to
identify ways to treat or better still, to prevent the disease.
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