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Simple Summary: Clear cell renal cell carcinoma (ccRCC) pathologic grade identification is essential to
both monitoring patients’ conditions and constructing individualized subsequent treatment strategies.
However, biopsies are typically used to obtain the pathological grade, entailing tremendous physical and
mental suffering as well as heavy economic burden, not to mention the increased risk of complications.
Our study explores a new way to provide grade assessment of ccRCC on the basis of the individual’s
appearance on CT images. A deep learning (DL) method that includes self-supervised learning is
constructed to identify patients with high grade for ccRCC. We confirmed that our grading network
can accurately differentiate between different grades of CT scans of ccRCC patients using a cohort of
706 patients from West China Hospital. The promising diagnostic performance indicates that our DL
framework is an effective, non-invasive and labor-saving method for decoding CT images, offering a
valuable means for ccRCC grade stratification and individualized patient treatment.

Abstract: This retrospective study aimed to develop and validate deep-learning-based models for
grading clear cell renal cell carcinoma (ccRCC) patients. A cohort enrolling 706 patients (n = 706)
with pathologically verified ccRCC was used in this study. A temporal split was applied to verify
our models: the first 83.9% of the cases (years 2010–2017) for development and the last 16.1% (year
2018–2019) for validation (development cohort: n = 592; validation cohort: n = 114). Here, we
demonstrated a deep learning(DL) framework initialized by a self-supervised pre-training method,
developed with the addition of mixed loss strategy and sample reweighting to identify patients with
high grade for ccRCC. Four types of DL networks were developed separately and further combined
with different weights for better prediction. The single DL model achieved up to an area under
curve (AUC) of 0.864 in the validation cohort, while the ensembled model yielded the best predictive
performance with an AUC of 0.882. These findings confirms that our DL approach performs either
favorably or comparably in terms of grade assessment of ccRCC with biopsies whilst enjoying the
non-invasive and labor-saving property.

Keywords: clear cell renal cell carcinoma; deep learning; tumor grading; self-supervised learning;
label noise; class imbalance

1. Introduction

Renal cell carcinoma (RCC) is one of the most common deadly tumors in the urinary
system, originating from the renal parenchymal urinary tubule epithelial system, account-
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ing for 4% of human malignant tumors [1]. Clear cell renal cell carcinoma (ccRCC) is the
most common subtype of RCC, accounting for about 75% of all RCC cases [2]. The Fuhrman
grading system is highly recognized in the clinical oncology community, and it is widely
used for diagnosing the pathological grade of ccRCC. In the Fuhrman grading system,
the tumor is classified into one of four different grades (I, II, III, and IV) [3], with higher
grades indicating a more serious patient condition. However, to obtain the pathological
grade, the biopsy is most often carried out using a sharp tool to remove a small amount
of tissue. Inevitably, this invasive procedure may entail great pain physically and men-
tally, whilst imposing a heavy economic burden on patients’ families and society. Recent
study [4] also demonstrated that biopsy may increase the risk of complications, including
hemorrhage, infection, even tumor rupture. Furthermore, considering the shortage of
specialized doctors and conceivable poor conditions of equipment in some rural areas,
patients in these areas may be unable to receive timely and appropriate treatment.

In recent years, deep learning (DL) has defined state-of-the-art performance in many
computer vision tasks, such as image classification [5], object detection [6,7], and seg-
mentation [7]. DL models will perform satisfactorily once they have learned enough and
high-quality data [8]. Thus, given sufficient data, the accuracy of a deep-learning-enabled
diagnosis system often matches or even surpasses the level of expert physicians [9,10].
A myriad of studies have validated the utility of DL in various clinical settings through
various experiments, including the reduction of false-positive findings in the interpretation
of breast ultrasound exams [11], the detection of intensive care unit patient mobilization ac-
tivities [12], and the improvement of medical technology [13]. In the same way, DL enables
the ability to non-invasively and automatically assess the pathological grade for ccRCC,
monitor patients’ conditions and construct personalized subsequent treatment strategies.

However, to better apply the DL model, there are a few problematic issues that should
not be lightly dismissed. First, the domain shift problem. In most deep-learning-enabled
medical system, transfer learning is a common practice [14], where researchers use models
pretrained on some other dataset, such as ImageNet [15]. Although ImageNet contains a
large variety of images, they are all based on real-life situations and do not overlap with
medical images in terms of content. The shifts between two datasets represent that the
pattern-recognition abilities acquired from large datasets may not apply well to our medical
task. Second is the noisy label problem [16]. Inevitably, there are always some cancerous
lesions that come from high-grade patients but do not exhibit characteristics sufficient
to discriminate them from low-grade patients, resulting in the mismatch between the
manual labels and the actual labels. Third, the imbalance dataset problem. In most medical
tasks, images for the abnormal class might be challenging to find. Developing on such
an unbalanced dataset can wreak havoc on the utility of the DL model. To combat these
issues, our study explores a new DL framework initialized by a self-supervised pre-training
method, developed with the addition of mixed loss strategy and sample reweighting to
identify patients with high grade for ccRCC.

There are also several studies related to that of ours. Zhu and collaborators [17]
proposed a system that can accurately discriminate between five related classes, including
clear cell RCC, papillary RCC, chromophobe RCC, renal oncocytoma, and normal, based on
digitized surgical resection slides and biopsy slides. Different from this, we only focus on
the ccRCC and try to explore a non-invasive tool to replace biopsy whilst providing grade
assessment. Zheng [18], Cui [19], and Gao [20] had the same intention with us but their
works are mainly based on radiomics, which requires using a high-throughput feature
extraction method and a series of data-mining algorithms [21,22]. By contrast, our work
does not need to use additional procedures, such as feature extraction, which could save
labor to some extent. Most relates to our work is that of [14] which also attempted to use
the deep learning model to predict the Fuhrman grade of ccRCC patients. However, it is
worth nothing that this study still used ImageNet pretraining and did not pay attention
to the noise and imbalance problem that may induce performance degradation in most
of cases, while our framework provides a new solution to these issues with the addition
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of the proposed mixed loss strategy and sample reweighting, providing increased power
to the common practice. To the best of our knowledge, our study is the first attempt to
identify the pathological grades of patients with ccRCC in the context of a large population
whilst dealing with the domain shift problem and the noisy label problem, as well as the
imbalance dataset problem, simultaneously.

The specific objective of this study was to develop and validate a new DL framework
to identify patients with a high grade for ccRCC based on CT images, and the results indi-
cate that it is feasible. In addition to the application of deep learning to ccRCC pathology
grading [14], we focused on the solution of these three problems. To improve the network’s
capabilities, we proposed an innovative self-supervised pre-training methodology, as well
as mixed loss strategy and sample reweighting to address label noise and class imbalance
problems. To develop and validate our framework, we applied a temporal split to teled-
ermatology cases: the first 83.9% of the cases (years 2010–2017) for development and the
last 16.1% (years 2018–2019) for validation as done in [23]. Putting patients with different
years into different groups could help avoid the bias that possibly stems from the machines
and radiologic technologists, thereby being also a good practice to demonstrate the gener-
alization ability of our method. In addition, to improve the model generalization ability,
we combined several excellent single models, which achieved more reliable results. This
project provides a convenient, harmless and accurate opportunity for Fuhrman grading,
which will not only relieve patients from suffering from biopsies, but also assist radiologists
in making diagnostic decisions in routine clinical practice, even for some rural areas.

2. Materials and Methods

The institution’s research ethics board approved our study. The ethics board waived
informed consent because the data were obtained from preexisting institutional or pub-
lic databases.

2.1. Patient Cohort

The patient cases covered in this study are all from West China Hospital, with a total
case load of 759. We excluded 53 patients for the following reasons: (1) the CT images
were incomplete or had poor image quality (n = 24); (2) patients with incomplete indicators
(n = 29). Therefore, 706 patients were finally enrolled in this study. All 706 patients were
admitted to the hospital from April 2010 to January 2019. From the perspective of the time
domain, we assigned a total of 592 patients before year 2018 as the development cohort and
a total of 114 patients after year 2018 (including 2018) as the validation cohort according
to the acquisition date of the CT images. The characteristics of the included patients are
shown in Table 1.

All of the pathological ccRCC patients’ grades were reconfirmed by three independent
pathologists with extensive pathology experience. The labels of CT images in the validation
cohort were verified by professional pathologists. This study employed the Fuhrman
grading system as the benchmark. Grades I and II were assessed as low-grade, and grades
III and IV were assessed as high grade. Usually, low grade has a better prognosis than high
grade [24].

Table 1. Patient characteristics.

Patient Characteristic Development Cohort Validation Cohort

Number 592 114
CT Images 9978 2491

Male 374 (63.2%) 71 (62.3%)
Female 218 (36.8%) 43 (37.7%)

Average Age 54.9 (±12.1) 55.8 (±12.1)
Acquisition Date 2010–2017 2018–2019

Low-grade 354 (59.8%) 76 (66.7%)
High-grade 238 (40.2%) 38 (33.3%)
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2.2. Image Acquisition

All CT scans used in this study were obtained by one of the six different CT scanners.
The PCP, CMP, and NP of the MDCT (multidetector CT) examination were acquired for
each ccRCC patient with strict rules. A total of 70–100 mL contrast agents were injected
into the antecubital vein using a high-pressure injector at a rate of 3.5 mL/s. The PCP is the
precontrast phase. The CMP means that the corticomedullary phase contrast-enhanced scan
starting 30 s after injection. The NP means that the nephrographic phase contrast-enhanced
scan starting 90 s after the injection. Spiral scanning and thinslice reconstruction were used
for all three phases. The CT scanning parameters for the three phases were as follows: the
voltage in the tube was 120 kV; the reconstruction thickness was 1 mm to 5 mm, and the
matrix was 512 × 512. Only the CMP CT images were used as experimental data most of
the time because the CT images are the clearest and most conducive to the analysis of the
patient’s condition. The selection of only CMP CT images as experimental data somewhat
reduces the times of model developing, which may impair the generalization of the model,
but since our dataset includes a large enough number of cases, this operation does not have
any impact.

2.3. Image Preprocessing

The original CT image contains interference information, of which only the tumor
area is really valid for grading, so for each image, the region of interest (ROI) needs to
be delineated. With 706 patients containing more than 12,000 CT images, it is clearly not
desirable to have a radiologist process every image.

We utilized the DL models in target detection and segmentation to segment tumor
regions in the renal CT images. In the detection and segmentation part of the tumor, we
used VGG-16 [25] pre-trained on ImageNet [26] as the backbone for extracting features.
A small number of images for detection and segmentation training were annotated by
experienced doctors. The network was trained for 6000 epochs until its output converged.
We used the trained network to detect and segment the tumors in the overall CT images,
and the results were tested by an experienced radiologist, largely meeting the criteria.
Figure 1 shows the tumor segmentation process. The segmented CT pictures eliminate
interference from other bodily regions, allowing the content to be focused on the tumor area
on the renal. The CT images involved in subsequent experiments (including pre-training
process and developing process) refer to those after detection and segmentation processing.
Since the size of the tumor area varies, the sizes of the CT images obtained by partitioning
are different. We performed Resize or Padding operations before the data were entered
into the network to make the image size uniform to the 224 × 224 × 3.

Segmentation ModelOriginal CT Images Tumor CT Images

Figure 1. Segmentation model concentrates the CT image’s content on the tumor.

2.4. Self-Supervised Learning

We used a self-supervised learning (pre-training) method to equip the network with
better awareness of the CT images before developing. In the pre-training and developing
process, we used the RegNetY400MF, RegNetY800MF [27], SE-ResNet50 [28] and ResNet-
101 [29]. Traditional pre-training models are often obtained by developing on ImageNet [15]
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and then using transfer learning to satisfy specific classification tasks. Such an approach
suffers from the problem that there is segmentation between the pre-training and the
actual classification task, with little correlation between the image contents. We used a
simpler and more efficient approach to pre-train the network. The images we used in
the pre-training are the same as those used in the developing, with the difference that
during pre-training, we rotate the input image data clockwise in space in one of four ways
(0◦, 90◦, 180◦, 270◦), and the images are labeled with the number of 90◦of image rotation
(0, 1, 2, 3), while during developing, CT images are labeled with the ccRCC grade of the
relevant patient (0 for low-grade, 1 for high-grade). Such a pre-training method allows the
network to develop feature extraction capability based on the developing images without
revealing the original semantics of the developing images. We pre-trained different deep
learning models using the stochastic gradient descent (SGD) algorithm and the common
cross-entropy loss function. The DL models were finally trained for 60 epochs. The overall
structure of the pre-training network is shown in the top half of Figure 2.
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Figure 2. The overall flow of pre-training and developing. The top part of the figure shows the
pre-training process. In the pre-training process, the original images are expanded into four im-
ages after rotation transformation, and their labels are 0, 1, 2, and 3, representing that they are
obtained by quarter-turning the original image 0, 1, 2, and 3 times, clockwise. The bottom part
shows the developing process. The developing process network is initialized from the pre-training
process network.

2.5. Mixed Loss Strategy

There are two pervasive problems in image classification (including medical image
classification) tasks: one is the presence of label noise, and the other is the imbalanced data
distribution. Both of these problems can be found in the data of our study.
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Some malignant lesions that come from higher-grade patients do not exhibit enough
characteristics to distinguish them from lower-grade patients, resulting in a mismatch
between manual labeling and actual labeling. In simple terms, there are errors in the
labels of CT images of some high-grade patients. To tackle the noise problem, we applied
the mixed loss strategy similar to that in [30]. Suppose the labeled CT images dataset is
D = (xi, yi)

N
i . During developing, the ordinary cross-entropy loss is as follows:

LCE = − 1
N

N

∑
i=1

∑
j∈{0,1}

lijlogpij (1)

where lij = 1 if yi = j, and 0 otherwise. pij is the network output probability that the
ith sample belongs to category j. Since the true labels of some high-grade CT images
were supposed to be low-grade., we add loss LCE_2 to alleviate the effect of noise in the
developing process. Specifically, in the developing phase, under the assumption that the
noise rate is α(0 ≤ α ≤ 1), the loss is as follows:

Ltotal = αLCE_1 + (1− α)LCE_2 (2)

LCE_1 = − 1
N

N

∑
i=1

∑
j∈{0,1}

lijlogpij (3)

LCE_2 = − 1
N

N

∑
i=1

li0logpi0 (4)

where li0 = 1 if yi = 0, and 0 otherwise. pi0 is the network output probability that the i-th
sample belongs to category 0 (low-grade). The larger the noise rate α, the higher the noise
level. In the experiment, the noise rate was set at 0.4 for the best results, which is probably
closest to the real noise rate of the data. Through the mixed loss strategy, we made the
network learn from the modified data according to a certain probability in the developing
process so as to achieve the effect of countering label noise.

2.6. Sample Reweighting

In terms of class imbalance, it is inevitable. For example, the proportion of mild pa-
tients in the cases of cancer detection is small, because cancer patients usually feel physical
abnormalities in the middle or even late stage of the disease. The sample reweighting
method is used to tackle this problem. In order to account for class imbalance when cal-
culating cross-entropy loss, each class was weighed according to its frequency, with rare
samples contributing more to the loss function [23]. Specifically, we assigned lower weights
to the categories with a larger proportion of sample size. Since we have a bias toward
the low-grade patient sample when dealing with the noise problem, we need to take this
information into account when calculating the percentage of the number of low-grade and
high-grade CT images. Suppose the weight of the low-grade patient sample is λ0, and the
weight of the high-grade patient sample is λ1; the new weighted cross-entropy is

LCE_weight = −
1
N

N

∑
i=1

∑
j∈{0,1}

λjlijlogpij (5)

By Equation (5), we made the network learn more from categories with smaller sample
sizes. Finally, in order to comprehensively solve the problem of label noise and class
imbalance, the overall optimization objective Ltotal_weight is

Ltotal_weight = −α
1
N

N

∑
i=1

∑
j∈{0,1}

λjlijlogpij − (1− α)
1
N

N

∑
i=1

λ0li0logpi0 (6)
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2.7. Developing

After pre-training, we obtained the DL model with feature extraction capability. Then,
all models were developed iteratively and used to grade CT images of ccRCC patients.

It is worth noting that during the pre-training process, the classifiers of the models of
the four networks are linear, i.e., one fully connected layer (with an avgpooling). During the
developing process, we converted the classifier of the original network into nonlinear
projection, which can perform more complex mapping and make the dimension reduction
of the feature map smoother.

The weights of DL models were initialized from the networks that had been developed
to classify four kinds of picture rotation angles (0◦, 90◦, 180◦, 270◦), except the projection
part. The weights of the projection part are initialized in a common and efficient way [31].
To match the number of classes in our study, the output unit was modified to two (low-grade
and high-grade). The developing process is shown in the bottom half of Figure 2.

After five epochs of warm up, the learning rate was set to 0.1 at the beginning and it
varied as a cosine function. It is worth noting that the pre-trained backbone already has
some feature extraction capability, unlike the untrained projection. Therefore, in the process
of network developing, these two parts of the network should adopt different learning
rates, i.e., a small learning rate for the backbone and a relatively larger learning rate for
the projection. Specifically, we set the learning rate of the backbone to 0.1 times that of the
projection. In addition, a weight decay rate of 0.0001 was set to inhibit overfitting, which
can keep the weights of the neural network from becoming too large. Data augmentation,
including random rotation and horizontal flipping, was performed on the development
cohort to avoid overfitting, which can emulate the diversity of data observed in the real
world. Four NVIDIA Tesla M40 graphics cards with 24 GB of memory were used in
the development process. We used the SGD algorithm and cross-entropy loss defined in
Equation (6) to develop the network. The DL model was finally developed with 100 epochs.
Pytorch (1.0.1) and Python (3.5.7) were the main tools used in our experiments.

2.8. Validation and Statistics Analysis

After the developing phase, we used a validation cohort to check the generalizability
of the developing effect of the model. Since each patient in the experiment contains multiple
images, each image is calculated to obtain a probability vector, so for each patient there
is a set of probability vectors. We statistically computed the group probability vector for
each patient and finally obtained the grade judgment about the patient. When analyzing a
patient’s condition, the focus is usually on the most severe part of the CT images, which
is reasonable because it can accurately identify the patient’s condition. Therefore, in the
statistical calculation for each patient, we used the highest probability of network output
in each patient’s CT image as the judgment basis for grading. Suppose the i-th patient
has M CT images, and the output of the model for each CT image is gj(j = 1, 2, . . . , M).
The grading judgment Gi is

Gi = max(g1, g2, . . . , gM) (7)

During validation process, the accuracy (ACC), sensitivity (SEN) and specificity (SPC)
were calculated to assess the capability of the DL model. In addition, we used the area
under the receiver operating characteristic (ROC) curve (AUC) to show the diagnostic
ability of the DL model in grading ccRCC patients.

2.9. Model Ensemble

Following the developing method described in Section 2.7, we developed a total of
four classes of DL models with different structures in the development cohort. To improve
the reliability of DL models, we combined models with different weights according to
their performance in order to obtain a prediction that works best. During the experiment,
we found that the single model performed close to each other. In order to increase the
diversity of weights of different models in the process of model ensemble, we proposed
an innovative weight calculation method. We used the model’s AUC as a reference for its
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ensemble weight specifically, as all four types of models have the same decile of AUC, and
their ensemble weight is the value of their AUC after decile is removed. Then, for each
patient, we weighted the four models’ outputs by different weights and summed them to
obtain the patient’s final grading judgment. Our weight calculation method can make the
models with relatively good performance occupy a larger weight in the ensemble process,
increasing the difference between the weights of different models and achieving better
ensemble results. Assume the weights of the four models are γ1, γ2, γ3, γ4, and the i-th
patient’s predictions are Gi1, Gi2, Gi3, Gi4. The composite prediction Fi is

Fi =
∑4

k=1 γkGik

∑4
k=1 γk

(8)

3. Results

We divided the CT images of 706 patients into a development cohort and validation co-
hort according to the acquisition date, where the development cohort contains 592 patients
and the validation cohort contains 114 patients.

Four different kinds of networks (including ensemble model) were validated after de-
veloping according to our method, and the relevant metrics were calculated statistically; the
validation results are shown in Table 2. The results show that our developing method
exhibits satisfactory results on different networks, which illustrates the effectiveness of our
method, and in contrast to the subsequent ablation experiments, it can also be seen that our
method can effectively mitigate the label noise and class imbalance problems in the data.
In addition, our ensemble method can effectively improve the prediction accuracy and
enhance the reliability of DL model prediction results. This is like combining the opinions
of multiple specialists in the patient’s diagnosis process to arrive at a more accurate and
reliable judgment about the patient. We selected a model with good performance from
each of the four types of models and recorded their receiver operating characteristic curves
(ROC), as shown in Figure 3. We also recorded the DL model output probability of each
patient in the validation cohort (0 for low-grade, 1 for high-grade), and the results are
shown in Figure 4. For most high-grade patients, they have larger lesion areas and a more
severe condition based on CT images, and are more likely to have a greater probability
of network output. The CT images of some high-grade and low-grade patients are simi-
lar, and the probability of a corresponding network output is not significantly different.
For low-grade patients, they are more likely to have a relatively smaller network output
probability, and their CT images reflect a better condition. The percentage of patients who
were graded as low grade or high grade by the ensemble model based on their Fuhrman
grades (I, II, III, IV) is displayed in Figure 5. Figure 5 shows that the ensemble model can
accurately classify patients in grades I and II as low grade and patients in grades III and
IV as high grade, which is pathologically justified by treating grades I and II as low grade
and grades III and IV as high grade because grades I and II have relatively more similar
characteristics than grades III and IV, thus allowing the network to distinguish between
low-grade and high-grade patients.

Table 2. Results of different network models and ensemble models in the validation cohort.

Model Sen (%) Spec (%) ACC (%) AUC (%)

SE_RESNET50 85.5 ± 6.6 76.3 ± 1.3 82.5 ± 4.0 86.4 ± 0.2
RESNET101 77.6 ± 3.9 76.3 ± 4.0 77.1 ± 1.3 82.2 ± 0.3
REGNET400 82.9 ± 4.0 72.4 ± 1.3 79.4 ± 3.1 83.0 ± 0.1
REGNET800 84.2 ± 7.9 74.3 ± 4.6 81.0 ± 3.7 85.9 ± 0.3
ENSEMBLE 85.5 ± 1.3 75.0 ± 2.6 82.0 ± 0.1 88.2 ± 0.6

ACC = Accuracy; SEN = Sensitivity; SPC = Specificity; AUC = Area under the receiver operating
characteristic curve.
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Figure 3. Receiver operating characteristic (ROC) curve of the four different models and the
ensemble model.

We also performed a series of ablation experiments to illustrate the effectiveness
and necessity of each part of our proposed method. First, we conducted the baseline
experiments, i.e., base model experiments without self-supervised pre-training, mixed loss
strategy and sample reweighting, and the results are shown in Table 3. From Table 3, we can
see that the overall performance of the base model is poor and biased toward the low-grade
patients. The overall poor performance is mainly due to the lack of our self-supervised pre-
training method. The feature extraction ability of the network is insufficient to accurately
identify low-grade and high-grade patients, while the base models are biased toward
low-grade patients because they do not solve the label noise and class imbalance problems.

Without using the mixed loss strategy and sample reweighting approaches, we per-
formed experiments with self-supervised pretraining, and the results are shown in Table 4.
Compared with the baseline, the self-supervised pre-training method effectively improves
the performance of the models, but there is also the problem of excessive bias. Because of
the lack of mixed loss strategy and sample reweighting approaches, the network will be
more influenced by low-grade patients in the development process, i.e., the number of CT
images of low-grade patients is larger than that of high-grade patients, which will make
the network biased to low grade in the development process.

We conducted experiments with the addition of the mixed loss strategy and sample
reweighting methods without the self-supervised pre-training, and the experimental re-
sults are shown in Table 5. From Table 5, we can see that the mixed loss strategy and
sample reweighting can effectively solve the bias problem and improve the performance
of the model, which is consistent with the fact that they can effectively solve the label
noise and class imbalance problems. However, due to the lack of the self-supervised
pre-training method, different networks exhibit a large gap in the integrated level relative
to Table 2, which once again proves that our self-supervised pre-training method can
effectively improve the network feature extraction capability, thus improving the overall
network performance.

To validate the effect of different pre-training methods, we pre-trained the SE-ResNet50
model on ImageNet with other settings consistent with the experiments in Table 2. The ex-
perimental results are shown in Table 6. Compared with the ImageNet-based pre-training
method, our proposed self-supervised pre-training method achieves better experimental
results because the ImageNet dataset contains life-like images that have minimal associ-
ation with the CT images during the developing process, and our proposed pre-training
method allows the network to use the same images in the developing process as in the
pre-training process and does not reveal the original semantics of the images, which makes
the pre-training process and the developing process more relevant and thus allows the
pre-training process to better assist the developing process.

We also conducted experiments to compare our method with different traditional
machine learning methods [32] including support vector machine (SVM) [33–35],
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K-nearest neighbor (KNN), tecision tree [35], random forest [35], and gradient boosting [35].
The degree and tolerance of the SVM were 3 and 0.001. We set the number of neighbors
in KNN to 5. For the decision tree, the minimum numbers of samples required to split an
internal node and be at a leaf node are 2 and 1. The number of trees in random forest was
set to 10. The learning rate of gradient boosting was 0.1, and the number of boosting stages
to perform was 100. The experimental results are shown in Table 7. As we can see, our
method clearly outperforms all the ML methods. It is worth noting that in our experiments,
we did not introduce additional feature extraction methods for the ML methods, saving
labor to a great extent while having reliable accuracy. The poor effect of ML methods may
be due to the inability to deal with the potential noisy and imbalanced problem intrinsically
existing in the data. By contrast, our framework explores a new way to deal with these
issues with the help of the proposed mixed loss strategy and sample reweighting, providing
increased power to the common practice.
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Figure 4. Network output probabilities for low-grade and high-grade patients. The left subplot is the
network output probability distribution of low-grade and high-grade patients. The right subplot is
the CT images of low-grade and high-grade patients with different network output probabilities.
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Figure 5. The probability matrix of four grades of patients being predicted to low-grade and high-
grade. The subplot in the left is the result in the development cohort. The the subplot on the right is
the result in the validation cohort.
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Table 3. Performance of the four basic models in the validation cohort.

Model Sen (%) Spec (%) ACC (%) AUC (%)

SE_RESNET50 65.8 ± 3.7 86.3 ± 3.4 72.6 ± 2.0 78.0 ± 2.3
RESNET101 54.4 ± 13.0 85.5 ± 12.4 64.8 ± 4.7 72.5 ± 0.6
REGNET400 65.7 ± 6.4 85.1 ± 4.5 72.2 ± 2.9 76.6 ± 0.5
REGNET800 66.4 ± 4.7 79.6 ± 2.4 70.8 ± 2.5 75.8 ± 1.4

Table 4. Performance of four types of self-supervised pre-trained models without mixed loss strategy
and sample reweighting methods in the validation cohort.

Model Sen (%) Spec (%) ACC (%) AUC (%)

SE_RESNET50 63.1 ± 2.1 90.3 ± 2.7 72.2 ± 0.5 81.8 ± 0.8
RESNET101 68.4 ± 2.6 80.3 ± 1.3 73.4 ± 0.3 81.2 ± 0.6
REGNET400 69.3 ± 2.5 79.8 ± 1.6 72.8 ± 1.3 80.8 ± 0.2
REGNET800 62.3 ± 2.5 93.0 ± 2.5 72.5 ± 0.8 82.7 ± 0.2

Table 5. Performance of four types of basic models with mixed loss and sample reweighting methods
in the validation cohort.

Model Sen (%) Spec (%) ACC (%) AUC (%)

SE_RESNET50 76.2 ± 3.6 75.0 ± 1.1 75.9 ± 2.2 79.2 ± 1.1
RESNET101 73.7 ± 2.1 76.8 ± 3.3 74.7 ± 1.1 80.4 ± 0.3
REGNET400 72.8 ± 8.9 73.2 ± 10.6 72.9 ± 2.5 79.4 ± 1.1
REGNET800 75.0 ± 2.3 75.3 ± 3.0 75.1 ± 0.6 80.0 ± 0.7

Table 6. Comparison of the SE-ResNet50 model performance based on different pre-training methods
in the validation cohort.

Model Sen (%) Spec (%) ACC (%) AUC (%)

ImageNet 75.0 ± 1.3 77.3 ± 3.3 75.7 ± 1.2 80.3 ± 0.8
Ours 85.5 ± 6.6 76.3 ± 1.3 82.5 ± 4.0 86.4 ± 0.2

Table 7. Performance of machine learning methods in the validation cohort.

Model Sen (%) Spec (%) ACC (%) AUC (%)

SVM 63.2 ± 18.9 63.2 ± 17.8 63.2 ± 6.7 62.5 ± 7.1
KNN 71.2 ± 16.0 54.6 ± 17.9 60.3 ± 7.1 65.2 ± 2.9

DecisionTree 96.1 ± 2.9 12.8 ± 3.4 40.1 ± 1.6 54.4 ± 1.0
RandomForest 61.8 ± 7.8 68.8 ± 5.7 66.4 ± 1.9 68.4 ± 3.1

GradientBoosting 63.8 ± 11.7 75.7 ± 13.0 71.7 ± 5.9 68.7 ± 4.1

Ours-Ensemble 85.5 ± 1.3 75.0 ± 2.6 82.0 ± 0.1 88.2 ± 0.6

4. Discussion

In this work, we proposed a radiologist-level diagnostic model based on DL approach
that is capable of automatically grading ccRCC patients based on CT images. We improved
the network’s capabilities using innovative self-supervised pre-training approaches. Based
on the data in our research, we also proposed solutions to the label noise and class imbalance
problems that exist in real world datasets, and the experimental results demonstrate the
effectiveness and necessity of our work.

Our best-performing DL model has a high reliability with an accuracy of 88.2% AUC,
82.0% ACC, 85.5% SEN, and 75.0% SPEC. These results confirm that our DL method
performs well or equivalent to biopsy in the grade evaluation ccRCC, with the characteris-
tics of noninvasive and labor-saving, which can offer a valuable means for ccRCC grade
stratification and individualized patient treatment.
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There are four major advantages to our research. Above all, we pre-train the model
with the same images (but different labels) as the developing process, in order to provide the
network with a better knowledge of the images before developing. Compared with [36–38]
using pre-trained models based on ImageNet, our method does not suffer from the problem
of small correlation of image contents between the pre-training and developing process,
and it allows the network to develop the same images during pre-training and developing
without revealing the original semantics of the images.

Furthermore, label noise is the common problem in medical image datasets. The label
noise problem degrades the label quality of medical images [39,40], which will make the
medical image mismatch with its real label, and have a negative effect in the development
of DL. Manually filtering all the samples undoubtedly raises labor costs, and it is inefficient
when dealing with large datasets. We have taken the mixed loss strategy for the label
noise, with no labor cost overhead but good results. The satisfactory experimental results
verify that our method can make the DL model biased toward the correct samples in
the development process. Obviously, the actual problem cannot be exactly the same for
different datasets; for example, the noise rate differs in size from one dataset to another.
Different real situations require different approaches, and we believe that our approach to
the two challenges will aid future study in this area.

In addition, class imbalance also occurs frequently in medical image datasets. The class
imbalance problem may negatively affect the performance of ML models [41] and DL mod-
els [42,43], as most classification methods assume an equal occurrence of different classes.
To address this problem, we used the sample reweighting method, which yielded promising
benefits. As can be seen from the experimental results, the sample reweighting method
effectively prevents the DL model from favoring a certain category in the development
process, that is, balance the contribution of samples with different quantity proportions to
the loss function. We also expect that our approach of the topic of class imbalance will aid
future study in this area.

Last but not leastFinally, DL models with different structures have different inde-
pendent parameters and are developed to form different perceptions of the dataset. We
combined the developed network models with various architectures and obtained more
accurate prediction. The model ensemble approach can make up for the shortcomings of
individual models in prediction, enhance the network generalization ability, and improve
the reliability of results.

In terms of practical significance, our design can help patients in remote areas to
further understand their individual conditions, assist doctors to make more accurate
clinical judgments on patients’ conditions, and to a certain extent compensate for the lack of
professional doctors and promote the treatment of patients. With sufficient and noise-free
data and reliable developing, our method can reduce or even replace patient biopsy tests,
giving patients a safer and more convenient way to be tested.

Despite the contributions of our study in grading ccRCC, it has some potential limita-
tions. The one, although we used model ensemble to improve the generalization ability of
the network. For the development of DL models, there are other more DL network architec-
tures that can be utilized, such as VGGNet [25] and GoogleNet [44], but our experiments
demonstrated the effectiveness of applying DL to the pathology grading of ccRCC patients.
Next, although all cases included in our data are confirmed by professional doctors, there
is still a certain human factor, so if our system is to be applied in practice, a large amount
of quality data is needed to improve the model in order to make the results more reliable.
The WHO/ISUP grading system has superseded the Fuhrman grading system in terms of
prognosis assessment and interpretability [45]. Lastly, we take a uniform size operation
(224 × 224 × 3) for tumor images of different sizes, which is necessary for network devel-
oping and validation, however, when such an operation is taken for images of small sizes,
it may affect the original semantics of the images, which is one of the common problems in
the image processing field.However, the intention of using cropped tumor is to exclude the
interference of irrelevant information entailed by other normal region. Such normal regions
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do not contribute positively to the grading of ccRCC. On the contrary, the redundant
information may also include a bias or shortcut that would otherwise enforce the model
solving a problem differently than intended. For example, there is an observation that the
network has learned to detect a metal token that radiology technicians place on the patient
in the corner of the image field of view at the time they capture the image in [46].

For the clinical validation of our method, we also look forward to applying our al-
gorithm to real world practice to protect patients from suffering of biopsies as many as
possible. However, unfortunately, such a method needs special approval from correspond-
ing authorities, which cannot be easily acquired within short notice. We will positively try
this in our future work. In addition, we hope to research a better algorithm to solve the
semantic loss problem caused by fixing all images to a uniform size in DL.

5. Conclusions

In this paper, we proposed a DL model that can effectively discriminate different
grades of ccRCC patients. Based on the innovative self-supervised pre-training method,
different semantics are assigned to the images so that the same images can be used in the pre-
training and development tasks, which allows the network to have certain feature extraction
capabilities before developing and does not make the pre-training task fragmented from
the development task. In addition, we improved the accuracy of the model based on
our proposed self-supervised pre-training method and alleviated the effects of label noise
and class imbalance problems commonly found in the dataset and the necessity and
effectiveness of the proposed method are proved by ablation experiments. With richer and
cleaner samples and sufficient developing, the model may become a routine clinical tool to
reduce the emotional and physical toll of biopsy on patients.
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