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Abstract
Background: Hypertrophic cardiomyopathy (HCM) is a genetic cardiomyopathy 
with a prevalence of about 1:200. It is characterized by left ventricular hypertrophy, 
diastolic dysfunction and interstitial fibrosis; HCM might lead to sudden cardiac 
death (SCD) especially in the young.
Due to low autopsy frequencies of sudden unexplained deaths (SUD) the true preva-
lence of SCD and especially of HCM among SUD remains unclear. Even in cases 
of proven SCD genetic testing is not a routine procedure precluding appropriate risk 
stratification and counseling of relatives.
Methods: Here we report a case of SCD in a 19‐year‐old investigated by combined 
forensic and molecular autopsy.
Results: During autopsy of the index‐patient HCM was detected. As no other pos-
sible cause of death could be uncovered by forensic autopsy the event was classified 
as SCD. Molecular autopsy identified two (probably) pathogenic genetic variants in 
FHL1 and MYBPC3. The MYBPC3 variant had an incomplete penetrance. The FHL1 
variant was a de novo mutation. We detected reduced FHL1 mRNA levels and no 
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1 |  INTRODUCTION

Sudden cardiac death (SCD) refers to an unexpected death 
from cardiac failure in an individual with or without preex-
isting heart disease within 1 hr after the onset of symptoms 
(Priori et al., 2015). The incidence rate of SCD ranges be-
tween 50 and 100 per 100,000 in the general population of 
industrial countries (Deo & Albert, 2012; Risgaard et al., 
2014). In younger SCD victims (<35  years) cardiomyopa-
thies and arrhythmogenic abnormalities predominate with 
incidence rates of 0.6–6.2/100,000 patients/year (Kaltman et 
al., 2011; Winkel et al., 2011). SCD in the young (<35 years) 
is estimated to have a significant genetic component (Ranthe 
et al., 2013).

A recently published consensus document highlights the 
importance of genetic screening for the identification of indi-
viduals at risk for SCD (Wellens et al., 2014). Additionally, 
the current guidelines of the European Resuscitation Council 
2015 on postresuscitation care recommend screening for ge-
netic variants only in selected cases and with survived SCD 
(Nolan et al., 2015). The post mortem protocol recommended 
by the AHA/ACC/HRS guideline (Al‐Khatib et al., 2018) un-
derlines the relevance of genetic testing for family risk pro-
filing not only in the surviving index patient but also for the 
identification of possible disease‐causing mutation carriers. 
To enable later genetic testing standards for handling samples 
are needed.

Hypertrophic cardiomyopathy (HCM) is a common in-
herited heart disease characterized by left ventricular (LV) 
hypertrophy, diastolic dysfunction, and interstitial fibrosis 
(Elliott et al., 2008; Gersh et al., 2011; Qintar et al., 2012). 
As the electrical activity of the heart may also be affected 
by HCM it might lead to SCD (Wexler, Elton, Pleister, & 
Feldman, 2009). With a prevalence of about 1 in 200 HCM 
is one of the most commonly inherited cardiovascular dis-
eases (Semsarian, Ingles, Maron, & Maron, 2015) and it is 
thought that a significant number of HCM‐cases remains 
undiagnosed (Maron, Peterson, Maron, & Peterson, 1994). 
Frequently, SCD is the first manifestation of HCM (Hudson 

et al., 2019). HCM is a genetic disease, mainly transmitted 
as an autosomal dominant trait and is caused by mutations 
in more than 30 genes encoding—among other proteins—
components of the sarcomere (Stenson et al., 2017). Due to 
notoriously low autopsy frequencies of sudden unexplained 
deaths (SUD) even in industrial countries the true preva-
lence of HCM among SUDs remains unclear. Moreover, 
even in cases of proven SCD genetic testing is not a routine 
procedure for several reasons precluding appropriate risk 
stratification and counseling of the relatives (Nolan et al., 
2015).

Here we report an unusual case of HCM identified by 
combined forensic and molecular autopsy. We reveal ev-
idences for the pathomechanism and show the impact of 
molecular autopsy and family screening for risk assessment 
within the affected family.

2 |  MATERIAL AND METHODS

2.1 | Ethical compliance

The study conforms to the principles outlined in the 
Declaration of Helsinki (World Medical Association, 2013). 
The ethics committees of the Ruhr‐University Bochum and 
the Ärztekammer Westfalen‐Lippe in Münster approved the 
study (registry Nos. 2017‐232 or 2017‐514‐b‐8, respectively).

2.2 | Patients and biomaterial

Blood samples for molecular genetics were collected at the 
day of death of the index patient (III‐9) by the emergency 
medical service which allowed post mortem molecular au-
topsy. Tissue samples from the left ventricle and skeletal 
(musculus rectus femoris) muscles were obtained from the 
proband's body during forensic autopsy. The samples were 
immediately snap‐frozen in liquid nitrogen after removal 
from the body and stored at −80°C. Samples from DCM‐
patients obtained during heart transplantation were used as 
controls.

FHL1 protein in muscle samples suggesting nonsense‐mediated mRNA decay and/or 
degradation of the truncated protein in the SCD victim revealing a plausible disease 
mechanism.
Conclusion: The identification of the genetic cause of the SCD contributed to the ra-
tional counseling of the relatives and risk assessment within the family. Furthermore 
our study revealed evidences for the pathomechanism of FHL1 mutations.

K E Y W O R D S
cardiomyopathy, hypertrophic cardiomyopathy, molecular autopsy, nonsense‐mediated decay, sudden 
cardiac death
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First‐degree relatives were examined by a cardiologist. 
Written informed consent for sample collection was obtained 
from the relatives immediately after the death of the index 
patient. Molecular genetics were performed after counseling 
the family and obtaining a second written informed consent.

2.3 | Clinical examination of the family

The family members (II‐5, II‐6, III‐6, III‐7, IV‐1 and IV‐2) 
were cardiologically examined. Electrocardiogram, tran-
sthoracic echocardiography and 24  hr electrocardiography 
monitoring were performed in each patient. The dimensions 
of the left ventricle, LV ejection fraction, thickness of the 
interventricular septum and posterior wall as well as left 
ventricular mass (LVmass) and mass index (LVmass index) 
were obtained according to guidelines (Lang et al., 2015). 
The LVmass and LVmass index were calculated using the 
cube formula (Devereux & Reichek, 1977).

2.4 | Genetics

Blood samples for next generation sequencing (NGS) were col-
lected from the body about 12 hr post mortem. DNA was iso-
lated from white blood cells using standard techniques (High 
Pure PCR Template Preparation Kit®, Roche Diagnostics 
GmbH, Mannheim, Germany) and prepared for cardiac gene 
enrichment resequencing on a MiSeq® NGS system accord-
ing to manufacturer's instructions (TruSight™ Rapid Capture 
Sample Preparation Kit). The index patient was screened for 
variants in 174 genes associated with inherited cardiac condi-
tions using the TruSight™ Cardio gene panel. For variant anno-
tation the software VariantStudio™ v3.0 (Illumina, San Diego, 
USA) was used. Family members were checked for the variants 
found in the index patient using Sanger Sequencing (BigDye® 
Terminator v1.1 Cycle Sequencing Kit, ABI PRISM® 3100 
genetic analyzer, Applied Biosystems, Foster City, CA, USA). 
The variants were classified according to ACMG guidelines 
(Richards et al., 2015).

2.5 | Isolation of total RNA

Total RNA was isolated from the LV myocardium or skel-
etal muscle using commercial kits (RNeasy, Qiagen, Hilden, 
Germany) as previously reported (Milting et al., 2006). For 
RNA isolation about 30  mg of tissue was used. Purified 
total RNA was quantified photometrically at 260  nm and 
RNA‐purity and ‐integrity were assessed using agarose‐gel 
electrophoresis.

2.6 | Quantitative real‐time PCR

Reverse transcription of RNA was performed using 250 ng of 
total RNA and 50 units of the enzyme Superscript II (Invitrogen, 

Netherlands) after random priming with hexamers. Quantification 
of the mRNA of FHL1 was done with 2 µl of the reverse tran-
scription reaction as template. Real‐time PCR data were analyzed 
using glycerinaldehyde‐3‐phosphate‐dehydrogenase, hypoxan-
thine phosphoribosyltransferase‐1 and beta‐2‐microglobuline 
as housekeeping genes on a StepOnePlus™ real‐time PCR sys-
tem (ThermoFisher Scientific, Waltham, Massachusetts, USA) 
in duplicates, respectively. Primer sequences are available from 
the authors upon request. The conditions for the PCR reaction 
were: 95°C, 10  min for initial denaturation, 40 cycles 60°C, 
1 min/95°C, 15 s using Maxima Probe/ROX qPCR MasterMix 
(ThermoFisher Scientific). Data analysis was performed accord-
ing to the MIQE guidelines (Bustin et al., 2009; Vandesompele 
et al., 2002). The relative quantity values were calculated using 
the ΔΔCT‐method with the geometric mean of the CT‐values of 
all three endogenous controls as reference.

2.7 | Protein extraction, analysis and 
immunohistochemistry

Proteins were extracted from human myocardial or skel-
etal muscle tissue using RIPA‐buffer (150 mM NaCl, 1 mM 
EDTA, 50 mM Tris‐HCl, 1% [v/v] Nonidet™ P40 Substitute 
[Merck], 0.25% [w/v] Sodium deoxycholate, 1  mM NaF, 
1 mM Na3VO4, proteinase inhibitor P2714 [Sigma‐Aldrich], 
pH 7.4). 25–30  mg of tissue was mixed with RIPA‐buffer 
(10  µl buffer/1  mg tissue) and homogenized for 40  s with 
Ultra‐Turrax®. Samples were incubated for 2 hr on ice under 
constant agitation. After 10 min centrifugation at 21,000 g 
and 4°C the supernatant was removed. The supernatant and 
pellet were stored at −80°C for further analyses using SDS‐
PAGE (Mini‐Protean® TGXTM Precast Gel 4%–20%, Bio‐
Rad, Hercules, CA, USA) and subsequent Coomassie‐R‐250 
staining or Western Blot, respectively. For Western Blot a 
polyclonal anti‐FHL1 antibody from rabbit (HPA001040, 
Sigma Life Science) was used as primary antibody. As sec-
ondary antibody Rabbit IgG HRP Linked Whole Ab (from 
Donkey; Merck, Darmstadt, Germany) was used.

Immunohistochemical analysis was performed using rab-
bit anti‐FHL1 antibody (1:200) on an automated immunos-
tainer following the manufacturer's protocol (Benchmark; 
Ventana Medical Systems, Tucson, AZ, USA) using the ul-
traView detection system (Ventana) and diaminobenzidine 
as a substrate. Interstitial fibrosis of myocardial ventricular 
tissue was determined using Masson Trichrome staining.

3 |  RESULTS

3.1 | Forensic autopsy reveals HCM in a 
young patient with SCD

The index patient (III‐9, aged 19 years, 98 kg, 184 cm, body 
mass index (BMI) = 29, no known cardiac diseases; Figure 1a) 
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died suddenly at school. A bystander cardiopulmonary resusci-
tation (CPR) was started immediately. The emergency medical 
service arrived 12 min later. The first monitored rhythm was 
nonshockable (asystole). Despite an Advanced Life Support ac-
cording to the European Resuscitation Council Guidelines 2015 
no return of spontaneous circulation could be achieved (Soara 
et al., 2015). Suspecting a pulmonary embolism, a fibrino-
lytic drug was given. After a total of 75 min the CPR attempt 
was terminated on scene. Histological and immunohistologi-
cal analysis after forensic autopsy confirmed a primary HCM 
with extensive interstitial fibrosis (Figures 1b and 2). The heart 
weight was 638 g, wall thicknesses left (LV) 2 cm and right 
ventricle (RV) 0.9 cm.

3.2 | Molecular genetics reveal pathogenic 
mutations in the SCD patient

Next Generation Sequencing of 174 genes associated with 
cardiac diseases revealed seven variants in the index patient. 
Two of them in FHL1 and MYBPC3 were classified as patho-
genic or likely pathogenic according to ACMG criteria (class 
4–5), respectively. Five variants in VCL, CACNA1C and TTN 
were classified as variants of unknown significance (VUS; 

ACMG class 3). For OMIM accession numbers and GenBank 
reference sequences and version numbers see Table 1. Using 
Sanger sequencing the patient's first‐degree relatives were 
tested for these seven variants (Table 1; Figure 1a).

3.3 | A de novo mutation in FHL1 leads to a 
complete absence of FHL1 protein

The FHL1 variant c.267C>A identified in the patient con-
verts codon 89 to a premature stop codon (p.Cys89Ter). If 
the truncated protein would be expressed it would end at the 
end of LIM 1 domain. The variant is not listed in databases 
of genetic variations (Abecasis et al., 2012; Fu et al., 2013; 
Lek et al., 2016) or in the Human Gene Mutation Database 
(Stenson et al., 2017). According to the ACMG guidelines 
this variant was first classified as likely pathogenic (class 
4) since mutations in FHL1 resulting in a premature stop 
codon were previously reported to be associated with HCM 
(Friedrich et al., 2012; Gossios, Lopes, & Elliott, 2013). As 
FHL1 is an X‐chromosomal gene the male patient carried 
only the affected FHL1 allele.

Remarkably, genotyping of the family revealed that the 
FHL1 variant was identified in the index patient (III‐9) 

F I G U R E  1  (a) Pedigree of the index patient, who died at the age of 19 years by sudden cardiac death. Relatives of the patient were examined 
by a cardiologist. Patient III‐9 is the only patient with a documented cardiac disease (filled symbol). (b) Explanted heart from patient III‐9 revealing 
a hypertrophic cardiomyopathy phenotype. The left ventricle was opened during autopsy (for data on the explanted heart s. text)

(a)

(b)
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only and is presumably a de novo mutation since a rare but 
possible mosaic inheritance was not further investigated. 
qPCR analysis of the index patient`s skeletal (M. rectus 
femoris; SKM) and LV cardiac muscle revealed reduced 
FHL1 mRNA levels in the patient compared to controls 
(Figure 3). The FHL1 mRNA level in the LV and SKM of 
the patient was reduced to 7% and 18% of the means in con-
trols, respectively. In addition, the truncated FHL1 was not 
detectable in skeletal muscle and LV tissue of the index pa-
tient (III‐9) by Western blotting or immunohistochemistry, 
respectively (Figure 4A,B). Degradation of cardiac protein 
in the post mortem samples of the index patient could be 
excluded (Figure S2). Due to the absence of an intact FHL1 
allele in the hemizygous patient the gene variant results in 
a functional knock‐out of FHL1 probably as a consequence 
of nonsense‐mediated decay of the FHL1 mRNA (for the 
characterization of the antibody s. supplements, Figure S1).

As a consequence of the genetic analysis in the family and 
tissue examination on FHL1 expression the FHL1 nonsense 
mutation had to be reclassified as pathogenic (ACMG class 5).

3.4 | The relevance of a MYBPC3 missense 
variant remains unclear

The MYBPC3 missense variant was classified as likely 
pathogenic (ACMG‐class 4). This variant is listed in the 
ExAC browser with an allele frequency of 0.00004 (Lek 
et al., 2016). However, it is known from literature that this 
variant is associated with HCM or LVNC (Hoedemaekers 
et al., 2010; Wessels et al., 2015), respectively. In several 
cases the variant is also associated with cardiomyopathy or 
SCD in a compound heterozygous (Wessels et al., 2015) or 

digenic (Christiansen et al., 2016) genotype. Furthermore, 
the variant showed incomplete penetrance and variable 
expressivity within another family (Hoedemaekers et al., 
2010). The patient`s mother (II‐5) and the patient's brother 
(III‐8) were also carriers of the MYBPC3 missense variant. 
The variants in VCL, CACNA1C and TTN were not further 
analyzed and are reported as VUS (Table 1). Cardiological 
checkup of first‐degree relatives of the index patient re-
vealed only mild myocardial hypertrophy in both parents 
so they have to be classified as unaffected (Figure 5a,b; 
Table 2).

4 |  DISCUSSION

With a prevalence of 7.7/100,000 (Risgaard et al., 2014) even 
in patients <50  years SCD remains a challenging medical 
problem (Wellens et al., 2014). By definition SCD is an un-
expected fatal event, with major psychosocial impact for rel-
atives. While recent studies estimate that up to 75% of SCD 
cases in young patients are related to inherited heart diseases 
(Ferrero‐Miliani, Holst, Pehrson, Morling, & Bundgaard, 
2010) post mortem genetic testing is currently practiced 
incompletely in different industrial countries. Although 
the costs for genetic testing drastically decreased in recent 
years, genetic testing remains relatively expensive and is 
not covered for deceased cases by health insurances in most 
countries. Furthermore, the frequency of autopsies for patho-
logical examination is notoriously low and forensics is only 
performed if an unnatural death is suspected by prosecutors. 
In addition, autopsies might be done even days post mortem 
and isolated DNA of i.e. blood samples might therefore be 

F I G U R E  2  Histology from the 
right (RV) and left ventricle (LV) 
revealed hypertrophic myocytes with 
focal myofiber disarray and a severe 
diffuse interstitial fibrosis (Trichrome 
staining) especially in the RV. There 
was no significant inflammation in 
immunohistochemical stainings for T cells 
and macrophages and no evidence for 
an infection with cardiotropic viruses as 
determined using RT‐PCR (data not shown). 
Bars represent 100 µm
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degraded. However, the availability of high‐quality genomic 
DNA from autopsy is a premise for high throughput NGS 
and cardiogenetic analyses. We therefore launched a model 
study with the emergency medical service in a rural area of 
the German state North Rhine Westphalia to save biomaterial 
from young patients with need for CPR.

One of the first cases we identified in this study was an SUD‐
case of a 19‐year‐old man who died at school and was transferred 
to forensic examination of his body. At autopsy the patient was 
diagnosed with a HCM and the SUD event could be classified 
as SCD. The LV free wall revealed macroscopically extensive 
interstitial fibrosis which was confirmed using histology (Figure 
2). Of note, the presence of HCM in this patient was not known 
before autopsy since he showed no signs of cardiac disease or 
physical limitations before SCD. NGS‐panel DNA sequencing 
revealed two pathogenic mutations and five VUS.

One of the pathogenic mutations was identified within 
MYBPC3 which is a major HCM‐associated gene. 35% 
of the known HCM‐associated mutations are found 
within MYBPC3 (Stenson et al., 2017). Although clas-
sified as likely pathogenic according to ACMG criteria 
the relevance of the patient`s MYBPC3‐missense variant 
p.Gly148Arg (c.442G>A) for the SCD‐event is hard to 
predict since it was previously shown to be associated 
with incomplete penetrance and variable expressivity 
within a family (Hoedemaekers et al., 2010). The genetic 

T A B L E  1  Results of panel genotyping and ACMG classification in the index patient and first‐degree relatives

gene
reference 
sequence

OMIM 
accession 
number variant

ACMG‐evi-
dence class

III‐9 
(Index)

II‐5 
(Mother)

II‐6 
(Father)

III‐7 
(Sister)

III‐6 
(Brother)

FHL1 NM_001159702.2 300163 p.Cys89Ter 
(c.267C>A)

5 +/0 WT WT WT WT

MYBPC3 NM_000256.3 600958 p.Gly148Arg 
(c.442G>A), 
rs397516050

4 ± ± WT WT ±

CACNA1C NM_199460.2 114205 p.Ala68Thr 
(c.202G>A), 
rs752000790

3 ± ± WT ± WT

VCL NM_014000.2 193065 p.Pro942Ser 
(c.2824C>T)

3 ± WT ± WT WT

TTN NM_001267550.1 188840 p.Ile35908Thr 
(c.107723T>C), 
rs769141222

3 ± WT ± WT WT

TTN NM_001267550.1 188840 p.Lys33843Asn 
(c.101529G>C), 
rs377406091

3 ± ± WT ± ±

TTN NM_001267550.1 188840 p.Glu34041Lys 
(c.102121G>A), 
rs377600383

3 ± ± WT ± ±

Abbreviations: ACMG, American college of medical genetics (5 = pathogenic, 4 = probably pathogenic, 3 = variant of unknown significance); OMIM, Online 
Mendelian Inheritance in Man; WT, wildtype; ±, heterozygous, +/0 = hemizygous.
For the variants the putative amino acid exchange is shown in bold.

F I G U R E  3  Quantitative RT‐PCR of FHL1 mRNA expression 
in the index patient (III‐9) and control tissues. Samples of the skeletal 
muscle of the index patient (SKMI; 0.45 ± 0.1) and from a control 
individual (SKMc; N = 1; 2.51 ± 0.63) were measured as duplicates 
and given as means ± standard error of the mean (SEM). Left 
ventricular myocardial samples of controls without FHL1 mutations 
(LVc; N = 5; box and whiskers plot: mean and median given as “+” or 
line, respectively; whiskers extend from 1–99 percentile) and the index 
patient (LVI; 0.07 ± 0.01). RQ, relative quantity
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variant was also previously identified in another patient 
with SCD. However, this patient presented a digenic mu-
tant genotype (Christiansen et al., 2016). Genotyping 
within the family of the index patient revealed the pres-
ence of MYBPC3 p.Gly148Arg also in the mother (II‐5) 
who showed only mild signs of LV hypertrophy at the 
age of 54 years (s. Table 2) and in the patient's brother 
(III‐6) who had no clinical phenotype of HCM at the age 
of 32  years. Thus, it remains unclear if MYBPC3 p.Gl-
y148Arg alone leads to a cardiac phenotype especially 
considering the pedigree which is free of any cardiac dis-
eases (Figure 1a).

The second affected gene was FHL1, which is located on 
Xq26.3. This gene encodes the protein Four‐and‐a‐half LIM 
domains 1 (FHL1) which is a member of the FHL protein fam-
ily and characterized by an N‐terminal half LIM domain fol-
lowed by four complete LIM domains (reviewed in Cowling et 

al.[, 2011]). FHL1 is the main isoform in striated muscles and 
is supposed to contribute to sarcomere formation, assembly 
and biomechanical stress sensing (Chu, Ruiz‐Lozano, Zhou, 
Cai, & Chen, 2000; Sheikh et al., 2008). More than 25 dif-
ferent protein interactions have been identified for full length 
FHL1 and its splice variants (reviewed in (Shathasivam, 
Kislinger, & Gramolini, 2010)). The interactors of FHL1 in-
clude signal transducers, transcription regulators, receptors, 
ion‐channels and structural proteins including cardiac myo-
sin binding protein (cMyBP‐C encoded by MYBPC3) or titin 
(McGrath et al., 2006; Sheikh et al., 2008). FHL1 is the only 
FHL member with different splice variants. Although FHL1 
is classified as a LIM‐only protein, spliced variants have been 
identified containing additional domains resulting in differen-
tial localization patterns, protein interactions and functions.

Mutations in FHL1 are associated with at least six differ-
ent muscular dystrophies including reducing body myopathy 

F I G U R E  4  (A) Immunoblotting 
using an anti‐FHL1 antibody for labeling 
of muscle tissue extracts. The major 
isoforms are marked by black arrows and 
the apparent molecular masses are given. 
In preparations of the skeletal muscle 
(SKM) or the left ventricular myocardium 
(LV) of the index patient (I) FHL1 was 
not detectable. The molecular mass of the 
putative truncated peptide, as predicted from 
sequencing results (9.7 kDa), is marked by a 
gray arrow. Protein extracts of controls (C) 
for SKM or LV were used as a reference. 
(B) Immunohistochemistry of FHL1 in 
SKM (b) or LV (a, c, d), respectively, 
using diaminobenzidine as a substrate for 
HRP staining. Of note, FHL1‐staining was 
not detectable in the index patient (III‐9; 
b + d) but in the control tissue (a + c). 
Bar = 20 µm

a

c

b

d

(A)

(B)
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(Jokela et al., 2017; Shalaby, Hayashi, Nonaka, Noguchi, 
& Nishino, 2009), muscular dystrophy (Pen et al., 2015), 
X‐linked myopathy (Windpassinger et al., 2008) and HCM 
(Binder, et al., 2012; Friedrich et al., 2012; Kubota, et al., 
2019; Liang, et al., 2018; Willis, et al., 2016). In most cases 
the skeletal muscle disorders are coupled with cardiovascular 
diseases. Nonsense mutations of FHL1 are associated with 
HCM and skeletal muscle weakness but also with isolated 
HCM (Friedrich et al., 2012).

It was observed that disease‐associated FHL1 mutations 
might lead to reduced levels of FHL1 mutant proteins in 
cell culture, which could be rescued by proteasome inhibi-
tion (Friedrich et al., 2012). We analyzed the patient's myo-
cardium and skeletal muscle for the presence of FHL1. The 
antibody, which was used for immunological detection was 
tested before to identify a truncated FHL1 in cell culture. 
However, the truncated FHL1 was not detectable in vivo by 
immunoblotting or immunohistochemistry, respectively. In 

F I G U R E  5  Echocardiography of 
family members (II‐5, II‐6, III‐6 and III‐7) 
reveals no further cases of hypertrophic 
cardiomyopathy. (a) Parasternal long axis 
and (b) four‐chamber view. LA = left 
atrium, LV = left ventricle, RA = right 
atrium, RV = right ventricle, Ao = aorta. 
For echocardiographic details s. Table 2

(a)

(b)



   | 9 of 12GAERTNER‐ROMMEL ET AL.

addition, the mRNA of FHL1 was also significantly reduced 
when compared to controls. Therefore, we conclude that the 
truncated form of FHL1 is not or on an extremely low level 
expressed in the muscle tissue of the SCD‐victim. Since the 
mRNA was reduced in the muscle tissues of the patient, we 
conclude that nonsense mediated mRNA decay contributes to 
the loss of FHL1 expression in vivo.

Since the index patient carries combined pathogenic mu-
tations in MYBPC3 and FHL1 it might be speculated that the 
joined effects of FHL1 and MYBPC3 mutations affecting sar-
comeric interaction partners might promote the development 
of the fatal cardiac phenotype.

Surprisingly, although the index patient showed a com-
plete loss of FHL1 within the skeletal muscle no morpho-
logical signs of a myopathy were reported or detected during 
autopsy, respectively. In X‐linked reducing body myopathy 
caused by FHL1 missense mutations intracytoplasmic aggre-
gates are identified with FHL1 as the most prominent protein 
(Schessl et al., 2009). Our immunohistochemical analysis 
suggests another disease mechanism as no FHL1 was de-
tected in the patient's muscle biopsies.

Rigid spine was identified as a common clinical feature 
among patients afflicted with any of the five FHL1‐associated 
X‐linked myopathies (Shalaby et al., 2008). According to the 
report of the index patient's mother the patient had postural 
defects. It is unclear if these might be interpreted as signs of 
a beginning myopathy. Due to the postural defects the patient 
started with sport activities approximately one month before 
his death. FHL1‐associated myopathies might result in mus-
cular atrophy or hypertrophy with a pseudoathletic phenotype 
(Windpassinger et al., 2008). However, we have no evidence that 
the patients’ BMI of 29 is the result of muscular hypertrophy.

The FHL1 variant was not found in the blood‐DNA of other 
family members and is probably a de novo genetic variant, 
explaining why none of the other family members presented 
an HCM phenotype. We did not find evidence for a dominant 
effect of the MYBPC3 variant, since another male carrier was 
without a cardiological phenotype. We conclude that the com-
bination of the two genetic variants might lead to a more severe 
phenotype than each variant alone stressing the impact of mul-
tigenic genotypes for the development of a fatal disease course.

The presence of at least two presumably disease‐associ-
ated genetic variants emphasizes the impact of broad genetic 
testing compared to a focused screening of HCM‐associated 
genes. It shows that further genetic screening is sensible even 
if a probably pathogenic mutation in one of the major HCM 
genes has already been found. In addition, our study points 
out the role of FHL1 as a possibly underestimated HCM and 
SCD gene.

The present study shows the relevance of integrating 
emergency medicine, forensic and molecular autopsy to un-
ravel the cause of SUD cases. Guidelines for emergency med-
icine, pathology and forensic medicine should be harmonized 
for an effective advanced care of affected families.
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