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Purpose: To compare change over time in eye-specific optical coherence tomogra-
phy (OCT) retinal nerve fiber layer (RNFL)-based region-of-interest (ROI) maps devel-
oped using unsupervised deep-learning auto-encoders (DL-AE) to circumpapillary RNFL
(cpRNFL) thickness for the detection of glaucomatous progression.

Methods: Forty-four progressing glaucoma eyes (by stereophotograph assessment),
189nonprogressingglaucomaeyes (by stereophotograph assessment), and 109healthy
eyes were followed for ≥3 years with ≥4 visits using OCT. The San Diego Automated
Layer Segmentation Algorithm was used to automatically segment the RNFL layer from
raw three-dimensional OCT images. For each longitudinal series, DL-AEs were used
to generate individualized eye-based ROI maps by identifying RNFL regions of likely
progression andno change. Sensitivities and specificities for detecting changeover time
and ratesof changeover timewere compared for theDL-AEROI andglobal cpRNFL thick-
ness measurements derived from a 2.22-mm to 3.45-mm annulus centered on the optic
disc.

Results: The sensitivity for detecting change in progressing eyes was greater for DL-
AE ROIs than for global cpRNFL annulus thicknesses (0.90 and 0.63, respectively). The
specificity for detecting not likely progression in nonprogressing eyes was similar (0.92
and 0.93, respectively). The mean rates of change in DL-AE ROI were significantly faster
than for cpRNFL annulus thickness in progressing eyes (−1.28 μm/y vs.−0.83 μm/y) and
nonprogressing eyes (−1.03 μm/y vs. −0.78 μm/y).

Conclusions: Eye-specific ROIs identified using DL-AE analysis of OCT images show
promise for improving assessment of glaucomatous progression.

Translational Relevance: The detection and monitoring of structural glaucomatous
progression can be improved by considering eye-specific regions of likely progression
identified using deep learning.

Introduction

The detection of glaucomatous progression is one
of the most challenging and most important aspects of
glaucomamanagement.Most instruments that provide
progression detection algorithms report global change
or localized change within instrument defined regions.1
In addition to loss of topographical information from

spatial averaging in these regions, this one-size-fits-
all strategy is not ideal because it is well-known that
individual differences exist in anatomical structures
(e.g., optic disc size, Bruch’s membrane opening center
to fovea angle, distribution of arcuate retinal nerve
fiber layer [RNFL] bundles). The current project uses
deep learning auto-encoders (DL-AE) to identify eye-
specific regions-of-interest (ROI) in individual eyes
followed over time that represent likely progression,
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not likely progression, and no change relative to
baseline measurements. These eye-specific results take
into account both individual anatomical differences
and individual variations in patterns and locations of
glaucomatous progression that could easily be missed
when relying on instrument-defined global or regional
measurements.

In recent years, neural network algorithms (e.g.,
deep learning) have gained popularity owing in part to
excellent classification performance in several complex
domains, in particular for detecting change.2 Two
widely used classification approaches—supervised and
unsupervised—can be used to detect change. The
supervised approach uses data labeled with the desired
outcome as the ground truth in a dataset for train-
ing the classifier. Among supervisedmodels, the convo-
luted neural network3 and deep belief network4 are
the most widely used deep learning classifiers but both
need a large amount of training data to reach optimal
performance. Because large datasets are readily avail-
able for detecting glaucoma from fundus photographs
and optical coherence tomography (OCT) images and
predicting the severity of visual field (VF) damage,
convoluted neural networks have been used success-
fully for these tasks.5–10

The unsupervised approach uses data that are not
labeled with a desired outcome. This point is a partic-
ular advantage for detecting disease-related change in
glaucoma because training datasets with large numbers
of eyes identified as progressing from glaucoma are
more difficult to compile. Among unsupervisedmodels,
the DL-AE11,12 is a deep learning strategy that has
been used for change detection. Specifically, the DL-
AE is a hierarchical deep neural network structure
composed of multilayer auto-encoders that decrease
the input to a select few representations and then
reconstruct the features as output (see the Methods
section for more details). An AE in its simplest form
is an unsupervised hidden one-layer neural network in
which the output layer is set to be equal to the input
layer. The DL-AE aims to reconstruct the original
input as accurately as possible in the output layer.
Failure to accurately reconstruct the original input can
be used as an indicator of change.

The purpose of this report was to use a DL-AE
to detect glaucoma-related change from OCT optic
nerve head high-resolution cube scans and to compare
the results to OCT circumpapillary RNFL (cpRNFL)
thickness measurements derived from the same cube
scans for successfully classifying disease-related change
(progression) as defined by standardized review of
serial optic disc stereophotographs for progression
of glaucomatous optic neuropathy (PGON; i.e., the
study-specific ground truth). We hypothesized that
DL-AE models used to identify eye-specific regions

of interest for progression detection would detect
PGONmore accurately than the average change across
cpRNFL thickness measurements.

Methods

For this prospective longitudinal cohort study,
participants were selected from two ongoing studies
designed to evaluate optic nerve structure and visual
function in glaucoma: the UC San Diego-based
Diagnostic Innovations in Glaucoma Study (DIGS)
and the African Descent and Glaucoma Evaluation
Study (ADAGES). The three-site ADAGES collab-
oration includes the Hamilton Glaucoma Center at
the Shiley Eye Institute, University of California, San
Diego (La Jolla, California; data coordinating center);
the Edward S. Harkness Eye Institute, Columbia
University Medical Center (New York, New York);
and the Department of Ophthalmology, University
of Alabama, Birmingham (Birmingham, Alabama).
The protocols for DIGS and ADAGES are identi-
cal and have been described elsewhere.13 Informed
consent was obtained from each participant and each
institution’s Human Subjects Committee approved all
methodology. All methods adhered to the tenets of the
Declaration of Helsinki for research involving human
subjects and to the Health Insurance Portability and
Accountability Act. DIGS and ADAGES are regis-
tered as cohort clinical trials [http://www.clinicaltrials.
gov (identifiers NCT00221897 and NCT00221923;
September 14, 2005)].

Participants

At study entry, eligible participants had best-
corrected visual acuity of 20/40 or better, spherical
refractive error of less than 5.0 diopters, cylinder of
less than 3.0 diopters, and open angles on gonioscopy.
All participants were at least 18 years old. Partici-
pants were excluded if they had a history of intraocular
surgery (except for uncomplicated cataract surgery or
uncomplicated glaucoma surgery). Eyes with coexist-
ing retinal disease, uveitis, or nonglaucomatous optic
neuropathy also were excluded. Diabetic participants
with no evidence of retinal involvement were included.
Both healthy and glaucoma eyes were included in the
longitudinal analyses.

All subjects underwent an annual comprehen-
sive ophthalmologic examination, including a review
of medical history, best-corrected visual acuity, slit-
lamp biomicroscopy, dilated funduscopic examination,
and stereoscopic optic disc photography. Semiannual

http://www.clinicaltrials.gov
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examination included intraocular pressure (IOP), OCT
optic nerve head imaging, and VF testing.

In addition to the eligibility criteria, healthy subjects
were required to have an IOP of less than 22 mm
Hg with no history of elevated IOP or IOP-lowering
medication, and at least two reliable normal VFs
(pattern standard deviation within 95% confidence
limits and a glaucoma hemifield test result within
normal limits). Glaucoma eyes had at least three
consecutive and reliable (defined elsewhere in this
article) VF examinations with either pattern standard
deviation of 5% or greater or a glaucoma hemifield test
result outside of the 99% normal limits.

In this report, we included four groups of partic-
ipants. The first three of four groups required OCT
follow-up of 3 or more years with four or more images
available from independent imaging sessions.

1. Progressing glaucoma eyes: The first group was
composed of 44 progressing eyes of 33 glaucoma
patients followed for an average (95% confi-
dence interval [CI]) of 4.4 years (4.0–4.6) years
(all available eyes graded as progressing with
the required follow-up duration and number
of images available as described elsewhere in
this article). Progression was determined by an
assessment of stereophotographs. Specifically,
the baseline and each follow-up photograph were
assessed for PGON by two observers (masked to
participant identification and diagnosis) using a
stereoscopic viewing device to evaluate digitized
paired images on a 21-inch or larger computer
monitor. PGON was defined as a decrease in the
neuroretinal rim width, the appearance of a new
RNFL defect, or the enlargement of a preexist-
ing RNFL defect. A third observer adjudicated
any disagreement in assessment between the first
two observers.14 Because these graded eyes repre-
sented ground truth for glaucomatous progres-
sion, they were used to assess the sensitivity of the
two progression detection methods evaluated.

2. Nonprogressing glaucoma eyes: A second group
of 303 nonprogressing glaucoma eyes from 189
patients followed for an average (95% CI) of 3.9
(3.8-4.0) years was used to train and test the
deep learning model. Two observers reviewed the
stereophotographs as described above and did
not find evidence of PGON. These eyes were used
to assess the specificity of the two progression
detection methods evaluated.

3. Healthy eyes: A third group of 109 eyes from 59
healthy subjects followed for an average (95% CI)
of 3.2 (2.9-4.4) years was used to estimate aging
effects. Healthy participants were recruited from

the general population through advertisement,
from referring practices, and from the staff and
employees from the Shiley Eye Institute, Univer-
sity of California, San Diego. These eyes were
used to assess the rate of change attributable to
natural aging detected by the two progression
detection methods evaluated.

4. Stable glaucoma eyes: A fourth group of 50
glaucoma stable eyes from 27 early, moder-
ate, and advanced glaucoma patients with five
serial OCT examinations imaged every week for
approximately 5 weeks was used to train the DL-
AEmodels. We assumed that in this short follow-
up period, glaucoma-related changes were not
likely to occur (i.e., eyes had stable, nonprogress-
ing disease). These eyes were used to decrease
the likelihood that changes owing to measure-
ment variability or segmentation errors would be
classified as glaucomatous progression.

VF Testing

All patients underwent VF testing using the Swedish
Interactive Thresholding Algorithm Standard 24-2
strategy on the Humphrey Field Analyzer (Carl Zeiss
Meditec Inc., Dublin, CA) at baseline and during
follow-up for classification purposes. All VFs were
evaluated by UC San Diego Visual Field Assessment
Center personnel based on a standardized protocol.
VFs with more than 33% fixation losses or false-
negative errors or more than 20% false-positive errors
were automatically excluded. VFs exhibiting a learning
effect (i.e., follow-up VFs showing consistent improve-
ment compared with baseline VFs) also were excluded.
VFs were further reviewed qualitatively for lid and rim
artifacts, fatigue effects, evidence that the VF results
were attributable to a disease other than glaucoma
(e.g., homonymous hemianopia), and inattention.

Spectral-Domain OCT

Study eyes were imaged with SD-OCT (Spectralis;
Heidelberg EngineeringGmbH,Heidelberg,Germany;
software version 5.2.0.3). Tissue thickness measure-
ments from the high-resolution optic nerve head cube
scan protocol (73 B-scans with 768 A-scans each) were
used to train and testDL-AEanalyses to detect individ-
ualized ROI-related change over the whole image
and to detect change in cpRNFL thickness within a
2.22 mm to 3.45 mm annulus centered on optic disc.
Quality assessment of OCT scans was completed by
experienced examiners in the UC San Diego Imaging
Data Evaluation and Assessment Center who were
masked to the subjects’ results of the other tests
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Figure 1. Framework of DL-AE region of interest (ROI) map generation.

according to standard protocols. To be included, all
OCT images required a signal strength of more than
15 dB. There was no statistical difference inmean signal
strength between training (29.3 dB; 95% CI, 27.1–
31.5 dB) and testing datasets (29.7 dB; 95% CI, 27.4–
31.8 dB) (P = 0.88).

Retinal Layer Segmentation

Raw three-dimensional SD-OCT images were
exported to a numerical computing language
(MATLAB;MathWorks, Natick,MA). The SanDiego
Automated Layer Segmentation Algorithm (SALSA)
was used to automatically segment the RNFL layer.15
In brief, we assumed that each B-scan consists of
several retinal layers (e.g., the Bruch’s membrane layer,
RNFL). Because the intraretinal layers have different
thicknesses, each layer can be defined by a curvemodel-
ing its skeleton and a filter or set of filters modeling its
thickness. To segment the different layers, it is sufficient
to estimate their skeletons and the hyperparameters of
the filters.

Region of Interest Map Generation

DL-AE for Change Detection
Autoencoders are a specific type of feed-forward

neural networks in which the input is the same as
the output. They compress the input into a lower
dimensional code and then reconstruct the output from
this representation. A detailed introduction to autoen-
coders can be found in.16 In brief, the goal of the
DL-AE is to reconstruct the output (x′) to match the
input (x) as closely as possible. Hence, the reconstruc-

tion image is the output of the DL-AE model. For the
change detection task, the input is the difference image
between the first image and each follow-up image.
Specifically, the model input is the pairwise image
difference between any pair of SALSA-defined RNFL
thickness map and the SALSA RNFL maps from
nonprogressing or stable glaucoma eyes. Therefore, the
model will learn the RNFL changes attributable to
aging (from healthy eyes) and machine and segmenta-
tion variabilities (from stable glaucoma eyes). Because
the model was never trained on progressing eyes, we
expect the model to have more difficulty reconstruct-
ing the output to match the input. In other words,
the difference between the reconstructed image and the
input image (i.e., the reconstruction error; discussed
elsewhere in this article) is higher in progressing eyes
compared with nonprogressing eyes.

Specifically, consider an eye with N number of
follow-up visits. For each visit, we calculate the RNFL
thickness map using SALSA. We use the difference
images between any pair of RNFL thickness maps of
a given eye to estimate the ROI map. If an eye has
N visits, we can generate C(N,2) pairs of combina-
tions where C(.,.) is the combinatorial function [e.g.,
C(4,2)= 6].M elements from the difference images (the
difference between each pair of the input image and
the reconstructed image through the DL-AE) for each
corresponding pixel are stacked together to form the
input vector x, which is then fed to a five-layer DL-
AE. The goal of the DL-AE is to reconstruct output x′
to match x as closely as possible. Because the number
of nodes gets progressively smaller (encoder) and then
larger again (decoder) (Fig. 1), the model is forced to
use the most important features of the image to be
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Table 1. Layer Types, Layer Sizes, Activation Functions, and Patch Dimensions for Each Autoencoder Layer

Layer Layer Type Layer Size Activation Function Patch Dimensions

0 Input 50 × 512 × 51 2 × 1
1 Convolution 5 × 5 × 32 tanh 50 × 256 × 256 × 32
2 Convolution 5 × 5 × 64 relu 50 × 128 × 128 × 6 4
3 Convolution 5 × 5 × 128 relu 50 × 64 × 64 × 128
4 Deconvolution 5 × 5 × 64 relu 50 × 128 × 128 × 64
5 Deconvolution 5 × 5 × 1 tanh 50 × 512 × 512 × 1

able to reconstruct the input using compressed data.
The final layer has the same number of nodes as the
input. The difference between the original input vector
x and the reconstruction x’ is called the reconstruction
error. The DL-AE learns to minimize this reconstruc-
tion error. The DL-AE uses the reconstruction error
as the anomaly score. Data points with high recon-
struction error are considered to be anomalies or, in
this application, examples of glaucomatous progres-
sion. Because only data representing normal instances
are used to train the DL-AE, the DL-AE will recon-
struct normal data very well. However, it will fail to do
sowhen presentedwith anomalous data, which theDL-
AE has not encountered during training.

In this article, we used the Python deep learning
library Keras.17 We used Glorot uniform to initial-
ize the weight matrix and tanh activation function
for the hidden layers. The model was compiled using
the Adam optimization algorithm, which usually gives
better results than the simpler stochastic gradient
descent algorithm.12 To train the network, the Adam
method was exploited to minimize the loss function
(mean squared error) by using a learning rate α = 10−3
and a batch size of 50.We trained theDL auto-encoder
end to end for 150 epochs. We selected the best model
with lowest reconstruction error. Table 1 shows layer
types, sizes, activation functions, and patch dimensions
for each autoencoder layer.

To train the model, we used 100 nonprogressing
glaucoma eyes and 50 stable glaucoma eyes.

Because the model is only trained using nonpro-
gressing glaucoma eyes, the change detection problem
can be formulated as an abnormality detection problem
where the model will have a higher reconstruction
error for progressing eyes (||x-x’||2). In other words,
because (1) the magnitude of change in progressing
eyes is higher than in nonprogressing eyes and stable
glaucoma eyes and (2) the model was not trained on
progressing eye combinations, we expected the model
to have more difficulty reconstructing the output to
match the input of progressing eyes compared with the
nonprogressing eyes. This difficulty was quantified as a
reconstruction error image using Markov-based image

segmentation strategies described below. The difference
images were then used to estimate the ROI maps using
Markov-based segmentation.

Markov-Based Image Segmentation
The reconstruction error image (||x-x’||2) was used

to estimate the ROI map. We used a Markov random
field–based segmentation algorithm to exploit the
statistical correlation of intensities among the neigh-
boring pixels.18 The Markov random field is a stochas-
tic process that specifies the local characteristics of an
image and is combined with the given data to recon-
struct the true image. The Markov random field of
prior contextual information is a powerful method
for modeling spatial continuity (i.e., we assumed that
glaucomatous change appears in continuous areas
rather than in scattered pixels).

Each reconstruction error image was then
segmented into three regions based on the magni-
tude of the error. Examples of these regions are shown
in Figure 1. Region 1 is the no change region (blue
color), region 2 is the likely progression region (green
color), and region 3 is the not likely progression region
(red color). The likely progression region in the ROI
map is the region of interest where we expect the
glaucomatous changes to occur.

The DL-AE regions of interest were defined in the
parapapillary region and average cpRNFL thickness
was measured in the parapapillary region within a
2.22-mm to 3.45-mm annulus surrounding the optic
disc. The parapapillary region was chosen to avoid
the higher variability of RNFL thickness measure-
ments closer to the disc margin which occurs owing
in part to the higher prevalence of vessels close to the
disc margin and the resultant shadowing that makes
RNFL segmentation challenging. Comparing the
DL-AE and cpRNFL thickness results in the parapap-
illary region is clinically relevant to the cpRNFL
thickness measurements provided by most OCT
instruments.

Finally, we used the most frequent class for each
pixel of each ROI map to generate a map used to
estimate RNFL thickness loss. Instead of following
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Figure 2. Example of a PGON eye incorrectly classified as not-likely progression by the DL-AE ROI map. The RNFL thickness map (top left),
the region of interest map (top right): the blue color is the nonchanged region, the red color is the not likely progression region and the
green color is the likely progression region. The rate of change in RNFL thickness in the green likely progression region of interest was not
significantly faster (blue line) than that observed in healthy eyes over time (black line) (middle). The cpRNFL annulus thickness rate of change
also was not significantly faster than that observed in healthy eyes over time (bottom).

the RNFL thickness in the whole RNFL thickness
image or using a standard grid, RNFL loss in the likely
progression region (i.e., the ROI) was used to classify
overall images as progressing and not progressing.

Definition of Progression

ROIprogression forDL-AEmodels was determined
from the likely progressing region. Using maximum
likelihood estimation linear regression, OCT cpRNFL
progression was defined as the coefficient associated
with the variable “Time,” describing the slope (or rate

of change) per year of the dependent variables and
its p-value reflects whether this change was significant
compared with a flat slope (i.e., no progression). Statis-
tical significance was defined at a P value of less than
0.05.

Rates of progression (decrease in thickness by
microns per year) for the DL-AE models were defined
as the average change in all pixels within the DL-AE
ROI map defined as likely progressed (green colored
region in Fig. 1) over time. An eye was identified as
having a likely progression region if the rate of RNFL
loss was significantly (P< 0.05) different from zero and
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Figure 3. Example of a PGON eye correctly classified as likely progression by the DL-AE ROI map. The RNFL thickness map (top left), the
region of interest map (top right): the blue color is the nonchanged region, the red color is the not-likely progression region and the green
color is the likely progression region. The rate of change in RNFL thickness in the green likely progression region of interest was significantly
greater (blue line) than that observed in healthy eyes over time (black line) (middle). The cpRNFL annulus thickness rate of change was
incorrectly classified as not-likely progression (bottom).

faster or greater than the fifth percentile (single tail)
of the healthy group. It is important to note that the
fifth percentile cut-off is unique for each eye because
the DL-AE ROI map output is eye specific. There-
fore, the fifth percentile is calculated for each eye using
results from the healthy group. Figures 2 and 3 demon-
strate ROI maps that incorrectly and correctly identify
regional RNFL progression in PGON eyes, respec-
tively. For the eye in Figure 2, the slope of change
in DL-AE ROI RNFL thickness was not significantly
greater (i.e., was not more negative) than that observed
in healthy eyes over time (Fig. 2c). Therefore, this

PGON eye was incorrectly classified as not progress-
ing. This incorrect classification also was the case for
the cpRNFL annulus (Fig. 2d). For the eye in Figure
3, the slope of change in DL-AEROI RNFL thickness
was significantly greater than that observed in healthy
eyes over time (Fig. 3c); the eye was correctly classified
as progressing. However, change within the cpRNFL
annulus thickness was not identified correctly (Fig. 3d).

The rates of progression for cpRNFL thickness
within the 2.22-mm to 3.45-mm annulus (derived from
the optic disc cube scan, outer circle shown in Fig. 4)
were defined as the average change across all pixels.
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Figure 4. Circumpapillary RNFL thickness scan region obtained
within a 2.22mm to 3.45mmannulus centered on optic nerve (outer
circle) derived from high resolution optic disc cube.

Similar to the DL-AE ROI progression, an eye was
identified as a progressing glaucoma eye if the rate of
RNFL loss was significantly (P < 0.05) different from
zero and faster or greater than the fifth percentile of the
healthy group.

Statistical Analysis

Descriptive statistics to compare demographic
characteristics by group (healthy and glaucoma partic-
ipants) were completed using χ2 tests to compare
categorical variables and t tests to compare continu-
ous variables. Mixed effects models were used to calcu-
late the mean rates of change (slopes) for DL-AE ROI
and cpRNFL annulus thickness loss from baseline.
Models included group (healthy versus glaucoma),
time, and the interaction term Group × Time. P values
of less than 0.05 were considered statistically signifi-
cant. The models were adjusted for age, and the corre-
lation between eyes within subjects. Statistical analysis
was performed using SAS, Version 9.2 (SAS Institute,
Cary, NC).

Results

A summary of the demographic and clinical charac-
teristics at baseline of each study group are shown
in Table 2. Progressing glaucoma patients were signif-
icantly older than healthy participants (mean age =

61.4 and 54.3 years; respectively; P < 0.001) and
significantly younger than nonprogressing glaucoma
patients in the training group (mean age, 71.7 years;
P < 0.001). Progressing, nonprogressing and healthy
individuals were similar with respect to gender (P =
0.17). Progressing glaucoma eyes had worse baseline
VF mean deviation (MD) compared with healthy eyes
(mean MD, −7.09 and −0.43 dB respectively; P <

0.001) but similar baseline VF MD to nonprogress-
ing glaucoma eyes in the training group (mean MD,
−6.87 dB; P = 0.52) and had longer mean follow-up
than healthy subjects (4.4 and 3.2 years, respectively;
P < 0.001), but similar follow-up to nonprogressing
glaucoma eyes in the training group (3.8 years; P =
0.12). The glaucoma progressing eyes, nonprogress-
ing eyes in the training group, and the healthy eyes
were similar with respect to axial length (P = 0.30),
but the progressing glaucoma eyes had thinner central
corneas compared with the other eyes (all comparisons
P ≤ 0.02).

Between-Group Differences in Baseline OCT
Measurements

The baseline global DL-AE RNFL thickness
measurements in the ROI and baseline global cpRNFL
annulus thickness measurements are presented in
Table 3. Compared with nonprogressing and progress-
ing glaucoma eyes, healthy eyes had significantly
thicker baseline RNFL for both the DL-AE ROI
(72.7 μm, 60.5 μm, and 95.7 μm, respectively) and the
cpRNFL annulus (74.6 μm, 63.1 μm, and 99.9 μm,
respectively; both comparisons P < 0.001). Progress-
ing glaucoma eyes had significantly thinner baseline
RNFL thickness for both the DL-AE ROI and
the cpRNFL annulus compared with nonprogressing
glaucoma eyes (74.6 μm vs 63.1 μm and 72.7 μm vs 60.5
μm, respectively; both comparisons P < 0.001).

Glaucoma Progression Detection

Using the RNFL rate of change criterion, the
sensitivity, or number of correctly identified PGON
eyes, was higher for the DL-AE ROI (40 eyes [sensi-
tivity, 0.90; 95% CI, 0.85–0.96] compared with the
cpRNFL annulus (28 eyes [sensitivity, 0.63; 95% CI,
0.57–0.69]). The specificity, or number of correctly
identified nonprogressing glaucoma eyes, for the DL-
AE ROI (77 eyes [specificity, 0.92; 95% CI, 0.88–0.97])
was similar to the cpRNFL annulus (78 eyes [speci-
ficity, 0.93; 95% CI, 0.90–0.98]).
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Table 2. Clinical and Demographic Characteristics of the Healthy, Progressing, and Nonprogressing Glaucoma
Eyes

(A) Healthy Group,
Mean (95% CI)

(B)
Nonprogressing
Group, Mean
(95% CI)

(C) Progressing
Group, Mean
(95% CI)

Analysis of
Variance P
Value

Post Hoc
P Values*

No. of patients (eyes) 59 (109) 52 (84) 42 (44)
Age (years) 54.3 (51.0 to 57.6) 71.7 (69.9 to 73.5) 61.4 (56.3 to 66.4) <0.001 A < C < B
Female (%) 70% 66% 68% 0.17
Axial length (mm2) 23.2 (23.4 to 23.7) 23.9 (23.7 to 24.2) 24.1 (23.7 to 24.4) 0.3
IOP (mm Hg) 15.4 (14.8 to 15.9) 15.3 (14.3 to 16.0) 14.2 (12.4 to 16.0) 0.45
CCT (um) 553.4 (546.0 to

560.9)
536.3 (527.4 to

545.3)
525.4 (504.8 to

543.9)
0.02 C = B < A

Mean Follow-up
(years)

3.2 (2.9 to 3.4) 3.8 (3.6 to 4.0) 4.4 (4.0 to 4.6) <0.001 A<B<C

VF MD (dB) −0.43 (−0.64 to
1.35)

−6.87 (−8.34 to
−5,39)

−7.09 (−9.96 to
−4.23)

<0.001 B = C < A

Median number of
visits (min, max)

5 (4, 7) 6 (4, 9) 6 (4, 10) <0.001 A < B = C

*Tukey test: Alpha = 0.05.

Table3. Differences inBaselineRNFLThickness inHealthy, ProgressingGlaucoma, andNonprogressingGlaucoma
Eyes

Baseline RNFL Thickness (μm), Mean (95% CI)

Model (A) Healthy Eyes
(B) Nonprogressing
Glaucoma Eyes

(C) Progressing
Glaucoma Eyes

Analysis of
Variance P Value

Post Hoc
P Values*

Deep learning
auto-encoder
region of
interest

95.7 (92.5-96.3) 72.7 (68.4-76.9) 60.5 (55.0-65.9) <0.001 C < B < A

cpRNFL annulus 99.8 (97.5-102.0) 74.6 (70.4-78.9) 63.1 (57.6-68.6) <0.001 C < B < A
*Tukey test: Alpha = 0.05.

RNFL Rate of Change

The mean rates of RNFL loss in progressing
glaucoma eyes, nonprogressing glaucoma eyes, and
healthy eyes for the DL-AE ROI and the cpRNFL
annulus, stratified by follow-up time, are presented
in Table 4. Comparative distributions of rates of
change between healthy and progressing glaucoma eyes
and healthy and nonprogressing glaucoma eyes with a
follow-up of 3 or more years are shown in Figures 5
and 6, respectively. Rates of change for both the DL-
AE ROI and the cpRNFL annulus were significantly
different from zero for all study groups (i.e., progressive
change, on average, was observed in all groups).

Specifically, for follow-up of 3 or more years, the
mean rates of RNFL thinning within the DL-AE
ROI defined as likely progressed (green colored region
in Fig. 1) were −1.28 μm/y (95% CI, −1.38 to −1.15
μm/y; P < 0.001) in progressing glaucoma eyes, −1.03
μm/y (95% CI, −1.12 to −0.93 μm/y; P < 0.001)
in nonprogressing glaucoma eyes and −0.80 μm/y
(95% CI,−0.88 to −0.71 μm/y; P < 0.001) in healthy
eyes. The mean rate of change in progressing eyes
was significantly faster than in nonprogressing and
healthy eyes (P < 0.001). The mean rate of change
in progressing eyes also was faster than in nonpro-
gressing eyes (P = 0.03). In the cpRNFL annulus,
the mean rates of change were −0.83 μm/y (95%
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Figure 5. Mean RNFL loss rate between healthy and progressing glaucoma eyes using the deep learning auto encoder region of interest
map (top) and the cpRNFL annulus thickness map (bottom).

CI, −0.93 to −0.72 μm/y; P < 0.001) in progressing
glaucoma eyes, −0.78 μm/y (95% CI, −0.88 to −0.67
μm/y; P < 0.001) in nonprogressing glaucoma eyes,
and −0.61 μm/y (95% CI, −0.69 to −0.50 μm/y; P
< 0.001) in healthy eyes. Although the progressing
and nonprogressing glaucoma eyes showed a faster
rate of change than healthy eyes, there was no statis-
tical difference between the rate of change in nonpro-

gressing glaucoma and healthy eyes using this method
(P = 0.55).

To further investigate and compare rates of
change between progression detection methods we
stratified results by follow-up times and glaucoma
severity. After 1-year of follow-up, using the RNFL
rate of change criterion, the sensitivity, or number
of correctly identified PGON eyes, was higher
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Figure6. MeanRNFL loss ratebetweenhealthy andnonprogressingglaucomaeyesusing thedeep learningautoencoder regionof interest
map (top) and the cpRNFL annulus thickness map (bottom).

for the DL-AE ROI compared with the cpRNFL
annulus (22 eyes [sensitivity, 0.50; 95% CI, 0.43–
0.59] vs 10 eyes [sensitivity, 0.22; 95% CI, 0.10–
0.34], respectively). The specificity, or number of
correctly identified nonprogressing glaucoma eyes,
for the DL-AE ROI was similar to the cpRNFL
annulus (105 eyes [specificity, 0.70; 95% CI, 0.52–
0.78] vs 102 eyes [specificity, 0.68; 95% CI, 0.54–0.81],
respectively).

After 2 years of follow-up, using the RNFL rate
of change criterion, sensitivity was higher for the DL-
AE ROI compared with the cpRNFL annulus (33
eyes [sensitivity, 0.76; 95% CI, 0.64–0.82] vs 22 eyes
[sensitivity, 0.51; 95% CI, 0.37–0.59], respectively). The
specificity for the DL-AE ROI was similar to the
cpRNFL annulus (124 eyes [specificity, 0.83; 95% CI,
0.76–0.94] vs 122 eyes [specificity, 0.81; 95% CI, 0.74–
0.92], respectively).
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The rates of RNFL loss stratified by follow-up time
in healthy, nonprogressing glaucoma eyes and progress-
ing glaucoma eyes for DL-AE ROI and the cpRNFL
annulus are shown in Table 4.

Regarding model performance and disease severity,
when eyes were divided into early glaucoma (VF MD
of −6 dB or greater, 25 progressing eyes and 91 nonpro-
gressing eyes) and moderate to advanced glaucoma
with (VF MD of less than −6 dB, 19 progressing eyes
and 59 nonprogressing eyes) patterns of results were
similar across groups using both analysis strategies.

Using the RNFL rate of change criterion the sensi-
tivity for identifying PGON eyes was higher for the
DL-AE ROI compared with the cpRNFL annulus
in both early glaucoma and moderate to advanced
glaucoma. In early glaucoma eyes, sensitivity was 0.89
(95% CI, 0.78–0.94) for the DL-AE ROI compared
with 0.58 (95%CI, 0.40–0.66) for the cpRNFLannulus.
In moderate to advanced glaucoma eyes sensitiv-
ity was 0.92 (95% CI, 0.81–0.97) for the DL-AE
ROI compared with 0.67 (95% CI, 0.52–0.74) for
the cpRNFL annulus. The specificity for identifying
nonprogressing glaucoma eyes was similar using both
methods. In early glaucoma eyes specificity was 0.93
(95% CI, 0.84–0.99) for the DL-AE ROI compared
with 0.94 (95%CI, 0.86–0.99) for the cpRNFLannulus.
In moderate to advanced glaucoma eyes sensitivity was
0.88 (95% CI, 0.79–0.94) for DL-AE ROI compared
with 0.89 (95% CI, 0.79–0.95) for the cpRNFL
annulus.

Discussion

This study demonstrated that using a DL-AE to
generate an individualized RNFL thickness change
map for each eye, more known progressing eyes could
be identified (increased sensitivity) compared with
using average cpRNFL thickness measurements in
all eyes and when eyes were dichotomized into early
and moderate to advanced disease, while maintain-
ing similar specificity. In addition, observed rates of
change in RNFL thickness per year were faster (i.e.,
greater) in progressing glaucoma eyes and nonpro-
gressing glaucoma eyes using DL-AE ROI compared
with cpRNFL annulus thickness. Finally, significant
change over time was detected in not only progress-
ing and nonprogressing (defined by stereophotograph
assessment) glaucoma eyes, but also in healthy eyes.

Specifically, we formalized the change detection task
as an abnormality detection task where we trained
the model on nonglaucomatous changes (e.g., aging,
variability) leading to a high reconstruction error with

the DL-AE when the observed change was greater
than what the model observed during training. Then,
we used a Markov-based segmentation algorithm to
classify each pixel of the RNFL thickness map into
three regions: a no change region, a likely progres-
sion region, and a not likely progression region. The
global mean RNFL rate of loss in the likely change
region was calculated and compared with the aging
RNFL loss from healthy eyes. To be considered as
progressing, these eyes were required to have statisti-
cally significant slopes of change in estimated cpRNFL
loss that were faster than average age-related losses
obtained from longitudinal follow-up of a group of
healthy eyes. Moreover, the results of this study not
only help our understanding of the different glaucoma
progression patterns, they also highlight the variabil-
ity in patterns of glaucoma change and the limita-
tions of using a standard global parameter to calculate
the rate of loss. Overall, we identified 40% more eyes
with glaucomatous progression using the DL-AE ROI
model compared with the average cpRNFL annulus
thickness derived from the same optic disc cube scan
patterns.

Several other studies have demonstrated that using
an individualized region of interest to monitor glauco-
matous progression outperforms instrument defined
global cpRNFL thickness measurements.19–21 Hood
et al.19 and Thenappan et al.20 demonstrated that the
width of an ROI, defined using the 1% lower norma-
tive limits of cpRNFL thickness, increased signifi-
cantly over time in eyes where the global cpRNFL did
not exhibit a statistically significant decrease. Regard-
ing comparison to results presented herein, Hood
et al.19 required glaucomatous eyes to have observable
disc hemorrhages, which makes the reported results
less generalizable to the current results. In contrast
with Thenappan et al.,20 where only an automatically
outlined ROI based on objective criteria of RNFL loss
compared with normative databases was used to detect
glaucomatous changes, Wu et al.21 used both automat-
ically and manually outlined ROIs to define progres-
sive changes, because an automatic ROI approach may
not always capture an appropriate ROI. The manual
ROI approach involved subjectively defining areas of
glaucomatous defect in the second of two longitu-
dinal scans observed on the OCT fundus projection
images, OCT en face slab images, OCT RNFL thick-
ness plots, OCTRNFL thickness deviation plots, OCT
RNFL circle b-scan images, and OCT cpRNFL thick-
ness profile plots (modified TSNIT plot) and compar-
ing these areas with baseline images post hoc (graders
were masked to information available in the baseline
images). The manual ROI approach was more efficient
for detecting progressive cpRNFL loss compared with
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the automatic ROI approach and global cpRNFL
thickness measurements. In the current study, we used
an automated approach that used DL-AEs to identify
the ROI with the highest probability of change with
similar results.

The limitations of the current study include the
relatively small sample size and the limited age range
of the healthy participants. For these reasons, this
method may not be generalizable to other populations.
Moreover, we only used healthy and nonprogressing
eyes to define the ROI because of the small number
of progressing eyes available. If more progressing eyes
were available, we could use the DL-AE for feature
extraction to classify an eye into progressing versus
nonprogressing groups. In addition, the current study
did not include a large number of advanced glaucoma
eyes in which it is challenging to detect cpRNFL
thinning owing to the presence of a measurement
floor (e.g.,22–26). Including more advanced glaucoma
eyes in a follow-up study would increase confidence
in the current method to detect change across the
full glaucoma severity continuum. However, it is
possible that the current method is best applied to
detecting progression in early to moderate disease
(given the more diffuse nature of advanced structural
loss), which would not greatly decrease its clinical
usefulness.

It is also possible that progression close to the
disc margin was missed using both progression detec-
tion methods. Because variability influences the ability
to detect progression, we measured both the DL-AE
regions of interest and average cpRNFL thickness in
the parapapillary region where measurement variabil-
ity is decreased. To confirm a decrease in variability
in the parapapillary region we calculated the coeffi-
cient of variation (CV) of RNFL thickness in the
stable glaucoma group within the 2.22-mm to 3.45-
mm annulus currently used and within a 1.0-mm to
2.22-mm annulus (i.e., closer to the optic disc margin).
The results showed that the global, superior, tempo-
ral, inferior, and nasal CV were higher within the
1.0-mm to 2.22-mm annulus (CV, 2.45, 2.91, 2.72,
3.13, and 3.41, respectively) compared with the 2.22-
mm to 3.45-mm annulus (CV, 1.31, 1.76, 1.69, 1.92,
and 2.01, respectively). The higher RNFL thickness
variability closer to the optic disc would limit the
ability of the autoencoder, as well as other RNFL
thickness-basedmethods to detect small changes in this
region

Finally, it may be the case that false-positive progres-
sion classifications decreased the specificity of progres-
sion detection in our study. In the current study,
progression was defined if the rate of RNFL loss was
significantly different from zero and faster or greater

than the fifth percentile of the healthy eyes. A recent
study using computer simulation suggested that using
this criterion for progression may result in approxi-
mately a 10% to 20% false-positive progression events
(defined using trend based analysis of average OCT
RNFL thickness measurements) in healthy eyes over
4 years depending on frequency of testing.27 However,
we report a relatively high level of specificity (i.e.,
likely not decreased significantly owing to a signif-
icant number of false positives) for both progres-
sion methods investigated (92% and 93%). Even if
false positives owing to the criteria chosen to define
progression contributed to our results, the compari-
son between the DL-AE ROI and cpRNFL annulus
measurement-based progression rates is valid because
results using both methods theoretically would be
affected similarly. In addition, it is possible that the
less than perfect specificity could be the result of an
improved change detection method detecting actual
disease-related change in nonprogressing glaucoma
eyes that was not observed by subjective stereophoto-
graph assessment.

In conclusion, by tailoring the analysis to the
individual patient, individualized ROIs identified using
unsupervised DL-AE analysis of OCT images show
promise for improving assessment of glaucomatous
progression. These results clearly support the useful-
ness of automated, patient-specific monitoring of
glaucomatous progression.
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