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Computational time and cost remain a major bottleneck for RNA-seq data analysis of nonmodel organisms without refer-

ence genomes. To address this challenge, we have developed Seq2Fun, a novel, all-in-one, ultrafast tool to directly perform

functional quantification of RNA-seq reads without transcriptome de novo assembly. The pipeline starts with raw read qual-

ity control: sequencing error correction, removing poly(A) tails, and joining overlapped paired-end reads. It then conducts

a DNA-to-protein search by translating each read into all possible amino acid fragments and subsequently identifies possible

homologous sequences in a well-curated protein database. Finally, the pipeline generates several informative outputs includ-

ing gene abundance tables, pathway and species hit tables, an HTML report to visualize the results, and an output of clean

reads annotated with mapped genes ready for downstream analysis. Seq2Fun does not have any intermediate steps of file

writing and loading, making I/O very efficient. Seq2Fun is written in C++ and can run on a personal computer with a lim-

ited number of CPUs and memory. It can process >2,000,000 reads/min and is >120 times faster than conventional work-

flows based on de novo assembly, while maintaining high accuracy in our various test data sets.

[Supplemental material is available for this article.]

Genomics data, including RNA-seq, have become a core compo-
nent of life science research. Although the majority of RNA-seq
data have been derived from studies on model organisms, such
data are increasingly being realized from studies on nonmodel or-
ganisms (da Fonseca et al. 2016; Matz 2018). Compared to well-es-
tablished RNA-seq pipelines and web-based platforms developed
for model organisms (Lohse et al. 2012; Zhou et al. 2019), there
are several unique challenges when dealing with RNA-seq data
from nonmodel organisms, including the lack of reference ge-
nomes and high-quality annotations, as well as the difficulties in
obtaining large sample sizes especially from experimental settings.
In general, RNA-seq studies in nonmodel organisms tend to have a
relatively simple experimental design in which the main objective
is to identify differentially expressed genes (DEGs) and perturbed
pathways between study groups (da Fonseca et al. 2016).

Gene- or pathway-level analysis for species that do not have
reference genomes relies heavily on the construction and annota-
tion of their transcripts (Martin andWang 2011; Eldem et al. 2017;
Voshall and Moriyama 2018). The conventional RNA-seq work-
flow involves the use of multiple software tools to conduct raw
reads quality checks, read error correction, transcriptome de
novo assembly, transcriptome quality assessment, transcriptome
annotation, and downstream analysis, including identification
of DEGs and pathway enrichment analysis (Martin and Wang
2011; Eldem et al. 2017; Voshall and Moriyama 2018). Although
the downstream statistical analysis is relatively straightforward,
raw data processing remains a key obstacle. In particular, transcrip-

tome de novo assembly is a complex, time-consuming task and re-
quires extensive computational resources (Martin andWang 2011;
Eldem et al. 2017; Voshall and Moriyama 2018). Several transcrip-
tome de novo assemblers have been developed, such as the estab-
lished tools Trinity (Haas et al. 2013; https://github.com/
trinityrnaseq/trinityrnaseq/wiki) and SOAPdenovo-Trans (Xie
et al. 2014), and more recently developed tools such as Bridger
(Chang et al. 2015), BinPacker (Liu et al. 2016), and TransLiG
(Liu et al. 2019). However, analysis with these tools can take
several days or even weeks to complete on a high-performance
computer. Additionally, the assembled transcriptomes of nonmo-
del organisms often suffer frommany false positives and false neg-
atives, and no single assembler can deliver the best results for all
scenarios (Hölzer and Marz 2019; Liu et al. 2019). Another key
step in the conventional RNA-seqworkflow is transcriptome anno-
tation. The established procedure is to perform DNA-to-protein
BLASTX via translated search, as it can overcome the large evolu-
tionary divergence among homologous sequences especially
when compared to the DNA-to-DNA BLASTN approach (Conesa
et al. 2016; Ye et al. 2019). This method has been implemented
in several programs such as Blast2GO (Conesa and Götz 2008)
and Trinotate (https://github.com/Trinotate/Trinotate.github.io/
wiki). However, these implementations are also time-consuming
and computationally intensive. The computational skills and
computing resources involved in executing de novo assembly
and annotation represent huge barriers to entry for using RNA-
seq in research on nonmodel organisms.

Given the diverse challenges outlined above, there is an un-
met need to develop a straightforward and computationally
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efficient tool for handling RNA-seq data
from nonmodel organisms. For tran-
scriptomics studies in nonmodel organ-
isms that focus on mRNAs or protein-
coding genes, we propose a new process-
ing and analysis strategy of directly trans-
lating RNA-seq reads into all possible
short amino acid (aa) sequences and
then comparing these with protein refer-
ences to identify their possible function-
al homologs. Several superfast DNA-to-
protein aligners, including DIAMOND
(Buchfink et al. 2015), MMseqs2
(Steinegger and Söding 2017), and Kaiju
(Menzel et al. 2016), have been devel-
oped or used to map DNA reads directly
tomicrobial protein databases, thus skip-
ping genome assembly and directly
quantifying the functional capabilities
of the sample’s microbiome. Bacterial ge-
nomes are densely packed with protein-
coding genes and free of introns
(Bentley and Parkhill 2004), characteris-
tics that are largely shared by eukaryotic
RNA-seq reads. Thus, theoretically it
should be possible to directly quantify
the expression of protein-coding genes
from eukaryotic RNA-seq reads using
similar approaches and algorithms, al-
though we are not aware of any existing
tools that do this.

Here, we present Seq2Fun, an ultra-
fast, assembly-free, all-in-one tool for
functional quantification of RNA-seq
reads for nonmodel organisms, to ad-
dress the problems identified above. In
addition to describing the underlying algorithm, we use both sim-
ulated and real data sets from a variety of species to show that
Seq2Fun outperforms the conventional RNA-seq analysis work-
flow based on transcriptome de novo assembly in both accuracy
and computational efficiency. We also demonstrate with a case
study how Seq2Fun can be used to analyze RNA-seq data from
an organism without a reference genome.

Results

Workflow of Seq2Fun

Seq2Fun uses a novel strategy of directly translating RNA-seq reads
into all possible amino acid sequences and searches for homolo-
gous protein sequences in awell-curated database. Seq2Fun is writ-
ten in the high-performance language C++. To further achieve
high computing efficiency in terms of both speed and memory
footprint, our implementation employs an FM-index data struc-
ture (Ferragina and Manzini 2000) and only retains the informa-
tion necessary for quantifying the expression of protein-coding
genes involved in the KEGG pathways. There are three main steps
underlying Seq2Fun: (1) quality control of raw reads; (2) transla-
tion of cleaned reads into all possible amino acid sequences and
alignment to a multispecies protein database; and (3) generation
of KEGGortholog (KO) expression abundance tables and summary
figures for downstream analysis (Fig. 1; Supplemental Figs. S1, S2).

Seq2Fun can run in two modes: maximum exact match
(MEM)orGreedymode. TheMEMmodeonlyallows exactmatches
between query and reference sequences and therefore is appropri-
ate for organisms that have very closely related species in the data-
base. The Greedy mode allows mismatches between query and
reference sequences to help overcome evolutionary divergence
among homologous sequences and is more suitable for organisms
that donothave a closely related reference genome in the database.
More descriptions are available in the Supplemental Materials
(Supplemental Methods 3.1). To achieve a balance between speed
and accuracy of reads quantification, various KEGG ortholog pro-
tein databases have been built for different groups including eu-
karyotes, animals, plants, and fungi, as well as sub-groups such as
mammals, birds, reptiles, amphibians, fishes, and arthropods.

The MEM and Greedy modes of Seq2Fun were evaluated us-
ing both simulated and real RNA-seq data sets from mouse (Mus
musculus), chicken (Gallus gallus), zebrafish (Danio rerio), and
roundworm (Caenorhabditis elegans) (Supplemental Table S3). For
these benchmark tests, the Seq2Fun MEM mode aligns the trans-
lated reads to a database containing only that species’ protein se-
quences, whereas the Greedy mode aligns translated reads to a
custommultispecies protein sequence database that was modified
to exclude sequences from that species (Supplemental Tables S1,
S2). All Seq2Fun analyses were conducted with default parameters
(e.g., number of mismatches, minimum matching length, mini-
mum score) that were chosen based on a parameter sensitivity

Figure 1. Overview of the Seq2Fun workflow. Seq2Fun accepts raw RNA-seq reads and generates var-
ious expression count tables. There are three main phases: quality control; translated search; and expres-
sion quantification. Seq2Fun starts by loading read pack (n=10,000 raw RNA-seq reads), followed by
trimming, adaptor and poly(A) tail removal, overlapped paired-end reads merging, and sequence error
correction; cleaned reads are translated into all possible amino acid sequences, and the longest frag-
ments are subjected to search in a protein database based on FM-index to identify the most likely func-
tional homologs either by maximum exact match (MEM) or Greedy mode. Each matched read is
assigned with protein ID(s), followed bymapping each protein ID with the KEGG ortholog ID, and finally
summing each KEGG ortholog to produce a KEGG ortholog abundance table, pathway hit table, species
hit table, and KEGG ortholog reads table. An HTML report is also generated to summarize and visualize
read qualities and results tables. Cleaned reads labeled with mapped KEGG orthologs are also retrieved.
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analysis, the results of which are described in the Supplemental
Materials.

Computational efficiency

Seq2Fun (Greedy mode) consumed as little as 0.4 GB of RAM
(mouse data set), whereas the conventionalworkflow (Trinity) typ-
ically requires 50 GB of RAM (1 GB RAM per million reads)
(Grabherr et al. 2011). The Seq2Fun Greedy mode was 113 (0.4
GB RAM), 125 (2.27 GB RAM), 86 (0.6 GB RAM), and 50 (0.7 GB
RAM) times faster than the conventional workflow for the mouse,
chicken, zebrafish, and roundworm data sets, respectively (Table
1). Transcriptome de novo assembly accounted for 49%–78% of
the computational time using Trinity (Haas et al. 2013), whereas
annotation to the KEGG ortholog database accounted for 4%–

19% using KofamScan (Aramaki et al. 2020). These results indicate
that Seq2Fun is computationally efficient and can run on a person-
al computer that has a fair amount of resources (e.g., eight threads
and 16 GB RAM).

Annotation and quantification

We first evaluated the performance of Seq2Fun on simulated data
sets. The recall of Seq2Fun using both genes and reads from the
data sets of the four organisms was highest for MEM mode, fol-
lowedbyGreedymode, andbothwerehigher thantheconvention-
al workflow results (Table 1; Supplemental Table S4). There was
little difference among precision across all evaluated methods for
both the reads and gene-level results for the simulated data (Table
1; Supplemental Table S4). The R2 values were generally higher
for Seq2Fun (0.85–1.00) in both MEM and Greedy modes for the
simulated data sets, compared to the values of the conventional
workflow (0.58–0.97). Further investigations indicated that some
outliers contributed to these differences (Supplemental Results).

We next evaluated Seq2Fun on real data sets. The recall of
Seq2Fun using both genes and reads from real data sets from all
four organisms was highest for MEM mode, followed by Greedy
mode, and bothwere higher than the results from the convention-
al workflow (Table 1; Supplemental Table S4). The read-level re-
sults had lower precision compared to the gene-level results for
all three tools, and this difference was particularly noticeable for
the conventional workflow (Supplemental Table S4). Although
there was little difference in gene-level precision among the three

tools, the read-level precision was lower for the conventional
workflow compared to the Seq2Fun results (Table 1;
Supplemental Table S4).

Compared to the simulated data, there were more variations
in the real data sets for the explained variations measured by R2

values (Table 1). There were no consistent differences between
the MEM and Greedy Seq2Fun modes, which had high R2 values
ranging from 0.78 to 0.96. In contrast, the R2 values from the con-
ventional workflow were substantially lower for all four data sets,
ranging from0.37 to 0.55 (Table 1). The lower R2 values of the con-
ventional workflow compared to Seq2Fun can be explained by in-
consistent coverage of KEGG orthologs in the assembled
transcriptome. For example, we found that 54 KEGG orthologs
(counts > 100) were identified in the reference results but not in
the conventional results, whereas 17 KEGGorthologswere present
in the conventional results and not in the reference results of the
zebrafish data set.

Gene- and pathway-level analysis

Only the chicken, zebrafish, and roundworm’s real RNA-seq data
sets were used to conduct differential gene expression analysis
and pathway enrichment analysis because the experimental de-
sign of the mouse data set lacked biological replicates and thus
was not amenable for proper statistical analysis. Both modes of
Seq2Fun had higher R2 values than the conventional workflow
in all cases, except for the gene-level fold change in the chicken
data set, where the conventional workflow had a higher value
than Seq2Fun MEM (Table 2). In general, the Seq2Fun MEM and
Greedy modes identified more reference genes and pathways
than the conventional workflow for all three organisms (Table 2).

Case study

To demonstrate a typical use case in the environmental life scienc-
es for an organism that does not have a reference genome, Seq2Fun
(Greedy mode) was used to analyze RNA-seq data from double-
crested cormorant (DCCO) embryos. DCCO embryos were ex-
posed to ethinylestradiol (EE2), a synthetic estrogen that is the ac-
tive substance in some forms of birth control, via egg injection at a
high (n=4) and lowdose (n=5) (Farhat et al. 2020). Controls (n=5)
were exposed to DMSO solvent. Liver tissue was collected at
mid-incubation for whole transcriptome RNA-seq (detailed

Table 1. Performance assessments based on simulated and real data sets

Mouse Chicken Zebrafish Roundworm

Seq2Fun

Conv.

Seq2Fun

Conv.

Seq2Fun

Conv.

Seq2Fun

Conv.MEM Greedy MEM Greedy MEM Greedy MEM Greedy

Simulated data sets
Time (min) 11 20 486 7 10 312 8 16 302 3 9 331
Recall 1 1 0.91 1 1 0.91 1 1 0.91 1 0.96 0.79
Precision 1 0.99 1 1 1 1 1 0.99 1 1 1 1
R2 1 1 0.97 1 0.98 0.8 1 0.9 0.8 1 0.85 0.58

Real data sets
Time (min) 8 15 1693 11 19 2373 14 21 1805 6 8 444
Recall 1 1 0.79 1 0.99 0.8 1 0.97 0.88 1 0.97 0.74
Precision 0.96 0.96 0.97 0.94 0.91 0.98 0.96 0.95 0.95 1 1 1
R2 0.92 0.93 0.43 0.78 0.85 0.55 0.9 0.87 0.37 0.96 0.9 0.71

The performance was evaluated for all samples on both the simulated and real data sets with respect to runtime, recall and precision at the gene level,
and R2 coefficient of determination. (Conv.) Conventional workflow.
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experimental descriptions are in Methods). For comparison pur-
poses, we also ran a conventional workflow on the DCCO data
set. The results showed that Seq2Fun was about 50 times faster
than the conventional workflow. It finished the whole data set
analysis (14 samples and 75 million reads) within 24 min using
about 1.9 GB RAM and eight threads, compared to 20 h and 50
GB RAM with the conventional workflow. Results obtained from
Seq2Fun showed that there were 881 differentially expressed genes
across both doses, whereas the conventional workflow generated
794 DEGs. ORA resulted in 11 significant pathways, whereas
GSEA produced 24 (Fig. 2). In comparison to results generated us-
ing a conventional de novo assembly workflow, the fold changes
computed by both software had an R2

of 0.83. Comparing the top 300 differen-
tially expressed genes resulted in an over-
lap of 213 (71%) and 229 (76.33%) when
sorting genes by P-value and fold change,
respectively. Comparing the top 30 path-
ways resulted in an overlap of 22
(73.33%) and 20 (66.67%) when sorting
pathways by P-value for ORA and GSEA,
respectively. The conventional workflow
is not the “gold standard” in the same
way as the reference genome-basedwork-
flow, and thus these overlap percentages
should not be interpreted as measures of
accuracy. However, these results do show
that Seq2Fun is detecting largely the
same perturbed genes and pathways as
the conventional workflow, which may
be comforting to prospective users.

The significantly enrichedpathways
in Figure 2 are consistent with an estro-
genicmode of action. For example, expo-
sure to estrogenic substances has been
consistently shown to cause a decrease
in cholesterol levels in plasma (Bravo
et al. 1999; Parini et al. 2000). Cholesterol
is synthesized from fatty acidswithinper-
oxisomes, mitochondria, and the endo-
plasmic reticulum and is an immediate
precursor to several important biomole-

cules, including steroidhormones andbile acids.Manyof thepath-
ways perturbed are closely related to cholesterol synthesis and
metabolism, especially including “Steroid biosynthesis,” “Peroxi-
some proliferator-activated receptor (PPAR) signaling pathway,”
“Neuroactive ligand-receptor interaction,” “Cholesterol metabo-
lism,” “Ovarian steroidogenesis,” “Fatty acidmetabolism,” “Perox-
isome,” “Primary bile acid biosynthesis,” and “Fatty acid
degradation.” Additionally, some of the pathways that are most
consistently up- or down-regulated match the directionality ob-
served in previous studies. For example, it has been observed that
genes involved in cholesterol synthesis are up-regulated to com-
pensate for the decreased cholesterol levels (Fink et al. 2005). These

Table 2. Benchmark on gene expression and pathway analysis

Chicken Zebrafish Roundworm

Seq2Fun

Conv.

Seq2Fun

Conv.

Seq2Fun

Conv.MEM Greedy MEM Greedy MEM Greedy

R2 0.82 0.86 0.84 0.91 0.87 0.82 0.99 0.93 0.83
Overlap of top 300 KOs

(by P-values)
201 (67%) 195 (65%) 168 (56%) 267 (89%) 255 (85%) 222 (74%) 281 (94%) 236 (79%) 188 (63%)

Overlap of top 300 KOs
(by fold changes)

212 (71%) 205 (68%) 173 (58%) 266 (89%) 252 (84%) 227 (76%) 258 (86%) 195 (65%) 183 (61%)

Overlap of top 30 pathways
(ORA)

20 (67%) 20 (67%) 15 (50%) 25 (83%) 23 (77%) 24 (80%) 24 (80%) 22 (73%) 20 (67%)

Overlap of top 30 pathways
(GSEA)

27 (90%) 27 (90%) 19 (63%) 21 (70%) 22 (73%) 18 (60%) 26 (87%) 23 (77%) 20 (67%)

The concordance of differential expression and pathway analysis results from Seq2Fun and a conventional workflow using “ground truth” as a refer-
ence were evaluated using R2 of gene fold changes, overlap of the top 300 KEGG orthologs (KOs) based on their P-values or fold changes, and overlap
of the top 30 pathways using overrepresentation analysis (ORA) and gene set enrichment analysis (GSEA). (Conv.) Conventional workflow.

Figure 2. Significant pathways identified from RNA-seq data of double-crested cormorant (DCCO).
The pathways are visualized by ridgeline plots. The distribution for each pathway is colored according
to the pathway’s adjusted P-value. The vertical gray lines indicate the log2FC values of all genes in the
enriched pathways.
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lower levels also induce a decrease in bile acid excretion, causing it
to accumulate in the liver anddown-regulate genes involved in bile
acid synthesis (Stieger et al. 2000). In Figure 2, it is clear that the
“Steroidbiosynthesis”pathway,whichdirectlyproduces cholester-
ol, is up-regulated and the “Primary bile acid biosynthesis” path-
way is down-regulated.

Discussion

The biggest challenges of the conventional RNA-seq workflows are
the key steps of transcriptome de novo assembly and gene annota-
tion. These steps require a high-performance server with extensive
computational resources, typically with more than 100 GB of
RAM. These resources are not easily accessible to the majority of
labs working on nonmodel organisms (Eldem et al. 2017) and
thus represent amajor barrier for the community to scale-upwider
use of RNA-seq data. Here, we developed, tested, and validated
Seq2Fun, which adopted a novel strategy for RNA-seq analysis to
help overcome these challenges. In doing so, we demonstrated
that Seq2Fun consumes as little as 2.27 GB RAM and is up to 125
times faster than a conventional workflow based on Trinity
(Haas et al. 2013), one of the most widely used software for de
novo transcriptome assembly. To minimize RAM requirements,
Seq2Fun uses a relatively small but comprehensive database and
does not load all reads intomemory. It breaks input data into packs
of 10,000 reads, and each thread is employed to process one read
pack at a time, such that the overall RAM usage is well controlled
and is not increased with larger input data. Moreover, unlike de
novo transcriptome assembly, each read (or pair of reads for PE
data) can be processed independently in Seq2Fun. It is worth not-
ing that Seq2Funhas achieved a faster,more efficient, andmore ac-
curate way to conduct functional analysis of RNA-seq data for
nonmodel organisms. It is used to complement and not to replace
the conventional workflows.

The development of Seq2Fun for functional quantification of
RNA-seq reads for eukaryotic organisms was inspired by the core
algorithm of Kaiju (Menzel et al. 2016), which is designed for tax-
onomic classification using shotgun metagenomic sequences.
While developing Seq2Fun, we made several important improve-
ments to the core algorithm that resulted in significant perfor-
mance gains. For instance, Seq2Fun has a very efficient I/O and
can process 2.46 million PE reads/min, whereas Kaiju processes
>1 million PE reads/min without raw reads quality checks. This
is because Seq2Fun can seamlessly generate abundance tables
from raw readswithout any intermediate steps, and the protein da-
tabase is always stored in memory without repeatedly reloading
when samples are processed in batches. In addition, Seq2Fun auto-
matically joins overlapped PE reads into a single longer read,
whichmay yield longer amino acid fragments. This could partially
contribute to the higher recall and precision values. Finally,
Seq2Fun directly generates five levels of output files, including a
gene abundance table, a species hit table, a pathway hit table, a
readmapping table, and an HTML report containing summary fig-
ures and tables (Supplemental Fig. S2) under single sample profil-
ing mode. This report is ready for primary interpretation without
any further analysis efforts.

For most nonmodel organisms, biological understanding of
study outcomes is limited to protein-coding genes with functional
annotations held within databases including KEGG pathways
(Kanehisa and Goto 2000), Gene Ontology (The Gene Ontology
Consortium et al. 2000; The Gene Ontology Consortium 2019)
or PANTHER classification system (Mi et al. 2019). Therefore, de-

veloping Seq2Fun databases to focus on functionally annotated
genes such as KEGG orthologs largely meets the preferred needs
of most scientists studying nonmodel organisms (Supplemental
Table S1). In addition to supporting pathway-level analysis, the
single sample profiling mode in Seq2Fun generates an HTML re-
port that summarizes the most abundant KEGG orthologs,
KEGG pathways, and hit species, which may facilitate quick inter-
pretation of study results.

Overall, the outcomes of our various tests indicate that
Seq2Fun is highly accurate and stable for gene quantification.
There were relatively small variations of R2 values for the
Seq2Fun MEM and Greedy modes compared to the conventional
workflow across all evaluated data sets. The variation in the con-
ventional workflow results is mostly likely caused by somemoder-
ately to highly expressed genes (Supplemental Materials),
indicating that these genes are difficult to assembly and/or quan-
tify by the conventional workflow. The sensitivity analysis showed
that Seq2Fun is robust to small variations in the parameters (e.g.,
minimum scores, number of mismatches, minimum fragment
length) (Supplemental Figs. S3–S10).

Limitations and next steps

Transcriptome de novo assemblers typically have the ability to dis-
cover novel genes including protein-coding and long noncoding
genes, as well as novel isoforms of previously known genes
(Martin and Wang 2011). This is not possible for Seq2Fun as it is
only designed for identification and quantification of known pro-
tein-coding genes from a database at a high speed and low compu-
tational cost. There are also several other steps of Seq2Fun inwhich
information is not fully utilized in order to optimize the speed. In
its current version, Seq2Fun only implements a DNA-to-protein
search strategy andnotDNA-to-DNA searching. It is possible to im-
plement both search strategies via a tiered search approach. This
would not only improve the computational efficiency of the cur-
rently implemented DNA-to-protein search but also would enable
mapping to any genes, including those from noncoding genes
(Franzosa et al. 2018; Ye et al. 2019). We are currently developing
the tiered search which will be available in a future version of
Seq2Fun.

Obtaining assembled gene sequences for specific genes could
be useful in some research contexts. To partially compensate for
the lack of assembled transcripts in the Seq2Fun results, we have
implemented a feature to support targeted gene assembly. In this
feature, users can specify a KEGG ortholog of interest to retrieve
all reads mapped to this gene. These reads can then be used for
de novo assembly with Trinity, which takes only several minutes
per gene.

The proteins used in the Seq2Fun database are restricted to
protein-coding genes in KEGG pathways, which may not always
be the best choice for different studies and applications. To address
this limitation, we have added support to allow Seq2Fun to accept
customized databases. For instance, users can expand the database
to include all protein-coding genes or restrict the database to a
smaller number of target genes, such as genes assigned to a specific
KEGG pathway or Gene Ontology term (Mi et al. 2019).

Seq2Fun uses a fixed number of mismatches for all proteins
and only allows for amino acid substitution and is unable to
copewith indels. This could also affect the identification of highly
evolutionarily divergent regions within homolog proteins, al-
though it would likely have a limited impact, as their expression
levels could be quantified based on other well-behaved fragments.
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Finally, truly expressed genes should have a relatively uniform dis-
tribution of reads across the whole gene. Seq2Fun does not exam-
ine the distribution of reads as it processes each read
independently. Future versions of Seq2Fun could address these
limitations by offering users more options to customize their
analysis.

Methods

Seq2Fun consists of three main phases: raw reads quality control;
translated search; and abundance table generation (Fig. 1).

Seq2Fun phase I: quality control of raw reads

Seq2Fun cleans the raw reads by adopting the core algorithm from
the fastp v0.20.0 software (Chen et al. 2018). First, each read is
trimmed at both the 5′ and 3′ end. Next, the poly(G) tail is re-
moved. Poly(G) tails have been reported to be a common issue
for Illumina NextSeq and NovaSeq (Chen et al. 2018) and are pro-
duced in the late stage as some T and C bases are wrongly assigned
to G. Third, low complexity sequences are removed because they
can cause artificially high protein hit scores during protein align-
ment (Edgar 2004). If the uploaded data are paired-end (PE), the
overlapping region of each pair is used to correct sequencing errors
by assigning mismatched bases to the bases with a higher quality
score (>Q30). Next, sequence adaptors and poly(A) tails are identi-
fied and removed, and overlapping PE reads aremerged into a lon-
ger single-end (SE) read. Finally, all reads are converted to FASTA
format.

Seq2Fun phase II: translate reads and map to protein database

First, each clean read is translated into amino acid sequences using
six reading frames from both directions, which typically results in
dozens of peptide fragments. At most, the top six longest frag-
ments are kept for the translated search in MEM mode, although
it could generate more fragments with the BLOSUM62 scores
(Henikoff and Henikoff 1992) for Greedy mode (Supplemental
Fig. S1) but still far fewer than the original algorithm implemented
in Kaiju v1.7.3 (Menzel et al. 2016). Although keeping the top lon-
gest fragments could remove some true protein fragments, the
same methods are applied to all samples and therefore should
have a minimal impact on any downstream comparative analysis
such as differential expression analysis. In some cases, only keep-
ing the longest fragments could filter out a proportion of frag-
ments that originated from the merged PE reads if start and stop
codons are present in the middle of the reads. Therefore, we recap
themaximumcutoff length of peptide fragment to be 60 aa (by de-
fault though, the user can change this cutoff), which will prevent
the filtering out of some true peptide fragments from the merged
reads.

Next, the peptide fragments are aligned to the Seq2Fun data-
base, which consists of protein sequences from KEGG pathway
genes that were retrieved using the KEGGREST R package v1.12.2
(https://bioconductor.org/packages/KEGGREST/). The size of the
protein database was reduced by removing redundant protein se-
quences that have >99% similarity across species using CD-HIT
v4.8.1 (Supplemental Tables S1, S2; Li and Godzik 2006; Fu et al.
2012). Seq2Fun employs the same core reads alignment algorithm
as Kaiju v1.7., which has two different modes designed for species
with (MEMmode) andwithout (Greedymode) a reference genome
(Menzel et al. 2016). TheMEMmode only allows exactmatches be-
tween query and subject sequences from the database. It enables a
fast search in the database, and the fragment with the longest
matching length is retained. It is designed for organisms with ref-

erence genomes in the database. Therefore, in this study, MEM
modewas used tomap RNA-seq reads frommouse, chicken, zebra-
fish, and roundworm to their own species-specific protein refer-
ences (e.g., the mouse database for MEM mode consists of 8438
mouse-specific protein sequences) (Supplemental Tables S1, S2),
respectively, in order to demonstrate the feasibility of MEM
mode. The downside of MEM mode is that it cannot identify ho-
mologous protein sequences of the query if there is even a single
discrepancy with the sequences in the database. Therefore, the
Greedy mode is introduced to allow a small number of amino
acid mismatches between the query and subject, which helps
Seq2Fun handle evolutionary divergence between species. The
peptide fragments are aligned to a database that contains sequenc-
es frommany different species, and the fragmentswith the highest
BLOSUM62 scores (Henikoff and Henikoff 1992) are retained. A
detailed description of the MEM and Greedy modes is available
in the Supplemental Materials. In this study, four databases with
genome exclusion for Greedy mode were created for mouse (e.g.,
64 mammal species excluding mouse), chicken, zebrafish, and
roundworm, respectively (Table 1; Supplemental Tables S1, S2),
to mimic conditions for analyzing data from an organism without
a reference genome. This phase produces a reads-protein ID map.

Seq2Fun phase III: expression quantification

First, cases where reads were mapped to multiple protein IDs are
dealt with. Most often, these proteins are homologies from the
same or different organisms and share the same KEGG ortholog
ID. If this is not the case, the KEGG ortholog with the highest fre-
quency is used. After ensuring that each read is matched to a single
KEGG ortholog, the final quantification is a summation of all
read-KEGGorthologmatches. The results of Phase III is a three-col-
umn KEGG ortholog abundance table for each sample. To better
understand the gene composition of each sample, three additional
tables are generated containinghit pathways, hit species, and reads
KEGG ortholog mapping. Finally, an HTML report is generated
summarizing these data in figures and tables, plus a rarefaction
curve with sequence depth plotted against the number of mapped
KEGG orthologs for each sample, which can be used to determine
the minimum informative number of reads for each sample.

Evaluation with simulated data

To obtain data with known abundances for each gene, we simulat-
ed four data sets of mouse, chicken, zebrafish, and roundworm us-
ing Polyester v1.8.3 (Frazee et al. 2015). Coding sequences
assigned to KEGG pathways for these organisms were obtained
from the KEGG database (Kanehisa and Goto 2000) using
KEGGREST R package v1.12.2 (Supplemental Table S1). Each
data set had the following parameters: three biological replicates
for each control and treatment group, at least 10 times sequencing
coverage for each gene, and fold changes randomly assigned to
each gene that ranged from 1 to 10 (Supplemental Table S3). The
simulated data sets were formatted as gene abundance tables (gen-
erated by Polyester) that represent the “ground truth.”

The raw reads from each of the simulated data sets were ana-
lyzedwith three different pipelines: Seq2FunMEMmode, Seq2Fun
Greedy mode, and a conventional workflow. The conventional
workflow involved raw reads quality control by fastp v0.20.0
(Chen et al. 2018), a de novo assembled transcriptome generated
by Trinity v2.10.0 (Haas et al. 2013). TransDecoder v5.5.0 (https://
github.com/TransDecoder/TransDecoder/releases) was then used
to predict and translate the open reading frames into amino acid
fragments of the assembled transcripts, which were annotated by
KofamScan v1.3.0 (Aramaki et al. 2020) and quantified by RSEM
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v1.3.3 (Li and Dewey 2011). MEM mode conducted analysis of
mouse, chicken, zebrafish, and roundworm using their own,
species-specific protein reference databases. To mimic analyses
for a nonmodel organism, Greedy mode analysis of the mouse,
chicken, zebrafish, and roundworm data sets used protein
databases that excluded those species’ sequences (Supplemental
Tables S1, S2).

The results from each of the three pipelines were evaluated
based on precision, recall, and abundance fit of the computed
KEGG ortholog abundances compared to the “ground truth” re-
sults. As Seq2Fun was developed to complement the conventional
workflow, evaluation metrics including recall and precision for
both genes and reads were used to assess its performance. These
evaluation metrics have been widely used in many de novo tran-
scriptome assemblers (Grabherr et al. 2011; Haas et al. 2013; Xie
et al. 2014; Chang et al. 2015; Liu et al. 2016, 2019) as well as in
Kaiju (Menzel et al. 2016). Recall is defined as the fraction of true
positive features (genes or reads) out of the total “ground truth”
features (either by Polyester for simulated data or RSEM for real-
world data), whereas precision is defined as the fraction of true pos-
itive features out of the total number of predicted features (by each
tool). All the abundance tables were filtered with the criteria of at
least one read per gene and detected in at least 20% of the samples.
Coefficient of determination R2 values were calculated from the
KEGG ortholog abundance tables.

Evaluation with real RNA-seq data

We also downloaded real-world RNA-seq data sets for the same
four species: mouse, NCBI BioProject database (https://www.ncbi
.nlm.nih.gov/bioproject/) under accession number PRJEB4513
(Werber et al. 2014); chicken, NCBI Gene Expression Omnibus
(GEO; https://www.ncbi.nlm.nih.gov/geo/) under accession num-
ber GSE86592 (Hwang et al. 2018); zebrafish, EuropeanNucleotide
Archive (ENA; https://www.ebi.ac.uk/ena/browser/home) under
accession number ERP014517 (White et al. 2017); and round-
worm, GEO accession number GSE122728 (Viau et al. 2020).
Sequencing platforms were Illumina HiSeq 2000, NextSeq 500,
or HiSeq 2500 using TrueSeq RNA libraries (Supplemental Table
S3). To make sequencing depths equal, all sample reads were first
quality checked by fastp v0.20.0 (Chen et al. 2018) before an equal
number of reads were randomly sampled by seqtk v1.3
(Supplemental Table S3; https://github.com/lh3/seqtk; http://
weizhongli-lab.org/cd-hit/). Finally, we obtained six samples
(5 million reads per sample) for mouse and chicken, 40 samples
(∼1.28 million reads per sample) for zebrafish (Supplemental
Table S3), and 10 samples (5 million reads per sample) for round-
worm for downstream analyses. RSEM v1.3.3 (Li and Dewey
2011) was used for reads quantification against reference genes ob-
tained from theKEGGdatabase for these organisms. This generates
gene abundance tables that serve as a proxy of the “ground truth”
for the real data sets.

The real-world RNA-seq data sets were evaluated using the
same methods and metrics as the simulated data (three pipelines;
recall, precision, and KEGG ortholog abundance fit). In addition,
we conducted differential expression analysis (DEA) and gene set
analysis (GSA), which were used to calculate the R2 of DEA and
GSA statistics compared to the reference results. DEAwas conduct-
ed with limma-voom using the R package limma v.3.28.6 (Ritchie
et al. 2015). Significant DEGs were defined as KEGG orthologs
with an adjusted P-value (FDR method) cutoff of 0.05. Gene set
analysis was performed using the R package FGSEA v.1.14.0 with
two methods: ORA, that uses a hypergeometric test and the list
of DEGs; and GSEA, that uses the entire ranked list of genes based
on their log2FC values. For both ORA and GSEA, pathways were

considered significant if their adjusted P-values (FDR method)
were less than 0.05.

Case study with nonmodel organisms

DCCOembryoswere exposed via egg injection (Crump et al. 2020)
to EE2, a synthetic estrogen that is the active substance in some
forms of birth control, at a high (31.9 µg/g egg) (n=4) and low
dose (2.3 µg/g egg) (n=5), as well as controls that were exposed
to the DMSO solvent (n=5). Livers were harvested after 14 d expo-
sure and immediately frozen in liquid nitrogen for total RNA ex-
traction. Total RNA was sent to Genome Quebec (Montreal,
Quebec, Canada), where sequencing libraries were built with the
TruSeq RNA Library Prep Kit (Illumina) and then submitted to
Illumina NovaSeq 6000 for 100-bp PE reads sequencing. All raw
reads were subsampled to 5 million PE reads/sample before sub-
mission to either Seq2Fun (Greedy mode) or the conventional
workflow (which was described for chicken) for further analysis.
Seq2Fun (Greedymodewith default parameters) used a protein da-
tabase from the constructed birds database consisting of 87,530
protein sequences sharing 99% similarity, representing 4177 KOs
from 24 bird species (Supplemental Tables S1, S2). This database,
as well as the mammals and fishes databases, can be downloaded
fromhttps://www.seq2fun.ca. DEA andGSAwere conducted using
the same pipeline as described in the previous section for the
chicken, zebrafish, and roundworm data sets.

Computational resources used

All software tools were run on a PC Dell OptiPlex 7050 with eight
threads (Intel Core i7-6700 CPU @ 3.40 GHz) with 64 GB RAM
(DDR4, size of 16384 MB, speed 2.4 GHz).

Software availability

The source code of Seq2Fun is available in Supplemental Code; all
the databases and data sets are available in GitHub (https://github
.com/xia-lab/Seq2Fun) and the Seq2Fun website (https://www
.seq2fun.ca/).
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