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Abstract

Wheat is a staple crop that is critical for feeding a hungry and growing planet, but its nutritive

value has declined as global temperatures have warmed. The price offered to producers

depends not only on yield but also grain protein content (GPC), which are often negatively

related at the field scale but can positively covary depending in part on management strate-

gies, emphasizing the need to understand their variability within individual fields. We mea-

sured yield and GPC in a winter wheat field in Sun River, Montana, USA, and tested the

ability of normalized difference vegetation index (NDVI) measurements from an unoccupied

aerial vehicle (UAV) on spatial scales of ~10 cm and from Landsat on spatial scales of 30 m

to predict them. Landsat observations were poorly related to yield and GPC measurements.

A multiple linear model using information from four (three) UAV flyovers was selected as the

most parsimonious and predicted 26% (40%) of the variability in wheat yield (GPC). We

sought to understand the optimal spatial scale for interpreting UAV observations given that

the ~ 10 cm pixels yielded more than 12 million measurements at far finer resolution than

the 12 m scale of the harvester. The variance in NDVI observations was “averaged out” at

larger pixel sizes but only ~ 20% of the total variance was averaged out at the spatial scale

of the harvester on some measurement dates. Spatial averaging to the scale of the har-

vester also made little difference in the total information content of NDVI fit using Beta distri-

butions as quantified using the Kullback-Leibler divergence. Radially-averaged power

spectra of UAV-measured NDVI revealed relatively steep power-law relationships with

exponentially less variance at finer spatial scales. Results suggest that larger pixels can rea-

sonably capture the information content of within-field NDVI, but the 30 m Landsat scale is

too coarse to describe some of the key features of the field, which are consistent with topog-

raphy, historic management practices, and edaphic variability. Future research should seek

to determine an ‘optimum’ spatial scale for NDVI observations that minimizes effort (and

therefore cost) while maintaining the ability of producers to make management decisions

that positively impact wheat yield and GPC.
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Introduction

Crop yields are often quite variable within individual fields due to differences in soil fertility, topog-

raphy, weediness, and management efforts, but also for reasons that are not entirely clear [1]. Can-

opy spectral reflectance indices like the normalized difference vegetation index (NDVI) are useful

for estimating crop yield within individual fields [2–4] because the absorption and reflectance of red

and near-infrared wavelengths is a good proxy for leaf area, which in turn is a good proxy for growth

[5] and yield [6]. Following this notion, the yields of many different crops have been estimated using

NDVI and related vegetation indices using aerial and satellite-based platforms [7–9].

Other crop attributes also determine price, like grain protein content (GPC) for the case of

wheat (Triticum aestivum L.) [10,11]. Understanding GPC is critical not only for agricultural

management [12] but also for the global food system as it is predicted to decrease in a changing

climate [13]. Wheat yield and GPC are often inversely related within a field [14–17] because

water stress during grain filling increases GPC but decreases yield [18]. Despite this, yield and

GPC can be positively related depending on edaphic properties and management interven-

tions [16,19], with great advantage to producers. Field-scale management can therefore be

improved by understanding relationships between NDVI, yield, and GPC.

The spatial variability of GPC has been successfully estimated from NDVI and other vegeta-

tion indices using different remote sensing platforms [20–26] and across time [27,28], especially

during later stages of crop development, namely anthesis [18,29,30]. Wheat yield is often more

strongly related to vegetation indices that are integrated across the growing season to capture

the full period of canopy development and thereby crop carbon uptake [31–33]. As with all

remote sensing products, there is a tradeoff between frequent measurements and spatial resolu-

tion that needs to be understood when designing observation systems. Satellite platforms offer

frequent observations at scales of tens of meters to kilometers, which may be insufficient to cap-

ture within-field spatial variability. Unoccupied aerial system technologies and portable spectro-

radiometers [34] can collect observations at spatial scales on the order of centimeters or less

[35] but usually make measurements rather infrequently, depending on effort, which adds cost.

Wheat yield and GPC can even be estimated using consumer-grade cameras [36] that can be

mounted as ‘phenocams’ to take repeat measurements at frequent intervals at fine spatial scales

[37]. With these emerging technologies and opportunities, an important question remains: in a

data-rich world, what observations are necessary for a concise description of within-field vari-

ability of wheat yield and GPC? We argue that the answer lies, in part, in understanding the pat-

terns of spatial variability of NDVI, yield, and GPC within wheat fields.

Here, we investigate the relationships between wheat yield and GPC measured by a har-

vester, NDVI observations from an unoccupied aerial vehicle (UAV) at the scale of approxi-

mately 12.5 cm, and NDVI observations at 30 m from Landsat. We ask if the spatial scale of

Landsat is sufficient to characterize field-scale variability in wheat yield and GPC and, hypoth-

esizing that it is not, seek to understand which UAV-based observations create the best fit with

both yield and GPC observations. We then quantify the consequences of spatial averaging on

NDVI statistics and information loss to quantify the compromises that one makes by observ-

ing at coarser spatial resolution. We discuss our findings in the context of field-scale manage-

ment and ways to efficiently use spatial data to improve wheat yield and GPC.

Materials and methods

Study site

Measurements were made in an agricultural field located south of Sun River, Montana, USA

(Fig 1) [38] that housed the “US-MSR” Ameriflux eddy covariance measurement tower at
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47.4758 N, 111.7207 W (see S1 Fig). The mean annual temperature over the past 30 years at

the Great Falls International Airport located 25 km due east of the study site is 7.0˚C and the

mean annual precipitation is 375 mm. The study area is 420 m in the east-west direction and

570 m in the north-south direction with rows oriented north-south. Brawl CL Plus hard red

winter wheat [39] was planted in 2015 and harvested in 2016 following a year of summer fallow

in 2015, winter wheat harvested in 2014, a combination of pea (Pisum sativum), lentil (Lens
culinaris), and mustard (Brassica hirta) harvested in 2013, and summer fallow in 2012.

NDVI acquisition and analysis

We acquired multispectral imagery on May 19, June 8, July 1, and July 20, 2016, between 900

and 1400 local standard time to minimize sun angle effects, with most flights occurring within

Fig 1. (top) A map of the study area; a winter wheat field near Sun River, Montana, USA. Aerial imagery was acquired

on July 3, 2017, from the National Agricultural Imagery Program. The two base maps and data displayed in the top

figures are from OpenStreetMap and OpenStreetMap Foundation (CC-BY-SA) and contributors, https://www.

openstreetmap.org.

https://doi.org/10.1371/journal.pone.0265243.g001
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an hour of 1000. Observations from the different dates are subsequently abbreviated NDVIdate.

We first established eight permanent ground control points using a R8-3 base station and a

R8-4 multi-constellation GNSS receiver (Trimble, Sunnyvale, CA, USA) and achieved 1.5 to

1.8 cm precision at a 95% confidence interval in both the horizontal and vertical directions.

Green (550 nm), red (660 nm), red edge (735 nm), and NIR (790 nm) bands were measured

using a senseFly multiSPEC 4C camera mounted on an eBee drone (senseFly Ltd., Cheseaux-

Lausanne, Switzerland) with integrated inertial measurement unit, global positioning system

(GPS), and autopilot. The multiSPEC 4C camera contains an integrated upward-facing irradi-

ance sensor, which was calibrated before each flight with an Airinov MultiSPEC 4C calibration

target. This allowed us to convert spectral radiance to reflectance and compare NDVI among

measurement dates. SenseFly eMotion 2 software was used for flight planning, execution, and

preliminary processing. Othomosaics and NDVI rasters for each date were derived by post-

processing with Pix4Dmapper Pro (Pix4D SA, Lausanne, Switzerland). The average ground

sampling distance was 12.5 cm with an average geolocation root mean square error (RMSE) of

2.3 cm (Table 1). Observations were resampled to match the spatial scale of the image with the

coarsest resolution, 13.43 cm from the July 1 image. We created a daily NDVI product for the

May 19—July 20 period, NDVIint, by linearly interpolating NDVI observations from each

pixel from each UAV flight.

Landsat

Landsat NDVI calculations were made at 30-meter resolution using data from the Landsat 7

mission and Google Earth Engine [40]. We used the maximum NDVI value for the calendar

year to compare with yield data from the combine harvester.

Data analysis

Unsupervised classification. We combined the four dates of UAV NDVI imagery into a

single raster file for spatio-temporal classification. We used k-means unsupervised classification

in Erdas Imagine (Hexagon Geospatial, Norcross, GA), with 50 initial classes. From these data,

we used the Grouping Tool to create three classes from the 50 original classes using expert

knowledge of the field (topography, geology, soil distribution, etc.) to logically combine classes.

We then imported the three-class classified map into ArcMap (Esri, Inc., Redlands, CA), created

masks for each group, and extracted the NDVI values for each of the four dates. We averaged

the NDVI values for each date and class to create four-date trajectories of average NDVI.

Comparison of NDVI to yield data. Georeferenced (“GPS-tagged”) wheat yield and GPC

measurements were made using a combine yield monitor during harvest (S2 Fig). These data

were cleaned using Yield Editor (United States Department of Agriculture, Washington D.C.)

to adjust for sensor lag and missing values. To match the footprint of the combine with

observed NDVI values, we created 1×12 m rectangular buffers around each yield point, from

which we extracted the average NDVI values from each date within the buffer polygon.

Table 1. Average ground sampling distance (GSD, i.e. ‘pixel size’) and the root mean square error (RMSE) of the

ground control point used for UAV imagery on each date.

Date (2016) GSD (cm) Geolocation RMSE (cm)

May 19 11.03 3.6

June 8 12.48 1.4

July 1 13.43 2.6

July 20 13.13 1.7

https://doi.org/10.1371/journal.pone.0265243.t001
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Statistical analysis. We used Akaike’s Information Criterion (AIC) to select amongst different

linear models of yield and GPC as a function of NDVI measured on the four different dates as well

as NDVIint. Models were selected using the dredge routine in the MuMIn package [41] in R [42].

Spatial analysis. We calculated the change in total variance of NDVI that results from

averaging with increasingly large pixels to understand how variance is “averaged out” at

coarser spatial scales, often called the ‘grain’ of the image, not to be confused with the grain

crop. NDVI varies between 0 and 1 in the absence of water bodies and, if unimodal, can be

modeled as a Beta distribution [43] as increasingly used for studies of plant cover [44]. We fit

Beta distribution parameters using observations from the original images and the spatially-

averaged images using maximum likelihood methods. We then calculated the change in infor-

mation content that results from spatial averaging using the Kullback-Leibler divergence

(DKL) for the Beta distribution:

DKL ¼ ln
Bða0; b0Þ
Bða;bÞ

� �

þ a � a0ð Þc að Þ þ b � b
0

ð Þc bð Þ þ a0 � aþ b
0
� bð Þc aþ bð Þ: ð1Þ

where α and β are the shape parameters of the Beta distribution of NDVI from the original

image, α0and β0 are the parameters of the Beta distribution after spatial averaging, B is the beta

function, and ψ(x) is the digamma function:

c xð Þ ¼
d
dx

ln
�
GðxÞ

�
ð2Þ

where Γ(x) is the gamma function.

To quantify scaling relationships within the field on the different measurement days we cal-

culated the radially-averaged power spectral density (Y) of each NDVI image [45,46] with

Fatiando a Terra v0.5 for Python [47], and interpreted the resulting spectra in terms of its

power-law exponent b [48,49]:

Y ¼ ckb ð3Þ

where k is scale (m−1) and c is a normalization constant.

Results

Spatial and temporal patterns of NDVI

NDVI averaged 0.91±0.014 on May 19, 0.88 ± 0.025 on June 8, 0.44 ± 0.063 on July 12, and

0.27 ± 0.011 on July 20 (Fig 2). Unsupervised classification distinguished different parts of the

field as having relatively high, medium, or low NDVI trajectories across the growing season

(Fig 3). This classification–and the images themselves–reveal NDVI patterns with different

characteristic length scales from centimeters to hundreds of meters, with implications for

yield, GPC, and within-field management opportunities.

Relationships between NDVI and wheat yield

NDVI measurements from each UAV flyover were significantly related to yield (P< 0.05, Fig

4), but Landsat NDVI observations only explained 1% of its variability. NDVI measurements

from June 8 (NDVIJune8) and July 12 (NDVIJuly12) explained 20% or more of the variability of

wheat yield (Fig 2 top), but NDVIMay19 and NDVIJuly20 explained less than 14%. Linear model

selection using AIC indicated that a model that summed NDVI measurements from all periods

(SNDVI) explained nearly 25% of the variability in yield (Fig 5A) and represented 59% of the

weight–the relative likelihood–across all models tested. Assuming a linear relationship
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between each NDVI observation and time, creating a NDVI product for every day, and sum-

ming the subsequent interpolated values did not improve the model (Fig 5B). The model with

the highest R2, Yield = −11520 + 963.2 ×NDVIJuly1 + 3750 ×NDVIJuly20 + 7254 × NDVIJune8

+ 8617 × NDVIMay19, explained 26% of the observed variability in yield, similar to the linear

model as a function of SNDVI. In other words, a model with four discrete NDVI measure-

ments explained slightly more variability in yield than a measurement that included only their

sum but was penalized by the AIC analysis for having more parameters.

Relationships between NDVI and grain protein content

NDVIMay19 explained 30% of the variability in GPC. NDVIJuly19 was also significantly related

to GPC (P< 0.05) but only explained 6% of its variability (Fig 6). Model selection using AIC

chose a model that includes NDVIMay19, NDVIJuly20, and a negative relationship with NDVI-

June8, but not NDVIJuly12:

GPC ¼ � 25:20þ 27:9100�NDVIJuly20 � 19:4100�NDVIJune8 þ 52:36�NDVIMay19:

Fig 2. The observed normalized difference vegetation index (NDVI) measured by an unoccupied aerial vehicle

(UAV) from a winter wheat field near Sun River, Montana for four measurement dates in 2016.

https://doi.org/10.1371/journal.pone.0265243.g002
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This model explained 40% of the variability in GPC and represented 59% of the weight

across all models tested (Fig 7). The remaining 41% weight was represented by a model that

includes NDVI on all dates including a negative term for NDVIJune8, meaning that the most

parsimonious model would be represented by a combination of 59% of the model that

included three NDVI dates and 41% of the model that included all four. We also explored Red

Edge as an alternative to NDVI, but this explained about 1% less of the variability in GPC than

did NDVI and did not improve the yield model.

Interpreting the NDVI observations as a function of spatial scale

The rich spatial patterns of NDVI observations (Figs 2 and 3) led us to question how much of

the variability in their distributions (Fig 8A) was “averaged out” by Landsat that provided data

on 30 m scales and the harvester that provided yield and GPC data on 1 × 12 m scales. Total

variance monotonically decreased with larger spatial averaging operators, i.e. as spatial grain

size increased for each image (Fig 8B), but with different slopes and degrees of nonlinearity

such that the role of averaging may be better envisioned by the loss of variance as a function of

Fig 3. Results of an unsupervised classification of NDVI into relatively high, medium, and low NDVI classes.

https://doi.org/10.1371/journal.pone.0265243.g003
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scale (Fig 8C). Over 50% (75%) of the total variance of the NDVIMay19 (NDVIJuly20) image was

lost when aggregating to the scale of the harvester and Landsat, but only ⅓ of the total variance

of the NDVIJune8 image was lost at the 30 m Landsat scale. The earlier NDVI measurements

(May 19 and June 8) had substantial negative skew (Fig 8D), indicating the presence of areas

in the field with far lower NDVI than the mean that are likely candidates for management

intervention. This skewness was also “averaged out” at larger spatial scales, especially the

Fig 4. The relationship between the normalized difference vegetation index (NDVI) measured by an unoccupied

aerial vehicle on four dates and wheat yield in a winter wheat field near Sun River, MT, USA.

https://doi.org/10.1371/journal.pone.0265243.g004

Fig 5. The relationship between winter wheat yield and the sum of unoccupied aerial vehicle measurements of the

normalized difference vegetation index (SNDVI) for four measurement dates in a winter wheat field in Montana,

USA (A, see Fig 4). The relationship between yield and the sum of daily NDVI from May 19, 2016, until July 20, 2016

was created with a linear interpolation of NDVI measurements (SNDVIint) across the four measurement dates.

https://doi.org/10.1371/journal.pone.0265243.g005
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NDVIMay19 image whose skewness changed from −4 to −0.5 upon averaging to the Landsat

scale.

The DKL quantifies the change in information content between the original and spatially-

averaged images. It increased rapidly at spatial scales larger than 30 m (Fig 9A) but was less

Fig 6. The relationship between the normalized difference vegetation index (NDVI) measured by an unoccupied

aerial vehicle and grain protein content in a winter wheat field near Sun River, MT, USA. Relationships that are not

significant at the P< 0.05 level are not plotted.

https://doi.org/10.1371/journal.pone.0265243.g006

Fig 7. The relationship between protein content (%) and the best-fit linear model of all identified using Akaike’s

Information Criterion: Protein = −25.20 + 27.9100× NDVIJuly20 − 19.4100 × NDVIJune8 + 52.36 × NDVIMay19. The

dashed line represents the 1:1 line.

https://doi.org/10.1371/journal.pone.0265243.g007
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than 0.15 (0.25) at the harvester (Landsat) scale for the NDVIMay19, NDVIJune8, and NDVIJuly1

images. (The DKL for the NDVIJuly20 image was consistently much larger and is not shown in

the figures for clarity.) Changes to the α parameter (i.e. α’) dominated DKL for the May 19 and

June 8 images as spatial grain became larger, and changes to the β parameter (i.e. β’) domi-

nated DKL for the July 1 image.

The power law exponent (i.e. b) of the radially-averaged power-density spectra was constant

at b = 2.3 (2.4) for the June 8 (July 1) images across all scales (Fig 10) noting that the July 1

image has more total variance than the June 8 image (Fig 8B). There was notable variability in

all spectra and a scale break in the May 19 and July 20 images on the order of 6 m−1 (i.e. ~17

cm) and b decreased faster at spatial frequencies larger than this value, especially in the May 19

image when it decreased from −2 to −3.2 (Fig 10). There was also notable variability in all spec-

tra at 20.6 m−1, about 5 cm (Fig 10). Some of the minor peaks at lower spatial frequencies pres-

ent in the other images were absent in the June 8 image which suffered from less information

loss at larger spatial scales than the other images (Fig 8C).

Discussion

Detailed observations are expected to provide agricultural producers with the knowledge to

further develop prescriptive management practices. Because UAV mapping is becoming wide-

spread, it is essential to explore the boundaries of what is practical and necessary to improve

agricultural management and sustainable production. We discuss how the interpretation of

NDVI at fine spatial scales can provide producers with the correct amount of information–not

too much and not too little–to understand within-field variability in important attributes that

are related to yield and GPC.

Fig 8. The distribution of the NDVI images (A) and variance (B), loss of variance (C), and skewness (D) of each NDVI

image as a function of spatial scale. The 30 m length scale of Landsat (dashed line) and the 12 m length scale of the

harvester (dotted line) are indicated for reference.

https://doi.org/10.1371/journal.pone.0265243.g008
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Spatio-temporal patterns of NDVI

The southwest portion of the study field had consistently higher NDVI throughout the grow-

ing season. This part of the field had lower topography that likely benefits from water drainage

in characteristically dry north-central Montana (Figs 1 and 3). There was an east-to-west

swath of higher NDVI that was identified as an old fence line, where blowing soil likely accu-

mulated in prior decades and improved fertility (Fig 3). Areas of moderately high NDVI were

widely distributed throughout the field and were observed along thin linear features, especially

in the northeast portion of the field, thought to be associated with the edges of shale cracks

from which roots could access deeper soils. Areas of consistently lower NDVI through the

growing season were primarily clustered in the northern portion of the field, likely associated

with lower water retention and thinner soils at higher topography. Such observations can

guide further soil sampling, which is key to further improve yield prediction [50]. Note that

these patterns are not readily apparent to the human eye, to which the field appears largely

homogeneous (S1 Fig).

From this analysis, it is apparent that NDVI observations provide rich spatial information

to producers. The question is how much is necessary. All four UAV flights were necessary to

identify key features of the study field; note for example that many of the features identified by

the unsupervised classification (Fig 3) were not apparent in the May 19 image (Fig 2A). NDVI

measured early in the growing season can predict eventual yield [51] but feature identification

relied on all images, as did the best model for yield prediction (Figs 4 and 5). NDVI from the

Fig 9. The change in Kullback-Leibler divergence (DKL, A), the α parameter of the Beta distribution (α’, B), and the β
parameter of the Beta distribution (β’, C) of observed NDVI as a function of spatial scale. The 30 m length scale of

Landsat (dashed line) and the 12 m length scale of the harvester (dotted line) are indicated for reference.

https://doi.org/10.1371/journal.pone.0265243.g009
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May 19 image alone was able to explain 30% of the variability in GPC (Fig 6A), and additional

observations increased predictive power by only about 10% (Fig 7). Management interventions

during earlier dates, especially during the wheat heading stage, are candidates for N top dress-

ing, the major within-season management correction that producers can take to enhance GPC

[52]. In other words, all the images produced information that can be useful for understanding

the idiosyncrasies of an individual field, but earlier information can guide specific manage-

ment strategies to benefit yield and GPC in a given growing season. One potential approach to

maximize information and minimize effort is to make multiple flyovers during initial investi-

gations to understand the properties of individual fields, then reserve flights in future years for

early periods of the growing season to identify deficiencies from expected crop growth

patterns.

NDVI as a function of spatial scale

It is readily apparent that the high-resolution information from the UAV flyovers greatly

exceeds the yield and GPC information that the harvester can provide, creating a scale mis-

match that can be understood by exploring how spatial averaging alters the information con-

tent of the NDVI images. At least 22% (June 8) and up to 75% (July 20) of the observed NDVI

variance is averaged out at the scale of the harvester, 12 m (Fig 8B and 8C), which makes much

of the information content of the UAV NDVI images irrelevant for understanding yield and

GPC observations collected at coarser scales. Notably, many of the underperforming areas visi-

ble early in the May 19 image by its negative skew (Fig 8D) were averaged out at larger spatial

scales. That being said, the practical consequences of high skewness in the case of the study

field may be unimportant; less than 0.1% (10,000) of the nearly 12.3 million NDVIMay19 obser-

vations had an NDVI of less than 0.8 on May 19. Instead of dwelling on information loss with

Fig 10. The radially-averaged power density spectra (PDS) of each NDVI image as a function of scale (k) with the

power law exponent b for values less than 2 m−1 (left) and greater than 10 m−1 (right). The 30 m length scale of Landsat

(dashed line) and the 12 m length scale of the harvester (dotted line) are indicated for reference.

https://doi.org/10.1371/journal.pone.0265243.g010
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spatial averaging, there are many features of NDVI at coarser spatial scales that might be con-

sidered promising for a simpler description of its spatial variability.

In addition to the relatively low loss of variance in the June 8 image, the DKL analysis reveals

low information loss compared to the other images (Fig 9A). This means that the shape of the

Beta distribution, as defined by its parameters (Fig 9B and 9C), was largely maintained upon

spatial averaging. In other words, parameters fit from data at coarser spatial scales are a reason-

ably good approximation for those fit from data at finer scales. It helps that NDVI followed

unimodal distributions for all UAV flights.

This opens the possibility for an efficient description of the variability of fine-scale data

from coarse-scale data, as also revealed by the scaling analysis (Fig 10) which demonstrates

that NDVI from all images follows a power-law scaling relationship of b ~ −2 at spatial scales

larger than ~ 0.5 m. The June 8 and July 1 images had a common scaling relationship of b ~ −2

across all scales. The May 19 image follows an even steeper power-law relationship (b ~ −3.2)

at spatial scales smaller than ~ 0.1 m suggesting that exponentially less information is present

at high frequencies and the dominant modes of variability in the field are at relatively low spa-

tial frequencies, i.e. large spatial scales. These observations demonstrate that small spatial scales

make minor contributions to the total variance of the image, but our analysis was constrained

by the spatial scale of the harvester, below which we had no basis to infer spatial patterns of

yield and GPC. Obtaining harvester information at finer spatial scales would help match the

spatial resolution (‘grain’) of the UAV observations and we anticipate that harvester technol-

ogy will continue to improve to make it cost-effective for producers to invest in instrumenta-

tion that can measure grain attributes at finer spatial resolutions.

Remote sensing at sub-field scales

It is important to note throughout this analysis that we investigated NDVI when multiple indi-

ces have proven effective for understanding wheat yield and GPC [53] and it remains unclear

which is best [19,54]. Information from green and blue bands tends to be less successful for

predicting wheat yield [55] and we found lower descriptive power when using red edge mea-

surements (not shown). Moving beyond NDVI, other vegetation indices like the plant pigment

ratio have been successful for predicting GPC [56]. Multispectral data have proven effective

for predicting wheat yield [57,58], water status [59], GPC and nitrogen dynamics [60–62],

senescence [63], and even detecting diseases [64]. Newer techniques including sun-induced

fluorescence show promise in understanding wheat nitrogen dynamics [65,66]. The near-

infrared reflectance of vegetation (NIRv) and variations that include reflected radiance show

promise for understanding gross primary productivity in heterogeneous ecosystems [67,68].

Combined, our results suggest that not all spectral data are necessary for a concise description

of yield and GPC, nor are all spatial data. Going forward, we recommend an experiment that

‘oversamples’ within-field wheat spectral reflectance at hyperspectral, ‘hypertemporal’ [69,70],

and hyperspatial resolution to quantify the information that is necessary to predict yield and

GPC, as well as the unnecessary information. By quantifying the benefits, but also the costs, of

information acquisition, producers can gain a richer understanding of the most cost-effective

information to collect to manage wheat yields and GPC and continue feeding a growing

populace.

Supporting information

S1 Fig. A photograph of an eddy covariance tower on the study field taken on May 4, 2016,

and located at 47.4758 N, 111.7207 W (Image credit: Dr. James Irvine).
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S2 Fig. Yield and grain protein content (GPC) data from a combine sensor were averaged

across 1 × 12 m rectangular buffers to approximate the combine footprint. The dark area in

the center of the image is the location of the micrometeorological tower, which was avoided by

the combine.
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