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Abstract

With the advent of high throughput genetic data, there have been attempts to estimate heri-

tability from genome-wide SNP data on a cohort of distantly related individuals using linear

mixed model (LMM). Fitting such an LMM in a large scale cohort study, however, is tremen-

dously challenging due to its high dimensional linear algebraic operations. In this paper, we

propose a new method named PredLMM approximating the aforementioned LMM moti-

vated by the concepts of genetic coalescence and Gaussian predictive process. PredLMM

has substantially better computational complexity than most of the existing LMM based

methods and thus, provides a fast alternative for estimating heritability in large scale cohort

studies. Theoretically, we show that under a model of genetic coalescence, the limiting

form of our approximation is the celebrated predictive process approximation of large

Gaussian process likelihoods that has well-established accuracy standards. We illustrate

our approach with extensive simulation studies and use it to estimate the heritability of multi-

ple quantitative traits from the UK Biobank cohort.

Author summary

In recent years, there is an increased interest of estimating heritability from genome-wide

SNP data in large scale cohort studies. Here, we propose the PredLMM, a computationally

rapid and memory-efficient linear mixed model for heritability estimation. The proposed

approach can estimate SNP heritability on Biobank-scale datasets in a fraction of time

compared to the existing mixed model based approaches. Along with the extensive simu-

lations illustrating the precision and robustness of the PredLMM, we have also estimated

heritability of several anthropometric traits from the UK Biobank cohort.

Introduction

In the past few decades, genome-wide association studies (GWASs) have identified hundreds

of single nucleotide polymorphisms (SNPs) influencing the genetic architecture of complex
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diseases and traits. For majority of the traits, however, the associated SNPs from a GWAS only

explain a small fraction of the heritability estimated using twin and family studies. In search of

this so called “missing heritability”, there were attempts to capture even infinitesimal SNP

effects by taking into account genome-wide variants in a linear mixed model (LMM) frame-

work [1–4]. This SNP-based LMM framework usually involves distantly related people, whose

extent of genetic relatedness depend on their evolutionary history [5]. The total trait variance

in this LMM approach is decomposed into two variance components such as the additive

genetic variance and the residual variance. [6–8]. The approach requires computation and

inversion of a high-dimensional genetic relationship matrix (GRM) from the genome-wide

SNP data of dimensionality same as the sample size. Heritability is calculated as the ratio of the

additive genetic variance to the total variance. There are softwares [1, 3, 9] which follow

restricted maximum likelihood (REML) approach for estimation of the parameters and are

collectively referred to as genome-based restricted maximum likelihood (GREML) methods.

In recent years, advances in genome sequencing have generated huge amount of genetic

data on large scale cohort studies, such as UK Biobank [10], Precision Medicine cohort [11],

Million Veterans Program [12]. These studies collect data on millions of genetic markers and

numerous diseases/traits on thousands of individuals. For example, UK Biobank cohort has

data on approximately 500,000 individuals, 800,000 markers and numerous traits. Therefore,

it is needless to say that GREML methods need to be extremely time and memory efficient to

be applicable on such magnanimous studies.

Programs such as genome-wide complex trait analysis (GCTA) [1], genome-wide efficient

mixed model association (GEMMA) [9] have implemented efficient algorithms to fit the

GREML approach. These programs usually follow two steps: first, compute the genetic rela-

tionship matrix (GRM) with the SNP data on the individuals and second, use the computed

GRM to fit a GREML corresponding to a trait. If N be the number of individuals and M be the

number of SNPs, the first step of computing the GRM, takes complexity of O(MN2) FLOPS

(floating point operations). And, the next step i.e., fitting the REML to estimate heritability,

requires inverting the GRM matrix which uses per iteration complexity of O(N3) FLOPS.

When N is extremely large (say more than 100,000), this step becomes computationally intrac-

table. It should be noted that the first step (computing the GRM) is also very demanding in

terms of both computation and memory requirements (especially when M, N both are large).

In large biobank-scale studies, where the interest is to estimate heritability of a large number of

traits, implementing these approaches becomes computationally very demanding.

Recently, an approximate method named Bolt-REML [3, 13, 14] has been proposed that

trades off small amount of accuracy in favor of greater computational speed. It follows a differ-

ent path than the above methods. It does not compute the GRM but uses the SNP data directly

to fit the REML by monte carlo average information REML algorithm. It has computational

complexity of O(MN1.5) per iteration which is better than the previous methods in terms of N.

The software is well optimized and in our analysis of UK Biobank data, it performed much bet-

ter compared to the other approaches in terms of computational time. However, the complex-

ity of Bolt-REML is not linear in N which makes it challenging to use for larger N (>300, 000).

Additionally, the computational complexity also increases linearly with M per iteration. Thus,

in a large cohort with millions of SNPs, it would be immensely intensive to use Bolt-REML for

estimating heritability of all the traits one by one. On the other hand, methods like GCTA,

GEMMA estimate the GRM only once (with computational complexity of O(MN2)) and after

that, the complexity of analyzing any trait does not depend on M.

Alternative to the REML estimation approaches, there are other ways of estimating herita-

bility from the LMM framework that can be computationally much faster but cost significant

efficiency [15–17]. There are also methods like LDAK [18], MultiBLUP [19] which are based
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on more realistic assumptions than the standard LMM framework considered in the GCTA-

GREML methods. They have been shown to produce more robust estimates of heritability [20,

21]. In this paper, however, we limit our focus on the GCTA-GREML model and propose a

scalable alternative.

In this paper, we approximate the likelihood of the standard LMM framework to develop a

rapid algorithm for estimating heritability. The approximation is motivated by the concepts of

genetic coalescence [22, 23] and Gaussian predictive process models [24, 25]. Our proposed

approach PredLMM exploits the structure of the GRM to ease the computationally demanding

linear algebraic steps of the standard GREML algorithm, such as calculation of the determinant

or inverse of a high dimensional matrix (N × N) at every iteration. It reduces per iteration

computational complexity from O(N3) FLOPS (floating point operations) to O(Nr2) + O(r3)

FLOPS where r is much smaller than N. Theoretically, we show that under a model of genetic

coalescence, the limiting form of our approximation is the celebrated predictive process

approximation of large Gaussian process likelihoods [24] that has well-established accuracy

standards. The method does not require computing and storing the full GRM which would

take up O(N2) storage and cost a significant amount of time. Our approach stores only a few

blocks of the GRM and requires only a storage space of O(Nr + r2). We have demonstrated

that the proposed approach achieves accuracy close to the GREML methods through extensive

simulation studies replicating many possible realistic scenarios. We have analyzed the UK Bio-

bank cohort data (with 286,000 British individuals and 566,000 SNPs) to estimate the heritabil-

ity of Standing Height, Weight, BMI, Systolic and Diastolic blood pressure, Hip and Waist
circumference. We have implemented PredLMM in an efficient Python module available at

this link, (https://github.com/sealx017/PredLMM). It is worth pointing out that in the devel-

oped module, we allow users to incorporate SNP-based weights, such as LD-based weights

proposed by Speed et. al. (2012) [18], into the GRM-estimation.

Methods

Genome-based restricted maximum likelihood

Model specification. Let Y denote the N × 1 vector of phenotype corresponding to N indi-

viduals, X denote the N × p matrix of covariates, and W denote the N × M matrix of mean and

variance scaled genotype for the N individuals and M SNPs, i.e., E(wij) = 0 and Var(wij) = 1.

Consider the following LMM,

Y ¼ XβþWγ þ �; γ � NNð0; s
2
wIÞ; � � NNð0; s

2
eIÞ ð1Þ

And, the corresponding marginal model can be written as,

Y � NNðXβ; s2
hAþ s

2
eIÞ; s2

h ¼ Ms2
w; A ¼

1

M
WW> ð2Þ

where A is formally known as the Genetic Relationship Matrix (GRM) and I is the identity

matrix. Heritability is calculated as h2 ¼ s2
h=ðs

2
h þ s

2
eÞ.

Estimation approaches. To estimate the variance parameters s2
h; s

2
e and eventually h2, dif-

ferent REML algorithms are generally used. The entire framework is referred to as genome-

based restricted maximum likelihood (GREML) approach. There are two types of programs

implementing the GREML approach: a) Exact Methods (methods that converge to the REML

optimum) and b) Approximate Methods (methods that approximate the REML optimum).

Exact Methods: Programs such as GCTA [1], GEMMA [26] operate in two steps: first, com-

pute the GRM, A ¼ 1

M WW> and second, consider the computed A in the marginal model

from Eq 2 to estimate h2 using different REML algorithms. These REML algorithms are
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iterative and compute analytically exact solutions. For example, GEMMA uses a modified

version of Newton-Raphson method (considers exact Hessian), GCTA uses average informa-

tion (AI) method (considers approximate Hessian and hence, computationally faster).

The second step involves computing the inverse and determinant of the N × N dense matrix

V ¼ s2
hAþ s

2
eI at every iteration which takes O(N3) FLOPS, making these exact methods com-

putationally intractable as N increases.

Approximate Methods: Unlike the above methods, Bolt-REML [3, 13, 14] does not com-

pute the GRM A. It directly uses with the SNP data matrix W and follows a Monte Carlo

REML approach that uses random sampling to approximate the derivatives of the log likeli-

hood corresponding to the marginal model from Eq 2. The algorithm has computational

complexity of O(MN1.5) per iteration which is better than the previous methods in terms of

N. The software is well optimized and in our analysis of UK Biobank data, unlike the previous

methods, it would successfully converge for moderately large N (N> 100, 000) in a reason-

able amount of time. However, the per iteration computational complexity of Bolt-REML

still increases linearly with M. Thus, in a cohort study where M is closer to a million (or,

larger), it will become computationally much more challenging to use Bolt-REML. On the

other hand, methods like GCTA, GEMMA estimate the GRM only once (with computational

complexity of O(MN2)) and after that, the complexity of analyzing any trait does not depend

on M.

Sub-sample based GREML

Since, the likelihood based methods above involving the full population become increasingly

computationally demanding as the population size N increases, an alternative would be to uti-

lize a sub-sample based approach. Choose a random sub-sample of small size r from the pool

of all N individuals and use a standard GREML based program, such as GCTA to estimate her-

itability (ĥ2
sub). Asymptotically, ĥ2

sub should be consistent but have a much higher variance than

the full data based GREML estimate.

In our simulation studies and real data analysis, we assess the performance of this method

for varying values of r and refer to it as GREML (sub).

Proposed method

Asymptotic limit of the GRM. To motivate our method, we first show that under certain

assumptions, as the number of SNPs M goes to infinity, the likelihood corresponding to the

marginal model from (2) converges almost-surely to a Gaussian process (GP) likelihood. The

assumptions are as follows,

1. Assumption 1 (Correlation across individuals): We assume that each individual i = 1, 2, . . .,

N can be represented by a point (location) si in an abstract spatial manifold D equipped

with a distance d. The correlation between the genotypes of individuals i and i0 at the jth

SNP is given by Cov(wij, wi0j) = Cj(si, si0) where Cj is a valid covariance function in D which

decreases monotonically with increasing distance dðsi; s0iÞ.
This assumption is rooted in the theory of genetic coalescence [22, 23]. The coalescence

model describes the relationships within a sample from the present individuals (sequences)

back to the most recent common ancestor (MRCA) [27]. Under coalescence, the correla-

tion between genotypes of individuals will vary inversely with the time to coalescence, i.e.,

number of ancestral generations till the most recent common ancestor. Hence, the MRCAs

of different pairs of individuals in a sample can be assigned to nodes of a genealogical tree.

Trees are equipped with a valid distance metric (shortest distance between nodes) and
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models for tree-structured objects commonly specify the correlation as decreasing function

of the distance [28].

Note that, the maximum likelihood estimate of h2 from (2) has been shown to be consistent

in [29]. However, the theory relies on the assumption that the genotype distributions are

independent across individuals (upto standardization). Formally, wi? wi0 for any two indi-

viduals i 6¼ i0 where wi = ith row of W, is the genotype vector for the ith individual. Such an

assumption of between-individual independence of genotype distributions is in sharp viola-

tion of the principles of coalescent theory.

We note while coalescence model is a natural example where our assumption of latent

embedding is realized, the concept is not just restricted to trees and can be compatible with

more complex models of ancestry depicted by any manifold with a notion of distance.

2. Assumption 2 (Stationarity and ergodicity across the SNPs): We assume that the centered

and scaled genotype process ~w j ¼ ðw1j; . . . ;wNjÞ
0
is second-order stationary and ergodic for

j = 1, 2, . . .. Stationarity translates to Covð~w jÞ ¼ Covð~w j0 Þ ¼ C for all j, j0 implying that the

covariance functions Cj = C for all j = 1, 2, . . . Ergodicity implies that as the number of

SNPs grows, we have

lim
M!1

A ¼ lim
M!1

1

M

XM

j¼1

~w j ~w
>

j ! C ¼ Covð~w1Þ ð3Þ

The simplest setting where this assumption is satisfied is when the scaled and centered

genotype processes f~w jgj¼1;2;... are assumed to be iid. Assumption of iid genotypes is

common in theoretical studies of the heritability estimation [29] but independence is only

sufficient and not necessary for us. More realistic scenarios like presence of linkage disequi-

librium (LD) that effectuates correlation across genotypes can also be accommodated as

long as the ergodicity is ensured. As shown in [30], the pairwise LD among loci in a homo-

geneous population decreases exponentially as a function of the genetic distance, which val-

idates the feasibility of our assumption. Correlation structures arising from absolutely

regular-mixing processes [31] like autoregressive (AR(p)), moving average (MA(q)) or

ARMA(p, q) [32] will satisfy the strong law of convergence in Eq (3) [33].

Under Assumption 2, we have the following assertion on the limit of the marginal LMM

likelihood from (2),

lim
M!1

NNðY jXβ; s2

hAþ s
2

eIÞ ¼ NNðY jXβ; s2

hCþ s
2

eIÞ ð4Þ

where NN(Y|μ, S) denotes the N-variate normal likelihood for a realization Y with mean μ and

variance S. Thus the marginal GREML likelihood converges to the likelihood of a Gaussian

process (on D) with mean 0 and covariance function C observed at the N latent locations s1,

s2, . . ., sN. It is expected that estimation of heritability using the limiting likelihood (4) will be

similar to that from the exact likelihood (2) as the number of SNPs M is usually very large.

PredLMM. Just switching to the limiting likelihood (4) does not ease any of the computa-

tional burden as GP likelihoods also require O(N3) FLOPS. However, over the last two decades

a series of increasingly sophisticated algorithms have been proposed for fast approximate GP

likelihoods (see [34], for a recent review).

Our approach uses predictive process (PP) [24, 25] which results in the low-rank plus diag-

onal approximation of the dense matrix C. Let S ¼ fs1; s2; . . . ; sNg denote the set of N latent

locations, and S� ¼ fs1; s2; . . . ; srg denote a set of r� N locations in D referred to as the
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knots. Also, for two sets A and B in D let CA,B denote the |A| × |B| matrix (C(si, si0))i2A, i02B. The

predictive process approximation of C is given by

~CPP ¼ CS;S�C
� 1

S� ;S�CS� ;S þ diagðC � CS;S�C
� 1

S�;S�CS�;SÞ: ð5Þ

The first term is a low-rank factorization as the number of knots is much less than the sam-

ple size. [24] showed that this low-rank term is the optimal (in terms of reverse Kullback Lei-

bler divergence) low-rank approximation of C using the knots S�. [25] proposed adding the

diagonal matrix (second term) to eliminate a positive bias on the diagonal entries. For moder-

ate choices of r� N, inference from the predictive process likelihood provides an excellent

approximation to that from the full GP likelihood. Computationally, predictive process only

requires O(Nr2 + r3) FLOPS and as r� N, the approximation results in massive gains in run

times. Consequently, predictive processes is one of the most popular approximations of the

full GP likelihood and is widely adopted in many spatial applications.

In our setting, direct usage of predictive process likelihood is not recommended for two

reasons. First, the locations si are unknown to us. Hence, CPP can only be calculated using

approximate locations like a vector of the top few PC scores. The impact of such choices of

locations is less clear. Second, covariance functions usually involve additional spatial parame-

ters θ, thereby increasing the number of unknown parameters to be estimated.

Instead, we consider the following strategy. We choose S� to be a subset of S, and define I
to be the subset of B ¼ f1; 2; . . . ;Ng containing the indices corresponding to S�. We can

decompose the GRM A as,

A ¼ AB;B ¼ AB;IA
� 1

I ;IAI ;B þ ðAB;B � AB;IA
� 1

I ;IAI ;BÞ

The decomposition is inspired by the concept of conditional variance [35]. The first term

AB;IA
� 1

I ;IAI ;B on the right is the low-rank part of the full GRM A that is explained by the infor-

mation about the subset of individuals I , while the second term AB;B � AB;IA
� 1

I ;IAI ;B is the

residual GRM of the individuals in the subset B \ I c
that is not explained by the individuals in

the subset I : Replacing the term on the right with its diagonal, we then have a direct low-rank

plus diagonal approximation of A as

~APP ¼ AB;IA
� 1

I ;IAI ;B þ diagðAB;B � AB;IA
� 1

I ;IAI ;BÞ ð6Þ

We propose using the likelihood NNðY jXβ; s2
h
~APP þ s

2
eIÞ for heritability estimation. It is

clear that A and ~APP agree on the diagonals, and on the sub-matrix corresponding to the knots

I . Also, limM!1
~APP ¼

~CPP (since the individual terms of ~APP follow: limM!1ABI ¼ CS;S� ,

limM!1AIB ¼ CS� ;S and limM!1AII ¼ CS� ;S� using Eq 3). Hence, using triangular inequality,

we can write

kA � ~APP k�kA � Ck þ kC � ~CPP k þ k
~CPP �

~APP k;

where ||.|| is the Frobenius norm [36]. Under assumption 2, the first and third terms vanish as

M!1, while for a well chosen set of knots S�, the predictive process approximation ~CPP is

close to C (since C is a decreasing function of the distance as postulated in Assumption 1).

Hence the middle term will also be small. This justifies why for large M, ~APP is expected to be

close to A.

In our empirical studies detailed later, the predictive process approximation consistently

and substantially outperforms the subsample-based method when both uses the same set of
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knots (sub-sample) I . We offer some insight into this. The first term of ~APP in Eq 6 is,

AB;IA
� 1

I ;IAI ;B ¼

AI ;I AI ;Ic

AI c;I AIc ;IA
� 1

I ;IAI ;Ic

0

@

1

A: ð7Þ

As mentioned before, this low-rank matrix is the best estimate of A based on the genetic

information only from the individuals in subset I and their genetic correlation with the indi-

viduals in subset I c
. If using the sub-sampling based approach with the same sub-sample I ,

one would only use the sub-matrix AI ;I to estimate h2. This thus ignores the genetic correla-

tion of these sub-sampled inviduals with those not sub-sampled (quantified as AI ;Ic ), and is

thus sub-optimal to the predictive process approach which leverages this genetic relationship

among individuals while remaining computationally scalable.

Computational gains. Evaluation of our PredLMM likelihood NNðY jXβ; s2
h
~APP þ s

2
eIÞ,

does not require computing or storing the entire N × N GRM matrix A and can be calculated

only using the N × r tall thin sub-matrix AB;I , the small r × r square matrix AI ;I , and diagonal

elements of A. This reduces memory requirements from O(N2) to O(Nr + r2)—a substantial

gain for biobank-scale studies with large N as r� N.

Subsequently, the nice low-rank plus diagonal structure of ~APP facilitates fast evaluation of

the likelihood. Inverse of s2
h
~APP þ s

2
eI becomes feasible and significantly rapid using the

Woodbury matrix identity [37], while the matrix determinant lemma [38] is leveraged for scal-

able computation of the determinant. Both the steps involve O(Nr2 + r3) FLOPS, as r� N, the

computation is thus becomes linear in N—a drastic reduction from the O(N3) FLOPS required

for evaluating the true likelihood.

Choice of knots design and number. In traditional applications of Gaussian processes in

spatial statistics, the domain D is known and the locations si are observed. Hence, the knots

need not coincide with the data locations. Recommended choices for the knot-set include

space-filling designs and lattices [24]. In our case, the locations are artificial constructs to moti-

vate our direct approximation. Hence, restricting the knot set to be a sub-sample of these

hypothetical data locations is necessary to ensure that the direct approximation ~APP can be cal-

culated using sub-matrices of A. However, our practice has precedence even in conventional

spatial settings. Using some of the data locations has been shown to improve performance of

predictive process [24], while related approaches like splines and other basis function expan-

sions also commonly use data locations as knots. We used random sub-samples of the individ-

uals as knots in the simulation studies discussed in Verification and comparison Section and it

demonstrated considerable robustness to the choice of sub-sample. However, in the real data

analysis, the performance seemed to improve with a more careful knot-selection. We pre-com-

pute the sum of the entries of each row of the true GRM A. Next, we ordered the set of indices,

B based on high to low values of row-sum and then selected first r individuals as the set of

knots. Note that a large value of row-sum indicates that the particular individual shares signifi-

cant genetic relationship with one or more other individuals and would be a more fitting

choice as a knot than an individual sharing little to no correlation with the rest of the individu-

als. The reasoning becomes more apprehensible if we look at Eq 7. The only off-diagonal ele-

ments of ~APP that do not exactly match those of the true GRM A, are the ones corresponding

to the sub-matrix AIc ;IA
� 1

I ;IAI ;Ic . If we choose a set of knots I where the individuals not do not

share high genetic relationship among themselves or with others (I c
), AI ;I will be close to an

identity matrix and AI ;Ic close to a matrix with all 0’s. It will further cause the off-diagonal ele-

ments of AI c ;IA
� 1

I ;IAI ;Ic to be mostly 0 and far from their true values. In short, for better
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prediction of the genetic relationship values between the individuals of the set I c, choosing an

informative set of knots I is important.

Choice of the the number of sub-samples r to be used for PredLMM is more nuanced. Per-

formance of predictive process is generally more sensitive to the number than the design of the

knots [24, 39]. Increasing r improves the quality of the approximation, with ~APP exactly equal-

ling A when r = N and I ¼ B. However, as the computation is cubic in r, use of a very large r
would defeat the purpose of the approximation. Parallel computing resources, if available, can

be heavily deployed for this step.

Asymptotic variance of the estimator. We have derived the expression of the asymptotic

variance (standard error) of the PredLMM estimator. Since it is extremely time consuming to

perform the matrix multiplications needed for the exact computation of the variance expres-

sion, we make some reasonable approximations. The details of the derivation can be found in

S1 Appendix.

Verification and comparison

Simulation Study 1: Simulation under coalescent model

The following simulation study replicated a scenario where Assumption 1 from Section

Asymptotic limit of the GRM approximately held i.e., every individual originated from a com-

mon ancestor and individuals in the same sub-population shared a more recent ancestor than

the individuals in different sub-populations. Such an evolutionary tree-like structure with four

generations has been depicted in Fig 1, based on which we generated the population.

The generation procedure was as follows. For each SNP j (j = 1, . . ., M), the allele frequency

pð0Þj in the first generation was drawn from a uniform distribution on [0.1, 0.9]. In the second

generation, allele frequencies of two different individuals: pð1Þ1j ; p
ð1Þ

2j were independently simu-

lated from a beta distribution with parameters pð0Þj ð1 � yÞ=y and ð1 � pð0Þj Þð1 � yÞ=y; y ¼ 0:05.

This model is commonly known as Balding-Nichols model [40, 41]. In the third generation,

allele frequencies of two individuals: pð2Þ1j ; p
ð2Þ

2j were independently drawn from a beta distribu-

tion with parameters pð1Þ1j ð1 � yÞ=y and ð1 � pð1Þ1j Þð1 � y=y and allele frequencies of other two

individuals: pð2Þ3j ; p
ð2Þ

4j were independently drawn from a beta distribution with parameters

Fig 1. The figure shows a model coalescence with four generations. Each of the four blocks of people in the fourth

generation share one of the individuals from the third generation as common ancestor. Similarly, the four people in

the third generation have originated from the two in the second generation. And, finally those two people have

originated from a common ancestor in the first generation.

https://doi.org/10.1371/journal.pgen.1010151.g001
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pð1Þ2j ð1 � yÞ=y and ð1 � pð1Þ2j Þð1 � yÞ=y. Finally, in the fourth generation, the allele frequency of

j-th SNP of the i-th individual from the k-th sub-population (k = 1, . . ., 4): pijk was simulated

from a beta distribution with parameters pð2Þkj ð1 � yÞ=y and ð1 � pð2Þkj Þð1 � yÞ=y. We kept the

size of each of the four sub-populations at N/4 resulting in a total population of size N. Next, we

simulated the SNP genotype: wijk from a binomial distribution: Bin(2, pijk) assuming Hardy-

Weinberg equilibrium. Once the genotypes of M SNPs for N individuals are simulated, we ran-

domly selected mcausal causal SNPs (out of M) to create a N × mcausal causal SNP genotype

matrix denoted by Wcausal. Fixed effect of m-th causal SNP: um was simulated from N(0, h2/

mcausal), and the residual effect e was simulated from NN(0, (1/h2 − 1)IN). Finally, the N-dimen-

sional phenotype vector (Y) was generated as, Y ¼
Pmcausal

m¼1
Wcausal

m um þ e, where Wcausal
m was the

m-th column of Wcausal.

We considered two different values of the true heritability: h2 (low and high) and two differ-

ent combinations of the number of individuals N and the number of SNPs M. We considered

case (1.1): h2 = 0.2, N = 5000, M = 8000, case (1.2): h2 = 0.2, N = 8000, M = 13000, case (1.3):

h2 = 0.8, N = 5000, M = 8000 and case (1.4): h2 = 0.8, N = 8000, M = 13000 to study the influ-

ence of M and N on heritability estimation. In this simulation study and also in the subsequent

ones we considered 100 replications. Fig 2 shows the empirical root mean-squared error

(RMSE) of different methods. RMSE is defined as the square root of the sum of the squared

bias and the variance of an estimator. Thus, a comparison of empirical RMSE assesses the qual-

ity of the estimators both in terms of their variation and their bias [42]. We considered several

full likelihood based GREML methods discussed earlier: GCTA, GEMMA and Bolt-REML for

Fig 2. The figure shows the empirical RMSE of different methods from Simulation Study 1. Each of the four sub-plots corresponds to four

different cases. For every case, 100 replications were considered. GREML (sub) had very high RMSE compared to PredLMM and the latter had

RMSE close to the full GREML based methods.

https://doi.org/10.1371/journal.pgen.1010151.g002
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comparison with PredLMM. Since all of these methods maximize the full likelihood corre-

sponding to the marginal model in (2), their estimates were expected to be precise and close to

each other. Consistent with the expectation, the methods showed very close empirical RMSE

in Fig 2. GREML (500) and GREML (2000) referred to the sub-sample based GREML with

sub-sample sizes of 500 and 2000 respectively. PredLMM (500) and PredLMM (2000) referred

to fitting PredLMM with knot-sizes (r) 500 and 2000 respectively. We noticed that GREML

(500) had the largest empirical RMSE in all the cases with the largest being in case (1.4).

PredLMM (500) showed RMSE values close to GREML (2000), whereas PredLMM (2000)

achieved RMSE close to the full GREML based methods, such as GCTA, GEMMA and Bolt-

REML. Therefore, we could conclude that when the genetic data were simulated using the

Balding-Nichols model, the quality of the PredLMM estimator would be much superior com-

pared to the sub-sample based GREML and even close to the full GREML based methods for a

moderately large knot-size. Refer to S2 Fig for the box-plots of the estimates to visualize the

empirical bias and precision of the estimates. We noticed that PredLMM estimates were unbi-

ased and had very little spread i.e., much better precision compared to GREML (sub).

Simulation Study 2: Simulation using UK Biobank data

To replicate more realistic scenarios, we next considered simulations using the UK Biobank

cohort data [10]. UK Biobank is a large long-term biobank study in the United Kingdom

which is investigating the respective contributions of genetic predisposition and environmen-

tal exposure to the development of various diseases. We had access to 784,256 markers and

multiple phenotypes on 502,628 individuals. The population is predominantly British

(442,687) with a few other ethnicities such as Irish (13,213), Other White (16,340), Asian

(9839), and Black (8038). There is clear genetic clustering in the UK Biobank population that

has been explored in [43].

After standard quality control steps as advised in [44] (removing SNPs with MAF less than

0.01 and missingness over 10%, removing individuals with high missing genotype rate), we

had approximately 320,000 individuals and 566,000 SNPs. Since, conducting simulation stud-

ies with the entire dataset would be very computationally expensive, we created a mixture sub-

population of lesser size, 157,000 people (120,000 British and 37,000 from other ancestries

such as Asian, Black, Irish, and Indians). Majority of the full GREML-based methods such as

GCTA, GEMMA were computationally infeasible for such a large number of individuals. Bolt-

REML was the only full GREML-based method that would still be viable in this context. But,

as we saw from Fig 3 that even for a single simulation with 100,000 individuals, Bolt-REML

took approximately 1000 minutes to run (more details regarding the time comparison can be

found in Time comparison Section). Therefore, we only compared PredLMM with GREML

(sub) in the subsequent simulations. Keeping the genetic heterogeneity in mind, we looked

into two different simulations using the genetic data from the UK Biobank study, (2.1), one

with homogeneous sub-populations and (2.2), another one with heterogeneous sub-popula-

tions. For each replication, in study (2.1), we randomly selected 100,000 people with only Brit-

ish ancestry from the sub-population of 157,000 people, and in study (2.2), we randomly

selected 100,000 people not restricting their ancestry from the same sub-population. We con-

sidered three different true values of heritability (low to high): (a) h2 = 0.2, (b) h2 = 0.4, and (c)

h2 = 0.6. Next, we simulated the trait as Y100,000 * N100,000(0, 250h2 A100,000 + 250(1 − h2)

I100,000) where A100,000 was the corresponding GRM. We compared PredLMM with GREML

(sub) for four different sub-sample (knot) sizes, r = 2000, 4000, 8000, and 16, 000.

Empirical RMSE comparison of the estimators for study (2.1) and (2.2) are respectively

shown in Figs 4 and 5. In both the studies, GREML (sub) showed much larger RMSE
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compared to PredLMM especially for smaller sub-sample sizes like 2000 and 4000. The gap

between the RMSE of the estimators kept narrowing as the sub-sample size increased. How-

ever, even for the largest sub-sample size, 16000 the gap remained prominent demonstrating

PredLMM’s superior quality. To visualize the empirical bias and precision of the estimates,

refer to the box-plots from S3 and S4 Figs. We noticed that the spread of the estimates were

the largest for GREML (sub). In both the studies, PredLMM showed slight downward bias

when the true heritability was high (case (c)) and slight upward bias when the true heritability

was low (case (a)). For moderate value of heritability (case (b)), the bias was negligible even for

the smallest knot-size, 2000.

Time comparison

The huge time advantage of PredLMM has already been illustrated in Fig 2. Here, we present a

few more tables in support of that and specify all the technical details. We ran all the methods

on a HP Linux cluster with nodes that use 24 many Haswell E5–2680v3 processor cores and

has RAM of 248 GB. We have listed in Tables 1 and 2 the time taken by different methods for

Simulation Study 1 and for Simulation Study (2.2) respectively. From Table 1, we noticed that

the methods like GCTA and Bolt-REML took similar amount of time, whereas PredLMM

with 500 knots took around 40% of that. PredLMM with 2000 knots takes time similar to Bolt-

REML. The time advantage was more prominent in Table 2 (this comparison is also shown in

Fig 3).

According to Table 2, PredLMM took just a fraction (around 8%) of time compared to

Bolt-REML even if we choose a large knot size of 16,000. PredLMM takes very similar amount

of time for knot sizes 2000 and 4000. We noticed a significant leap in the run-time from knot

size of 8000 to knot size of 16,000. Recall that the per iteration computational complexity of

PredLMM is O(Nr2 + r3) i.e., the complexity is cubic with respect to the knot size r which

justifies the leap. One may argue that it would be wise to use just 8000 knots since it can yield

a reasonable estimate in a very reasonable time. We should also mention that we used a

Fig 3. The figure shows the time taken by PredLMM with different knot-sizes such as, 2000, 4000, 8000 and

16,000 and by Bolt-REML for a single simulation with 100,000 individuals and 566,000 SNPs (from Simulation

Study 2).

https://doi.org/10.1371/journal.pgen.1010151.g003
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pre-computed GRM (using GCTA) in all our analyses (we computed the GRM for the entire

population and used its sub-matrices as necessary in Simulation Study 2). Computing the

GRM is an arduous task that can take multiple hours depending upon the number of SNPs

and the number of individuals. It has computational complexity of O(MN2). But, it is usually

less concerning since the computation needs to be performed only once and the computed

GRM then can be used in multiple analyses. Bolt-REML does not use a pre-computed GRM

Fig 4. The figure shows the empirical RMSE of GREML (sub) and PredLMM for four different sub-sample (knot) sizes: 2000, 4000,

8000, 16000 in cases (a), (b) and (c) from Simulation Study (2.1). For every case, 100 replications were considered. GREML (sub) had

very high RMSE for smaller knot-sizes and it became increasingly closer to PredLMM as the knot-size increased.

https://doi.org/10.1371/journal.pgen.1010151.g004
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Fig 5. The figure shows the empirical RMSE of GREML (sub) and PredLMM for four different sub-sample sizes: 2000, 4000, 8000,

16000 in cases (a), (b) and (c) from Simulation Study (2.2). For every case, 100 replications were considered. GREML (sub) had very

high RMSE for smaller knot-sizes and it became increasingly closer to PredLMM as the knot-size increased.

https://doi.org/10.1371/journal.pgen.1010151.g005

Table 1. Time comparison of different methods in seconds for Simulation Study 1 with 5k (8k SNPs) and 8k (13k SNPs) individuals.

GCTA GEMMA Bolt-REML GREML (500) GREML (2000) PredLMM (500) PredLMM (2000)

5k 15.5 351.07 13.25 3.41 6.7 5.398 16.77

8k 33.5 1293.44 27.87 5.7 3.3 13.67 28.46

https://doi.org/10.1371/journal.pgen.1010151.t001
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and uses the genetic data every time for each of the traits which makes it very time consuming

to perform a heritability analysis with multiple traits.

Applications

We estimated heritability of a number of quantitative traits: Standing Height, Weight, BMI,
Diastolic and Systolic blood pressure, Hip and Waist circumference using the British population

of size 286,000 and 566,000 SNPs [45]. We took into account the fixed effects of covariates,

such as sex, age, squared age, and the top 10 genetic principal components. We used the

row-sum based knot selection technique described in Proposed method Section to select knot-

sets (sub-samples) of sizes, 40,000 and 80,000 using which we ran both GREML (sub) and

PredLMM Since, running the full version of Bolt-REML would take an exorbitant amount of

time, we computed the approximate “pseudo-heritability” option in Bolt-REML [3, 14]. The

results are displayed in the form a bar-plot in Fig 6.

Table 2. Time comparison (in minutes) of PredLMM for varying different knot (sub-sample) sizes with Bolt-

REML for Simulation Study (2.2) with 100k individuals.

Knot size PredLMM Bolt-REML

2000 4000 8000 16000

Time 28.33 31.41 44.17 80 986.4

https://doi.org/10.1371/journal.pgen.1010151.t002

Fig 6. The figure shows the bar-plot of the heritability estimates by PredLMM and GREML (sub) with two sub-sample (knot) sizes and by Bolt-

REML (pseudo) for seven different real traits.

https://doi.org/10.1371/journal.pgen.1010151.g006
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The heritability estimates from all the methods generally agreed with the findings from other

studies based on the UK Biobank cohort [45–48]. We noticed that PredLMM estimates were

closer to Bolt-REML (pseudo) than GREML (sub) for majority of the traits. Assuming the Bolt-

REML (pseudo) estimates to be the closest to the truth in this particular dataset, there is a trend

of slight over-estimation with PredLMM estimates. We noticed something similar in the Simu-

lation Study (2.1) and (2.2) for smaller heritability values. However, it is also to be kept in mind

that the real traits we considered here, were all highly correlated among themselves (except

Height), with some of the pair-wise correlations being more than 0.8. Therefore, it is likely that

if there is an issue of over-estimation with one trait, it will be translated to other traits as well.

Also, PredLMM relies on the ability to predict the genetic relationship between unselected indi-

viduals. The homogeneous British population we worked with mostly shared very small genetic

relatedness, meaning that the true GRM A had a very small proportion of elements significantly

non-zero and even those were very small in magnitude. In a dataset with more genetic related-

ness, PredLMM would arguably achieve adequate accuracy even with a small knot-size.

Discussion

Genome-based restricted maximum likelihood (GREML) approaches for estimating heritabil-

ity have become widely popular with the availability of large scale cohort studies. However,

majority of the existing approaches such as GEMMA, GCTA, Bolt-REML implementing

GREML, either become computationally very demanding or even intractable when the

number of individuals (N) is too large. In this paper, we have developed a rapid algorithm for

estimating heritability in large scale cohort studies. Our proposed approach PredLMM

approximates the likelihood of a GREML approach. The approximation is achieved by unify-

ing the concepts of genetic coalescence and Gaussian Predictive Process models. The algo-

rithm reduces the usual per iteration computational complexity from O(N3) to O(Nr2 + r3)

where r (knot size) is much smaller than N.

In different simulation studies, we have compared the empirical root mean-squared error

(RMSE) of PredLMM for different knot-sizes with existing methods. From the Simulation

Study 1, we have seen that under the presence of genetic pattern (a tree like structure) among

the individuals, PredLMM yields highly robust estimate of heritability even with a small knot

size (r). To replicate more realistic scenarios, next we have performed simulation studies using

the real genetic data from the UK Biobank cohort study. We have checked the performance of

PredLMM in two cases, a highly homogeneous sub-population and a heterogeneous sub-pop-

ulation (see Simulation Study 2) for a varied range of heritability values. We have observed

that even with a very small knot size (say 4% or 8% of the entire population size), PredLMM

can produce an extremely precise estimate of heritability at a fraction of time taken by existing

softwares like Bolt-REML. Finally, we have estimated the heritability of a number of quantita-

tive traits like Standing Height, Weight, BMI, Diastolic and Systolic blood pressure, Hip and
Waist circumference using the entirety of the British population from UK Biobank data. For all

the traits, estimates by PredLMM for varying knot-sizes come out to be very close and also,

very similar to other methods like Bolt-REML (Pseudo).

Our next goal would be to analyze behavioral traits like Alcohol Consumption, CPD (ciga-
rettes smoked per day) etc. from the UK Biobank data. It would be slightly more challenging

since those traits often tend to be skewed and deviate from the usual normality assumption. A

very efficient module implementing PredLMM in Python is available here, https://github.com/

sealx017/PredLMM. Recall that, PredLMM does not use the full GRM but only a few particular

blocks of it. In the module we provide a function for computing the GRM-blocks necessary for

fitting the PredLMM algorithm.
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Supporting information

S1 Fig. Pictorial formulation of ~APP. We look at the full GRM A and its blocks that are used

in computing ~APP. For sake of simplicity in representation, we assume that first r of the total of

N individuals are in the set of knots I .

(TIF)

S2 Fig. Comparison of PredLMM with GREML (sub) in Simulation Study (1). Box-plots of

the estimates are shown for varying sub-sample sizes (knot-sizes) in four different cases.

(TIF)

S3 Fig. Comparison of PredLMM with GREML (sub) in Simulation Study (2.1). Box-plots

of the estimates are shown for varying sub-sample sizes (knot-sizes) in three different cases.

(TIF)

S4 Fig. Comparison of PredLMM with GREML (sub) in Simulation Study (2.2). Box-plots

of the estimates are shown for varying sub-sample sizes (knot-sizes) in three different cases.

(TIF)

S1 Appendix. Derivation of the asymptotic variance and computational details. We derive

an approximate estimate of the asymptotic variance of the PredLMM estimator. Using the pro-

posed variance formula, we present two tables that list coverage probability of PredLMM

under different simulation setups. We also provide the details on the efficient matrix opera-

tions that PredLMM makes use of.

(PDF)
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