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Review Article

Introduction

Ginseng, an herbaceous plant in the Araliaceae family, 
grows in the northern hemisphere of eastern Asia. Its ingredi-
ents are complex, including ginsenosides, polysaccharides, 
polyacetylenes, flavonoids and volatile oils. For thousands 
of years, ginseng has been one of the most widely used sup-
plements and medical plants in Asian countries, especially in 
China, South Korea and Japan. In the past few decades, gin-
seng has become increasingly popular in the United States 
and Europe.

Ginseng exerts many pharmacological effects, such as 
anticancer, anti-inflammatory and treatment of diabetes, 
due to its important component, ginsenoside, which refers 
to a series of dammarane- or oleanane-type triterpenoid gly-
cosides.1 Based on the difference in the position and quantity 
of sugar moieties in glycosides, ginsenosides are classified 
into protopanaxadiol type (PPD), propylene glycol type, 
stearyl alcohol type and oleic acid type ginsenosides.2 
According to the amount found in cultivated ginseng, gin-
senosides are grouped into major ginsenosides (Rb1, Rb2, 
Rc, Rd, Re, and Rg1) and minor ginsenosides (F2, Rg3, 

Rh1, Rh2, and Compound K). There is increasing evidence 
that the latter exhibit greater pharmacological activity than the 
former,3 and minor ginsenosides also have more bioavail-
ability and better permeability through cell membranes.4 
However, the natural rare ginsenoside content is very low 
and they must be produced through transformation.

Compound CK (CK), found in multiple ginseng species, 
is one of most important minor ginsenosides and has been 
studied for half a century, since it was found to exert increased 
pharmacological activity. CK was first discovered and 
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identified in 1972 5; its molecular formula is C36H64O8, and 
its structure is 20-O-β-(D-glucopyranosyl)-20(S)- pro-
topanaxadiol. CK, also called M1, IH-901, and G-CK, is a 
protopanaxadiol-type saponin with the same core structural 
characteristics. Different protopanaxadiol-type saponins are 
composed of different sugar groups at the C-3 and C-20 
positions. There is no CK in natural ginseng; however, after 
oral administration of ginsenosides Rb1, Rb2, and Rc, 
human intestinal bacterial enzymes gradually cleave the oli-
gosaccharides linked to the aglycone from the terminal sug-
ars and further decompose them into 20(S)-protopanaxadiol 
(PPD) by gastric acid and/or intestinal microorganisms. It 
has been reported that Rb1 and Rb2, the intermediate prod-
ucts of transformed CK, have anticancer effects, among 
which Rb1 targets chemotherapy-resistant ovarian cancer 
stem cells via simultaneous inhibition of Wnt/β-catenin 
signaling and the epithelial-to-mesenchymal transition,6 
while Rb2 inhibits tumor cells and their growth and metas-
tasis in vivo.7-10 In addition to the body, CK can also be 
converted from the main ginsenosides by heating, acid-
base hydrolysis, enzyme conversion, and microbial con-
version,11 obtained by the cleavage of the sugar moiety at 
C-3 or C-20.12

CK has a variety of pharmacological activities, such as 
antitumor, anti-inflammatory and treatment of diabetes, and 
has the advantages of high safety and diverse biological 
functions, which are beneficial to the treatment of various 
clinical diseases.13-15 This article reviews the structure, bio-
transformation, preparation, pharmacokinetics and pharma-
cological activities of CK. We focused on the functional 
mechanisms of CK and its metabolites, which regulate 
multiple signaling pathways related to tumor growth and 
metastasis.

The Chemical Structure of CK

CK is one of the main active metabolites of protopanaxadiol-type 
ginsenosides; its structure is 20-O-β-(D-glucopyranosyl)-
20(S)-protopanaxadiol. Zhou et al16 first determined the 
crystal structure of CK using both spectroscopy and X-ray 
diffraction. Its structure consists of a glucopyranosyl group 
and a tetracyclic aglycone.

Biotransformation of CK

Natural ginseng does not contain CK, which is usually pro-
duced by biotransformation of protopanaxadiol-type gin-
senosides (such as ginsenosides Rb1, Rb2, Rc, etc.) in the 
presence of human intestinal bacteria, soil fungi or some 
commercial enzymes M (Figure 1).11,12,17-19 The conversion 
pathway is Rb1/Rb2/Rc→Rd→F2/Rg3→CK.20 Among 
these protopanaxadiol ginsenosides, Rb1 is the most abun-
dant component in ginseng extracts. Therefore, the conver-
sion pathway of ginsenoside Rb1→Rd→F2→CK is the 

most important.12,21 With in-depth research on CK, more 
transformation methods, such as biotransformation methods,22 
physical methods (such as heating)23 and chemical methods 
(such as acid-base hydrolysis),24 have been found. Compared 
with physical and chemical methods, biotransformation 
exhibits the advantages of high specificity, low cost and 
environmental protection.25 The biotransformation of CK 
mainly includes both microbial and enzymatic assays.

Microbial Transformation of CK

Microbial transformation of CK includes both fungal trans-
formation and enzymatic conversion.

Fungal transformation has become an important method, 
with the characteristics of fewer byproducts, mild reaction 
conditions, high transformation efficiency and no envi-
ronmental pollution. Zhou et al16 first used the fungus 
Aspergillus niger instead of intestinal bacteria to biotrans-
form Panax notoginseng saponins (PNS) to produce CK 
with high quality. PNS can also be converted to CK through 
similar strains, such as Fusarium sacchari fungus,26 
Paecilomyces bainier sp. 229,19,27 Fusarium sacchari,28 
and Fusarium moniliforme.29 In addition, a rod-shaped 
bacterial strain isolated from a Korean ginseng field was 
designated strain DCY67T. Strain DCY67T contained 
β-glucosidase activity, which converts ginsenoside Rb1 to 
Compound K.30 Strains similar to DCY67T include 
Sphingomonas GS-09,12 Platycodon grandiflorum endo-
phyte JG09,21 Bifidobacterium K-103 and Eubacterium 
A-44.31-40 Interestingly, the recombinant Saccharomyces 
cerevisiae strain BA21 expressing UGTPg1 is used to 
produce a large amount of CK from inexpensive mono-
saccharides. The whole method of CK synthesis is oxido-
squalene → dammarenediol II → DMG → CK (CYP716A47) 
(Table 1).41

Enzymatic Transformation of CK

The enzymatic method is also widely used, with the charac-
teristics of mild conditions without destroying the structure 
of saponins, strong specificity, high yield and no pollution. 
Ko et al42 used β-galactosidase from Aspergillus oryzae 
to transform the main protopanaxadiol ginsenoside into 
CK. The enzymes similar to β-galactosidase include β-
glycosidase from Sulfolobus solfataricus supplemented 
with α-L-arabinofuranosidase from Caldicellulosiruptor 
saccharolyticus,43 recombinant β-glucosidase from 
Microbacterium esteraromaticum,44 semirational design 
of Sulfolobus solfataricus β-glycosidase45 and so on.22,46-53 
In addition, PPD-type gypenosides can be converted into 
CK through naringinase,54 and rootlet ginseng can be con-
verted into CK through pectinex containing pectinase and 
arabanase.55 Choline chloride, as an enzymatic reaction 
medium, improves the ginsenoside conversion rate (Table 2).56
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Other Methods of Transformation of CK

In addition to microbial and enzymatic conversion meth-
ods, glycerol is used as a carbon source to effectively 
improve the glycosylation efficiency of PPD to increase the 
output of CK.57 In addition, the optimized Cordyceps sinen-
sis was found by Dr. Qiu in our department for the first time 
to be an effective biocatalyst for the conversion of ginsen-
oside Rb1 to CK. Under optimized conditions, the molar 
conversion rate of Rb1 to CK is greater than 82%, which 
has a high efficiency and high selectivity and has raised new 
heights for CK production.58

CK Solubility

Appreciable antitumor activity of CK has been reported. 
However, the high polarity of CK leads to low solubility 
and poor oral bioavailability, which might also affect its 
biodistribution and efficacy. Thus, improving the slow dis-
solution rate of CK increases its pharmacological activity 
by covalently conjugating polyethylene glycol (PEG-CK) 
on the surface of CK with acid-labile ester bonds. 
PEG-CK was found to exhibit dose-dependent toxicity.59 

The combination of Compound K and γ-cyclodextrin can 
improve the solubility of CK. These dissolution behaviors 
were reflected in the Cmax and Tmax values after oral 
administration in rats.60 In addition, the new ester prodrug 
butyl octyl ester (CK-B and CK-O) improves the lipo-
philicity of CK through acylation to promote the transport 
of Caco-2 cells.61 Prebiotic fiber can promote the meta-
bolic transformation and gastrointestinal absorption of 
rat ginsenosides.62 The structures of CK derivatives, as a 
novel class of LXRα activators, have been shown to have 
higher biological activity than CK.63 The pharmacological 
effects of CK can be enhanced by the methods above.

CK Toxicity and Pharmacokinetics 
Study

A toxicity study of oral CK in beagle dogs was conducted, 
and all dogs received oral CK doses of 4, 12, or 36 mg/kg 
for 26 weeks. Animals in the 12 mg/kg group did not show 
any apparent toxicity for any of the measured parameters.64 
In the toxicity study of CK on mice and rats, some scholars 
found that in acute toxicity, oral CK in rats and mice did 
not cause death or toxicity at the maximum dose of 8 and 

Figure 1. Transformation and pharmacological activity of Ginsenoside CK. Extract protopanaxadiol ginsenosides (such 
as ginsenosides Rb1, Rb2, Rc) from ginseng, and convert them into ginsenoside CK through biological transformation. The 
pharmacological potentials of ginsenoside CK include anti-tumor, anti-inflammatory, anti-aging, anti-seizure, anti-dementia, anti-
pruritic, treating diabetes, treating asthma, treating atherosclerosis, treating Alzheimer’s, treating obesity, treating psoriasis, treating 
myocardial ischemia-reperfusion injury, ameliorating cognitive impairment, recovery from hearing loss and hepatoprotective effects 
etc.
Abbreviations: Glc, glucose; Ara (P), Arabinose in pyranose form; Ara (f), Arabinose in furanose form; CK, Ginsenoside Compound K.
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10 g/kg, respectively. In a 26-week toxicity study, rats were 
administered CK at doses of 13, 40, or 120 mg/kg. The 
NOA ELs of male and female rats were found to be 40 and 
120 mg/kg, respectively.65

Pharmacokinetic studies have shown that oral ginsen-
osides pass through the stomach and small intestine and 
enter the large intestine without being decomposed by gas-
tric juice or liver enzymes. In the large intestine, ginsen-
osides are decomposed by colonic bacteria.66 CK, with the 
pharmacokinetic characteristics of minor ginsenosides, 
needs to be studied for its preclinical safety and effective-
ness as a drug. The analysis and identification of CK metab-
olites are important aspects of CK research. The metabolism 

of CK in rats has been reported. After oral administration of 
CK at a dose of 50 mg/kg, urine and feces were collected 
and subjected to ultra-performance liquid chromatography 
with electrospray ionization quadrupole time-of-flight tan-
dem mass spectrometry. CK metabolites in urine and feces 
were detected and characterized, and various metabolites 
and metabolic pathways were analyzed in detail.67 The 
absorption, dose linearity and pharmacokinetics of CK, the 
main intestinal bacterial metabolite of ginsenosides, have 
been studied.68 After oral administration of CK in healthy 
people, CK was detected in both plasma and urine using 
LC–MS/MS and ESI-MS.69-71 In addition, high-fat food 
was found to increase the absorption of CK in humans, and 

Table 1. Micro-Organism Methods Developed for CK Production.

Microorganisms Transformation pathways Optimum condition Yield rate Ref

Sphingomonas GS-098 Rb1→Rd→F2→CK Rb2→C-
O→C-Y→CK Rc→C-Mc1→ 
C-Mc→CK

No No Phi et al8

Aspergillus niger Panax notoginseng saponins→CK No 35.4%. Chen et al13

Platycodon grandiflorum 
endophytes JG09

Rb1→Rd→F2→CK; Rb2→C-
O→C-Y→CK; Rc→C-Mc1→ 
C-Mc→CK

pH 4.0, 7 d 66.34%. Chen et al15

Fusarium sacchari fungus Panax notoginseng saponins→CK; 
C-Mx, and G-Mc

pH 5.5, 30°C 6 d 146.93 mg/g Zhou et al19

Fusarium sacchari Rb1→CK; G-Rc→CK No 35.08% Oh and Kim20

Fusarium moniliforme Panax notoginseng saponin→CK No No Cui et al21

Chryseobacterium 
yeoncheonense sp. nov 
DCY67T

Rb1→F2→CK pH 6.0-6.5, 30°C No Noh et al22

Bifidobacterium K-103 and
Eubacterium A-44 isolated 

from human fecal 
microflora

Rc→Rd→F2→CK; 
Rc→Mb→Mc→CK; 
Rc→Mb→F2→CK

pH 7.0, 37°C No Kim et al23

Bifidobacterium sp. Int57 and 
Bifidobacterium sp. SJ32

Rb2, Rc→Rd→F2→CK pH 5.0, 37°C No Bae et al24

Esteya vermicola CNU120806 Rd→F2→CK No 49.6% He et al25

Acremonium strictum G-Rb1→CK, other metabolites of 
bioactive

ginsenosides

No No Han et al26

Aspergillus niger g.848 Rb1→Rd→F2→CK; 
Rb1→Gyp17→Gyp75→CK

No No Choi et al27

Leuconostoc citreum LH1 Rb1→gypenoside XVII, 
Rd→F2→CK

72 h, pH 6.0, 30°C 99% Han et al28

Leuconostoc mesenteroides 
DC102

Rb1→gypenoside XVII, 
Rd→F2→CK

pH 6.0-8.0 and 
30°C

99% Yang et al29

Lactobacillus paralimentarius 
LH4

Rb1→gypenoside XVII, 
Rd→F2→CK

72 h, pH 6.0, 30°C 88% Hoang et al30

Cladosporium cladosporioides 
GH21

Rb1→Rd→F2→CK; 
Rg1→F1→Rb1→Rd→F2→CK

No 74.2% Bae et al31

β-glucosidase-producing 
microorganisms (K35)

Panax ginseng adventitious 
roots→CK

pH 7.0, 9 d 0.253 Chi et al32

Recombinant Saccharomyces 
cerevisiae strain BA21 
expressing UGTPg1

Glucose→2,3-
oxidosqualene→dammarenediol 
II→DMG→CK (CYP716A47)

No No Hou et al33
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the exposure of CK was higher in females than in males 
in Chinese subjects.72,73 In a Japanese study, all subjects 
were equally divided into 2 groups and given tablets of 
Lactobacillus paracasei A221-fermented ginseng (FG) or 
nonfermented ginseng (NFG). This study intervention con-
sisted of a single administration of 6 tablets. The CK con-
tents of FG and NFG were 0.75 mg/tablet and 0.00 mg (not 
detected)/tablet, respectively. At 24 h after dosing, volun-
teers were measured using a validated LC–MS/MS assay, 
and plasma total testosterone concentrations in male volun-
teers were measured. The mean testosterone concentra-
tion in the fermented ginseng group significantly increased 
24 h after administration.74 In Korean subjects, the 

administration of fermented red ginseng extract promotes 
higher and faster absorption of CK in humans and rats com-
pared with the treatment results of unfermented red gin-
seng.75 The metabolic activity of ginsenosides in feces is 
positively correlated with the level of serum CK after 
conversion.76

Antitumor Activity of CK

Regulation of CK on Tumor Growth

CK exerts high antitumor roles with strong cytotoxic 
activity on tumor cells, such as mouse highly metastatic 

Table 2. Enzymatic Methods Developed for CK Production.

Enzymes Transformation pathways Optimum condition Yield rate Ref

β-Glycosidase from 
Sulfolobus solfataricus

Rb1 or Rb2→Rd→F2→CK; 
Rc→C-Mc→CK

pH 4.5-6.5, 75°C 70%-80% Zhou et al16

β-Galactosidase from A. 
oryzae

G-Rb1→G-Rd→G-F2→CK; 
G-Rb2→compound 
V→compound VII→CK; 
G-Rc→G-Rd→G-F2→CK; 
G-Rc→compound 
VI→compound VIII→CK

pH 4.5, 37°C No Chen et al34

β-Glycosidase from 
Sulfolobus solfataricus

G-Rb1→G-Rd→G-F2→CK; 
G-Rb2→G-Rd→G-F2→CK; 
G-Rc→G-Rd→G-F2→CK; 
G-Rc→C-Mc→CK

pH 6.0, 80°C 56% Liu et al35

Recombinant β-glucosidase 
from Microbacterium 
esteraromaticum

Rb1→Rd→CK pH 7.0, 40°C 77% Quan et al36

Semi-rational design of 
Sulfolobus solfataricus 
β-glycosidase

G-Rb1→G-Rd→G-F2→CK No 56% Quan et al37

β-Glycosidase from 
Pyrococcus furiosus

Rb1, Rb2 or Rc→Rd→CK→APPD pH 5.5, 95°C 79.5% Quan et al38

Novel β-glucosidase 
MT619

Rd→F2→CK; 
Rb1→G17→F2→CK; 
Rb1→G17→G75→CK

pH 7.0, 37°C 79.2% Wu et al39

β-Glucosidase from K-60 Rb1→F2→CK pH 7.0, 40°C No Song et al40

β-Glucosidase from 
Paecilomyces bainier

Rb1→Rd→F2→CK pH 3.5, 45°C 84.3% Yan et al41

Recombinant β-glucosidase 
from Terrabacter 
ginsenosidimutans

Rb1→GypXVII→GypLXXV→CK pH 7.0, 45°C No Ko et al42

Ginsenoside type I from 
Aspergillus

PPD type ginsenosides→F2, CK, 
Rh2

pH 5.0, 40°C No Shin et al43

β-Glycosidase from 
Sulfolobus solfataricus

Rb1→Rd→CK; Rb2→C-Y→CK pH 5.5, 85°C 94% Quan et al44

β-Glycosidase from 
Microbacterium 
esteraromaticum

Rb2→C-Y→CK pH 7.0, 40°C 13.51% Shin et al45

Naringinase PPD type ginsenosides→CK PH 4.1, 50°C, 71 h 65.44 ± 4.52% Yoo et al46

Pectinex containing 
pectinase/arabanase

Rootlet ginseng→PG1, PG2, PG3 
and CK

pH 5.0, 50°C 30%-65% Cui et al47

Choline chloride Rb1→Rd→F2→CK pH 4.5, 60°C, 48 h 80.6% Park et al48
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melanoma (B16-BL6), human liver cancer (HepG2), human 
myeloid leukemia (K562) and human highly metastatic 
lung cancer (95-D) cell lines, compared with those of other 
ginsenosides.16

CK inhibits tumor growth through different signaling 
pathways. Under hypoxia, CK can reduce the expression 
levels of HK-II, PDK1, and LDHA to inhibit the expression 
of HIF-1α and its downstream gene GLUT1, further block-
ing the growth of lung cancer.15 CK induces apoptosis and 
autophagy in lung cancer cells A549 and H1975 through the 
AMPK/mTOR and JNK pathways.77 CK also induces the 
production of ROS and the activation of p38MAPK to pro-
mote the apoptosis of bladder cancer T24 cells.78 CK sig-
nificantly reduces human multiple myeloma U266 cells 
through the JAK1/STAT3 pathway (Figure 2).79

For some rare tumor types, CK has been found to exert 
strong antitumor activity. CK induces ROS-mediated apop-
tosis and autophagy flux to suppress neuroblastoma.80 For 
nasopharyngeal carcinoma (NPC), CK-induced HK-1-cell 
apoptosis is mediated through the mitochondrial pathway.81

Increasing evidence has revealed that CK blocks one 
type of cancer, colon cancer, and also that its regulatory 
mechanism differs.82 CK induces the apoptosis of colon 
cancer HT-29 cells. CK inhibits the expression and activity 

of deoxyribonucleic acid methyltransferase 1 to achieve 
demethylation of the RUNX3 gene and induce the expres-
sion of Smad4 and Bim mediated by RUNX3, indicating 
that CK significantly inhibits the growth of colon cells by 
inhibiting DNMT1 and reactivating epigenetically silenced 
genes.83 In addition, CK downregulates cell survival pro-
teins, including Mcl-1 and Bcl-2, upregulates cell proapop-
totic proteins, including Bax and tBid, and induces the 
expression of the TRAIL death receptor DR5 on the cell 
surface, which promotes the apoptosis of colon cancer 
cells.84 CK can increase the mRNA and protein expression 
of RUNX3, as well as p21, a downstream target of RUNX3. 
Blocking histone deacetylase activity induces the apoptosis 
of colon cancer cells.85 CK induces the apoptosis of HT-29 
cells and the destruction of mitochondrial membrane 
potential by regulating the CAMK-IV/AMPK pathway to 
achieve inhibition of colon cancer cells (Figure 2).86 
Furthermore, CK mediates ROS production to hinder the 
growth of human colon cancer HT-29 and HCT-116 cells 
by regulating the mitochondrial-dependent apoptosis 
pathway and MAPK pathway (Figure 2).87,88 Studies have 
also shown that CK increases Ca2+ influx through TRPC 
channels and by targeting AMPK, thereby producing effec-
tive anticancer effects on colon cancer CT-26 cells.89

The protective role of CK was also investigated against 
liver cancer. CK significantly suppressed the proliferation 
of MHCC97-H human liver cancer cells and induced their 
apoptosis through the caspase-dependent pathway mediated 
by Fas and mitochondria.90 Another study showed for the 
first time that CK prevented the interaction between 
Annexin A2 and the NF-κB p50 subunit and NF-κB nuclear 
colocalization to reduce the activation of NF-κB and acti-
vate caspase9 and caspase3, further blocking the growth of 
liver cancer.91

Studies have reported the effect of CK against leukemia. 
CK induces apoptosis of HL-60 human leukemia cells 
through a caspase-8-dependent pathway.92 The G1 cell 
cycles of Kasumi-1 and MV4-11 are significantly arrested 
with CK treatment.93 CK treatment contributes to G1 
blockade of U937 cells through upregulation of p21 and 
the activation of JNK.94 Similar results regarding the regu-
lation of the cell cycle were reported in gastric cancer. CK 
induces apoptosis of BGC823 and SGC7901 cells and 
arrests the G2 cell cycle by upregulating the expression of 
p21 and downregulating the expression of cdc2 and cyclin 
B1. CK also effectively prevents tumor formation of 
SGC7901 gastric cancer cells in nude mice.95 In addition, 
CK downregulates cyclin D1 levels to result in cell cycle 
arrest I then G1 phase, further retarding the proliferation of 
MCF10CA1a breast cancer cells.96 CK also induces the 
apoptosis of MCF-7 breast cancer cells by suppressing 
the phosphorylation of GSK3β to reduce the expression 
of β-catenin and cyclin D1.97 CK inhibits the growth of 
different colon cell lines through multiple mechanisms, 

Figure 2. The functional mechanism of CK on different 
tumors. CK induces apoptosis and autophagy in non-small cell 
lung cancer cells through activating AMPK/mTOR and JNK 
pathways. CK induces bladder cancer cell apoptosis through 
activation of p38mapk pathway mediated by reactive oxygen 
species (ROS). CK induces apoptosis of colon cancer cells 
through the activation of CAMK-IV/AMPK pathway. CK induces 
autophagy and apoptosis of human colon cancer cells through 
increasing the level of ROS and activating JNK signal. CK 
induces osteosarcoma cell apoptosis and inhibits its proliferation 
and invasion through inhibition of PI3K/mTOR/p70S6K1 
pathway. CK induces apoptosis of human multiple myeloma 
cells through inhibiting JAK1/STAT3 signal. CK inhibits TNF-
α-promoted colon cancer metastasis in mice through inhibiting 
NF-κB signaling. Blue lines demonstrate the promotion (→) or 
inhibition (⊣) roles of signal pathways. Green lines indicate the 
promotion (→) or inhibition (⊣) roles of CK.
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indicating that CK may bind to different proteins or have 
multiple targets.

The bioactivity of CK has been described by inhibiting 
viability and proliferation and inducing the apoptosis of 
tumor cells (Table 3).

Impact of CK on Tumor Invasion and Metastasis

Tumor metastasis is regarded as a major obstacle to suc-
cessful cancer therapy. Blocking metastasis provides more 

survival opportunities for cancer patients.98 Recent investi-
gations of the regulation of tumor metastasis have involved 
one family of enzymes, the matrix metalloproteinase 
(MMP) family, which exacerbates tumor metastasis in 
the TME.99 These data were consistent with our previous 
findings.100,101 Thus, the downregulatory roles of CK on 
the activity of MMPs may attenuate tumor migration/metas-
tasis. CK effectively suppresses TNF-α-induced NF-κB 
activation and matrix metalloproteinase 9 (MMP-9) 
expression, further limiting the migration and invasion of 

Table 3. Ameliorative Effects of CK on Tumor Growth.

Cancer type Cell Line Description Ref.

lung cancer NCI-H46, A549, 
NCI-H1299

To down-regulate the expression of HIF-1α and its downstream 
gene GLUT1 to suppress the growth of lung cancer cells

Xie et al67

Lung cancer A549, H1975 To induce cancer cell apoptosis and autophagy through AMPK/
mTOR and JNK pathway

Paek et al68

Bladder Cancer T24 To induce the production of ROS and activation of p38MAPK, 
promoting cancer cell apoptosis

Chen et al69

Myeloma U266 To downregulate the phosphorylation of STAT3/JAK1 to prevent 
tumors

Yang et al70

Neuroblastoma SK-N-BE, SH-SY5Y, 
SK-N-SH

To induce ROS-mediated apoptosis and autophagy flux to inhibit 
neuroblastoma

Tawab et al71

NPC HK-1 To induce cancer cell apoptosis through mitochondrial pathway Chen et al72

Colon cancer HCT-116, SW480 To suppress the proliferation and promote apoptosis Chen et al73

Colon cancer HT-29 To block DNMT1 and reactivates epigenetic silenced genes Fukami et al74

Colon cancer HT-29 To upregulate DR5 through autophagy-dependent and independent 
(p53-CHOP pathway) to enhance TRAIL-induced apoptosis

Choi et al75

Colon cancer HT-29 To inhibit histone deacetylase activity to inhibit growth/promote 
apoptosis of cancer cells

Kim et al76

Colon cancer HT-29 To induce cancer cell apoptosis through CAMK-IV/AMPK pathway Li et al77

Colon cancer HT-29 To regulate the mitochondrial-dependent apoptotic and MAPK 
pathway

Wang et al78

Colon cancer HCT-116 To increase ROS production and JNK activation for inducing 
autophagy and apoptosis of cancer cells

Park et al79

Colon cancer CT-26 To increase Ca2 + influx through TRPC channel/target AMPK to 
repress the growth of cancer cells

Oh et al80

Liver cancer MHCC97-H To retard the proliferation of liver cancer cells and induce their 
apoptosis

Law et al81

Liver cancer HepG2 To attenuate the activation of NF-κB and the expression of their 
downstream genes, and activate caspase 3, 9 to induce anti-
cancer effects

Wang et al82

Leukemia HL-60 To induce leukemia cell apoptosis through caspase-8 dependent 
pathway

Kang et al83

Leukemia Kasumi-1, MV4-11 To arrest cell cycle in G1 and promote apoptosis Chen et al84

leukemia U937 To upregulate p21 and activate JNK to block G1 phase of cancer 
cells

Kang et al85

Gastric 
carcinoma

BGC823 SGC7901 To upregulate the expression of p21, down-regulate the expression 
of CDC2/Cyclin B1, inducing cancer cell apoptosis and arresting 
cancer cell cycle

Kim et al86

Breast cancer MCF10CA1 To down-regulate cyclin D1 level, lead to cell cycle arrest in G1 
phase, inhibiting tumor cell proliferation

Lee et al87

Breast cancer MCF-7 To reduce GSK3β phosphorylation and the expression of both  
β-catenin and cyclin D1 to induce cancer cell programed necrosis

Kim et al88

Abbreviations: DR5, TRAIL-R2; DNMT1, DNA methyltransferase 1; MMP9, Matrix Metalloproteinase 9; NPC, nasopharyngeal carcinoma; TNF-α, 
tumor necrosis factor-α; TRPC, transient receptor potential canonical.
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colon cancer.102 In addition, CK was found to diminish the 
expression of NF-κBp65 nuclear export and MMP2/9, 
retarding the metastasis of MHCC97-H liver cancer cells 
(Figure 2).103 Similar studies have been conducted in astro-
glioma. CK reduces the expression of MMP-9 in human 
astroglioma cells by blocking the expression of AP-1 and 
PMA-mediated activation of p38 MAPK, ERK, and JNK.104 
Recent studies have shown that CK inhibits the proliferation 
of MG-63 and U2-OS osteosarcoma cells and reduces the 
expression of MMP-2/9 to prevent the migration and inva-
sion of tumor cells through the PI3K/mTOR/p70S6K1 path-
ways (Figure 2).105 The epithelial–mesenchymal transition 
(EMT) has been shown to promote tumor metastasis. CK 
and DDP alone or in combination inhibit MCF-7-cell prolif-
eration and the EMT through the PI3K/AKT pathway.106 
Similarly, CK suppresses the self-renewal ability and inva-
siveness of glioblastoma U87MG and U373MG GBM stem 
cells through the PI3K/AKT/mTOR signaling pathway 
(Table 4).107

Impact of CK on MDSCs in the Tumor 
Microenvironment

The tumor microenvironment (TME) is a complicated sys-
tem in which tumor cells are supported and allowed to 
flourish by many cells, such as endothelial cells, fibroblasts 
and myeloid suppressor cells.108 In the TME, myeloid 
suppressor cells, including tumor-associated macrophages 
(TAMs), myeloid-derived suppressor cells (MDSCs) and 
tumor-associated DCs (TADCs), play important roles in 
promoting the invasion and metastasis of tumors.109

Here, we focus on discussing the roles of CK in tumor 
MDSCs. MDSCs originate from the bone marrow and are 
composed of bone marrow progenitor cells and immature 
bone marrow cells (IMCs). MDSCs, which are important 

myeloid suppressor cells, accumulate in the TME and 
exhibit strong immunosuppressive activity against T-cell 
antitumor responses. In mice, MDSCs are divided into 2 
subgroups according to their epitope-specific antibodies: 
monocyte CD11b+LY6G−LY6Chi phenotype and granulo-
cyte CD11b+LY6G+LY6 slow phenotype. Mononuclear 
MDSCs and granulocyte MDSCs use different inhibitory 
mechanisms.110 Mononuclear MDSCs produce few reactive 
oxygen species (ROS) but produce high levels of nitric 
oxide (NO) and consist of IMCs that have the ability to dif-
ferentiate into macrophages and DCs. In contrast, granulo-
cyte MDSCs express high levels of ROS and very little NO 
and are the main population of MDSCs in tumor-bearing 
mice. In humans, MDSCs in cancer patients are defined by a 
combination of functional markers (eg, CD14, CD33, 
CD11b, and CD66b).110-112 A study in a CT26 colorectal can-
cer xenograft-bearing mouse model demonstrated that CK 
had a significant effect against tumor MDSCs. CK promotes 
the apoptosis of MDSCs by downregulating the expression 
of Cox-2 and Arg-1 in MDSCs and reduces the secretion of 
the inflammatory cytokines IL-1β, IL-6, and IL-17, inhibit-
ing the growth and proliferation of tumor cells.113 These 
results are consistent with ours (unpublished data).114

Synergistic Antitumor Effects of CK and Other 
Methods/Compounds

The antitumor activity of CK has been widely investigated. 
However, CK has certain drawbacks that restrict its clinical 
use since it has low solubility and poor absorption. 
Therefore, some scientists have combined CK with other 
clinical antitumor compounds or assays (such as irradia-
tion) to enhance antitumor activity in clinical practice.115 
For example, CK enhances gamma-ray-induced apoptosis 
of lung cancer cells and inhibits tumor growth in vivo at a 
dose of 30 mg/kg/day.116

Table 4. Anti-Tumor Metastasis of CK.

Cancer type Cell Line Description Ref.

Colon cancer CT-26 To reduce TNF-α-induced NF-κB activation and MMP-9 
expression to prevent the migration and invasion of cancer cells

Kang et al94

Liver cancer MHCC97-H To diminish the expression of NF-κBp65 nuclear export and 
MMP2/9 to inhibit tumor metastasis.

Hu et al95

Astroglioma U87MG U373MG 
CRT-MG

To inhibit the expression of AP-1 and PMA-mediated activation 
of p38 MAPK/ERK/JNK, inhibiting the MMP-9 expression on 
cancer cells.

Lee et al96

Osteosarcoma MG-63 U2-OS To suppress tumor proliferation, promote apoptosis and 
migration through PI3K/mTOR/p70S6K1 signal pathway

Kwak et al97

Breast cancer MCF-7 To induce apoptosis through PI3K/AKT pathway Ma et al98

GBM U87MG U373MG To inhibit proliferation and promote apoptosis through PI3K/Akt/ 
mTOR signal pathway

Kessenbrock 
et al99

Abbreviations: GBM, glioblastoma; AP-1, c-jun and c-fos.
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Wang et al117 synthesized Dendropanax AgNPs 
(D-AgNPs) and Dendropanax AuNPs (D-AuNPs) and 
found that 2 CK-added nanoparticles had a strong synergis-
tic anticancer effect on A549 lung cancer. According to 
reports, A54 peptide was utilized to fabricate CK-loaded 
micelles (APD-CK) and chitosan nanoparticles loaded with 
CK (CK-NPs) to more efficiently suppress liver cancer cell 
proliferation and promote apoptosis.118-120 In addition, the 
combination of CK with other compounds has also been 
studied in the treatment of gastric adenocarcinoma, colon 
cancer and hippocampal nerve cells. DPPH-scavenging 
gold nanoparticles (DCY51T-AuNps), CK-bearing glycol 
chitosan conjugates and novel ester prodrugs, such as butyl 
and octyl ester (CK-B and CK-O), exert better effects on 
improving the absorption of CK and contributing to its anti-
tumor effect.61,121,122 These studies provide an idea for anti-
tumor therapy of CK in clinics.

Conclusions and Prospect

CK has attracted an increasing number of scientific workers 
and is widely used due to its outstanding pharmacological 
activity. CK enhances human immunity, has antitumor, anti-
inflammatory, and antiaging properties, protects the nervous 
system and treats cardiovascular diseases, especially in the 
treatment of cancer. This article introduces the chemical 
structure, biotransformation, preparation, pharmacokinet-
ics and antitumor activity of CK. This article also summa-
rizes the antitumor mechanisms of CK, which inhibits 
tumor growth by inducing tumor apoptosis and tumor cell 
differentiation and blocks tumor invasion and metastasis 
via multiple signaling pathways and the functional inhibi-
tion of MDSCs. In the future, the effects of CK against the 
roles of other immunosuppressive cells need to be investi-
gated, further displaying the immune roles of CK on the 
TME. Interestingly, CK exhibits antitumor activity through 
multiple signaling pathways, indicating that CK may target 
distinct proteins that need to be studied for clinical treat-
ment. We have sorted and integrated different aspects of CK 
to clarify relevant treatment ideas and help people better 
understand CK and its broad application prospects.
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