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Abstract

Naturalistic imaging paradigms, in which participants view complex videos in the

scanner, are increasingly used in human cognitive neuroscience. Videos evoke tem-

porally synchronized brain responses that are similar across subjects as well as within

subjects, but the reproducibility of these brain responses across different data acqui-

sition sites has not yet been quantified. Here, we characterize the consistency of

brain responses across independent samples of participants viewing the same videos

in functional magnetic resonance imaging (fMRI) scanners at different sites (Indiana

University and Caltech). We compared brain responses collected at these different

sites for two carefully matched datasets with identical scanner models, acquisition,

and preprocessing details, along with a third unmatched dataset in which these

details varied. Our overall conclusion is that for matched and unmatched datasets

alike, video-evoked brain responses have high consistency across these different

sites, both when compared across groups and across pairs of individuals. As one

might expect, differences between sites were larger for unmatched datasets than

matched datasets. Residual differences between datasets could in part reflect

participant-level variability rather than scanner- or data- related effects. Altogether

our results indicate promise for the development and, critically, generalization of

video fMRI studies of individual differences in healthy and clinical populations alike.
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1 | INTRODUCTION

Problems with reproducibility and reliability of scientific findings have

arisen across numerous fields over the past two decades

(Ioannidis, 2005). Functional magnetic resonance imaging (fMRI) stud-

ies have been far from immune, with inconsistent results found across

numerous fMRI paradigms (Elliott et al., 2020; He, Byrge, &

Kennedy, 2020; Nickerson, 2018; Poldrack et al., 2017; Zuo, Biswal, &

Poldrack, 2019). Inconsistent results could indicate true and potentially

relevant differences in study populations. But different data processing

and data analysis choices can yield different conclusions from the same

datasets (e.g., Botvinik-Nezer et al., 2020; Eklund, Nichols, &

Knutsson, 2016), and datasets collected from different scanners at dif-

ferent sites can contain nonbiological variability due to differences in

scanners and protocols (Friedman et al., 2006; Yu et al., 2018). Alto-

gether these considerations indicate the importance of directly testing

reproducibility across datasets collected at different sites.

Naturalistic viewing fMRI, or video fMRI (here; vfMRI; Hasson, Nir,

Levy, Fuhrmann, & Malach, 2004), has emerged in recent years as an

attractive alternative to conventional task- and connectivity-based para-

digms. Videos are arguably more ecologically valid, and permit greater

compliance in the scanner (Eickhoff, Milham, & Vanderwal, 2020; Van-

derwal, Eilbott, & Castellanos, 2019) making them an ideal candidate to

use for developmental and clinical samples (e.g., Richardson, 2019).

While vfMRI data can be analyzed using conventional task- and

connectivity- based approaches, a distinct analysis approach that is

based on measuring similarity or synchrony among participant brain

responses has gained prominence (Saarimäki, 2021). This inter-subject

correlation-based approach (ISC; Hasson et al., 2004) presents its own

distinct analytic requirements due to the dependencies inherent in simi-

larity measurements (Chen et al., 2016; Nastase, Gazzola, Hasson, &

Keysers, 2019). Within the same dataset from the same scanner, vfMRI

paradigms can evoke markedly similar responses across subjects in many

parts of the brain (e.g., Byrge, Dubois, Tyszka, Adolphs, &

Kennedy, 2015; Hasson et al., 2004, 2009; Hasson, Malach, &

Heeger, 2010; Nastase et al., 2019; Richardson, Lisandrelli, Riobueno-

Naylor, & Saxe, 2018). Video-evoked brain responses have also been

shown to be reliable within individual subjects after repeated stimulus

presentations, in some regions (for review, see Hasson et al., 2010). Reli-

able responses are observed most consistently throughout posterior

swaths of cortex including visual and auditory primary sensory and asso-

ciation areas and, for some video stimuli, can also extend to include

parts of default network and lateral prefrontal cortex (Burunat

et al., 2016; Byrge et al., 2015; Hasson et al., 2009, 2010). However, the

extent to which brain responses during vfMRI are reproducible across

different datasets collected at different sites has not yet been examined.

This issue of examining reproducibility of vfMRI across different

sites takes on increased importance given recent momentum toward

using vfMRI for clinical studies (autism: Byrge et al., 2015, Hasson

et al., 2009, Salmi et al., 2013; schizophrenia: Yang et al., 2020;

depression: Gruskin, Rosenberg, & Holmes, 2020, Guo, Nguyen, Hyett,

Parker, & Breakspear, 2015). The idea is to first use vfMRI to establish

“normative” or “benchmark” patterns of brain responses to a video

stimulus with clinically relevant features. This then makes it possible

to quantify the extent to which an individual's brain responses deviate

from this reference pattern, in some particular brain area(s) or at some

particular moment(s) of the video (Eickhoff et al., 2020; Hasson

et al., 2010). The hope is that the combination of rich, dynamic stimuli

that engage multiple brain networks simultaneously, the relative ease

of standardizing stimuli and protocols across different data sites, and

the increased data quantity and quality permitted by greater scan

compliance might yield insights into the neural basis for the given con-

dition, facilitate discovery of novel biomarkers (Eickhoff et al., 2020;

Sonkusare, Breakspear, & Guo, 2019), and eventually inform diagnosis

as well as measure efficacy of interventions (Hasson et al., 2010).

Many clinical neuroscience studies are moving to multi-site con-

sortiums (e.g., Di Martino et al., 2017; Loth et al., 2017), which aggre-

gate data collection across different sites to obtain an appropriate

sample. However, the weak point in clinical neuroscience studies can

often be generalization of findings across different studies, samples,

and sites (e.g., He et al., 2020; King et al., 2019; Kliemann et al.,

2018). This presumably occurs due to combinations of factors that

can include individual variability, methodological and stimulus varia-

tion, and differences between scanner equipment and standardization.

Using video stimuli can minimize methodological and stimulus varia-

tion, as noted. But there is considerable individual variation in brain

organization and function within the healthy “control” population

(Dubois & Adolphs, 2016; Holmes & Patrick, 2018; Zilles &

Amunts, 2013), including trait-linked variation in video-evoked brain

response similarity (e.g., Finn, Corlett, Chen, Bandettini, &

Constable, 2018; Salmi et al., 2013). It is, therefore, important to test

the extent to which the “normative” pattern of brain responding to a

video is itself reproducible across different sites, before using it as a

clinical reference or benchmark. Such an investigation may also pro-

vide insights for fMRI harmonization efforts more generally. This is

because stimulus-driven brain responses permit partitioning of vari-

ance between exogenously- and endogenously- driven brain function

in a way that is not possible for some other types of widely-used fMRI

paradigms like resting-state functional connectivity.

Thus, here we directly examine cross-site consistency of evoked

brain responses during video scans collected at two different data

sites, Indiana University (Indiana) and California Institute of Technol-

ogy (Caltech) in independent samples of healthy adults. The primary

datasets for this manuscript are carefully matched datasets that were

collected on different physical scanners in different states, but with

potential sources of cross-site variability tightly controlled: identical
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scanner models, identical scan protocols, identical preprocessing pipe-

lines, and identical analysis procedures (Table 1). Characterizing the

similarity of brain responses across these closely matched datasets in

independent samples of typical controls (i.e., different individuals) will

thus suggest a potential upper bound on the levels of cross-site con-

sistency to be expected when the same video stimuli are used and

other details are matched as closely as possible. As a further explor-

atory step, we also examined cross-site similarity of brain responses

between two unmatched datasets: the Caltech dataset and an earlier

pilot dataset (Pilot) also collected at Indiana University, but several

years earlier and prior to a scanner upgrade. This Pilot dataset uses

the same video stimuli, but different scanner models, different scan

protocols, and differences across numerous dimensions of

preprocessing approaches (Table 1). Although the unmatched acquisi-

tions were not designed to disentangle specific sources of cross-site

variability, we include that comparison as a case study that is informa-

tive about the ranges of similarity possible when sources of cross-site

variation vary somewhat more freely—as is the case in some multi-site

studies, particularly those pooled from pre-existing datasets. Thus,

here we map out where in the brain to expect more consistent

responses across sites, and conversely, where variability across mat-

ched datasets and unmatched datasets most strongly manifests in

vfMRI paradigms. This establishes a key foundation for the clinical use

of vfMRI, because confidently identifying atypical video-evoked

responses in particular brain regions is ultimately limited by the reli-

ability of vfMRI in that region (see also Elliott, Knodt, & Hariri, 2021).

TABLE 1 Similarities and differences
between the matched and unmatched
datasets

Matched datasets

IU

Caltech Pilot

Unmatched datasets

Participants

Population HC HC HC

Sample Different Different Different

MRI acquisition

Scanner manufacturer Siemens Siemens Siemens

Field strength 3T 3T 3T

Scanner model Prisma.Fit Prisma.Fit TIM Trio

Scanner location Bloomington, IN Pasadena, CA Bloomington, IN

MRI protocols Matched Matched Unmatched

EPI resolution (spatial) 2.5 mm iso 2.5 mm iso 3.4 mm iso

EPI resolution (temporal) 0.72 s TR 0.72 s TR 0.813 s TR

Multiband acceleration factor 6 6 3

Experiment

Video stimulus Same (V1-6) Same (V1-6) Same (V1-2)

Stimulus presentation code Same Same Same

Data preprocessing & analysis

Preprocessing pipeline Same Same Different

Denoising approach GLM with GSR GLM with GSR GLM + ICA-FIX, then GSR

Temporal filtering Bandpass Bandpass Detrending

Spatial smoothing 2.54 mm 2.54 mm None

Analysis code Same Same Same

Personnel

Experimenter Different Different Different

Data analyst Same Same Same

Note: This table presents the main similarities and differences between the matched (IU & Caltech; dark

gray) and unmatched (Caltech & Pilot; light gray) datasets. Table organization corresponds roughly to the

taxonomy of reproducibility in neuroimaging from Nichols et al. (2017). The primary comparison between

matched datasets is situated between “Near replicability” and “Intermediate replicability” of
generalization over materials and methods in that taxonomy. The exploratory comparison between

unmatched datasets is situated between “Intermediate replicability” and “Far replicability”; for that
comparison, the Pilot acquisition was resampled temporally to match the sampling rate of the primary

matched datasets. HC, healthy control adults. No participants overlapped between datasets. Entries

listed as “same” and “different” for brevity are further detailed in Methods.
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2 | MATERIALS AND METHODS

2.1 | Participants

2.1.1 | Matched datasets

The primary matched datasets were collected at two sites, Indiana

University and Caltech, between 2017 and 2020, as part of a larger

project including both typically developed adults and adults with

autism spectrum disorder (ASD). Only data from typically developed

adults are included in the current report (N = 49/25 [Indiana/Caltech]

participants [mean (SD) age 24.9 (6.5)/34.2 (4.8), from an original sam-

ple of N = 63/29, prior to data-quality-related exclusions reported

below]). Age differed between sites (t = �6.54, p < .001). The current

dataset includes predominantly males (40 Indiana, 19 Caltech)

because its primary purpose is to serve as a matched control for the

(mostly male) ASD participants whose data will be reported else-

where. All subjects provided written informed consent; all experimen-

tal procedures were approved by the Institutional Review Boards of

Indiana University (IU IRB) and the California Institute of Technology.

2.1.2 | Unmatched (pilot) dataset

The pilot dataset was collected between 2015 and 2016 at Indiana

University, prior to a scanner upgrade from a 3T Siemens TIM Trio to

a 3T Siemens Prisma. Fit system, and is described in Byrge and

Kennedy (2020). This dataset also included both typically developed

adults and adults with ASD, and is accordingly skewed male. Only data

from typically developed adults (N = 25, 22 male; mean [SD] age

25.11 [4.66] years) is included in this report. All subjects provided

written informed consent; all experimental procedures were approved

by the IU IRB.

2.2 | Design

2.2.1 | Matched datasets

Participants underwent two scanning sessions separated by approxi-

mately 1 week. Each session consisted of interleaved rest and video

scans in a fixed order. A total of 10 functional scans were collected

(six video scans; four ~16-min. resting-state scans). Table 2 presents

an overview of the video scans included for each dataset. For this

report, we focus most analyses on Videos 1 and 2, because they were

also used in the pilot dataset. For a few additional analyses, we also

include the remaining four video scans. Resting-state scans were used

as comparison scans for some analyses. These and the remaining

functional scans will be reported in further detail elsewhere.

Stimulus construction for the primary video scans (Videos 1 and

2) is described in Byrge and Kennedy (2020); briefly, both scans con-

sisted of sequences of six movie trailers collected from Vimeo

(https://vimeo.com) across different genres (e.g., documentary, drama,

adventure). Movie trailers were concatenated with short breaks

(a few seconds) between each trailer. Videos 3 and 4 were different

episodes of the TV sitcom “The Office (Season 1 Episode 6, ‘Hot Girl’;
see also Byrge et al., 2015, and Pantelis, Byrge, Tyszka, Adolphs, &

Kennedy, 2015; and Season 1 Episode 5, ‘Basketball’).” Video 5 was a

short animated movie, Pixar's “Partly Cloudy,” (Reher & Sohn, 2009;

see also Richardson & Saxe, 2020). Video 6 was an edited excerpt

from the episode “Bang! You're dead” from the television series

Alfred Hitchcock Presents (1961; see also Hasson et al., 2004). Sam-

ple sizes for each video scan are reported in Table 2.

Video was back-projected onto a screen that was visible to sub-

jects via a mirror attached to the head coil, with audio provided using

Sensimetrics MR-compatible headphones. No video stimulus was pro-

vided during resting state scans (the projector was set to a black

screen), and wakefulness was monitored via an MR-compatible remote

TABLE 2 Video scans and sample sizes for matched and unmatched datasets

Video 1 (movie trailers,
~13.5 min).

Video 2 (movie trailers,
~13 min).

Video 3 (The
Office, ~22 min).

Video 4 (The
Office, ~22 min).

Video 5 (Partly
Cloudy, ~5.6 min).

Video 6
(Bang, ~8 min).

IU Cal Pilot IU Cal Pilot IU Cal IU Cal IU Cal IU Cal

Initial sample 61 29 29 56 28 29 61 28 56 28 56 28 54 28

Scan issues 1 1 0 2 2 0 1 2 1 4 0 1 0 2

MRIQC outlier 5 1 n/a 1 1 n/a 4 1 1 0 4 0 1 1

Motion 3 1 4 3 0 4 2 2 2 1 2 1 1 3

Registration 1 0 0 4 1 0 2 0 3 0 2 1 3 0

ISC outlier 3 1 n/a 1 1 n/a 3 1 0 0 2 0 2 0

Final sample 48 25 25 45 23 25 49 22 49 23 46 25 47 22

Note: This table presents video scans, initial sample sizes, and exclusions for matched datasets (IU, Cal) and unmatched datasets (Cal, Pilot). IU, Indiana. Cal,

Caltech. Videos 1 and 2 are the primary scans analyzed here because those video stimuli were used in all three datasets. Scan issues include technical

problems (muffled sound, projector issues, missing image data) and participant sleep. Quality assurance workflow differed for the matched and unmatched

datasets and MRIQC and ISC outlier exclusions were not applicable to the pilot dataset. Columns with a white background denote scans collected during

the first session; columns with a gray background denote scans collected during a second session approximately 1 week after the first. Video scans 1–4
were all preceded by rest scans.
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eye tracker camera (Eyelink 1000+, SR Research Ltd. Ottawa, Canada).

Subjects were instructed to move as little as possible and to remain

awake with eyes open. Scans where problems occurred during acquisi-

tion (technical problems, such as muffled audio or issues with projector

screen, or participants falling asleep) were also excluded (see Table 2).

Anatomical images were acquired following functional runs, dur-

ing which participants chose to rest or watch a different video.

2.2.2 | Unmatched dataset

The experimental design for this dataset is described in detail in Byrge

and Kennedy (2020). Briefly, this study was also collected across two

scan sessions separated by approximately 1 week, with interleaved

rest and video scans. Only the two video scans that used the same

stimuli as the primary datasets (Videos 1 and 2) were included in this

report. Anatomical images were collected following functional scans.

See Table 2 for sample sizes.

2.3 | Data acquisition, preprocessing, and quality
assessment

2.3.1 | Matched datasets

MRI images were acquired using identical Siemens 3T Magnetom Pri-

sma. Fit scanners (Siemens Medical Solutions, Natick, MA) at each site,

with 64-channel head receive arrays. Scan protocols were matched

across sites. Scanner software versions used were VE11B (IU) and

VE11C (Caltech, and last five scans at IU). During functional scans, T2*-

weighted multiband echo planar imaging (EPI) data were acquired using

the following parameters: TR/TE 720/30 ms; flip angle = 50�; 2.5 mm

isotropic voxels; 60 slices acquired in interleaved order covering the

entire brain; multi-band acceleration factor of 6 (Multiband EPI

sequence version R16, CMRR, University of Minnesota). Scan lengths

were as follows: Video 1, 1,130 volumes; Video 2, 1,080 volumes; rest,

1,355 volumes. Prior to the first functional scan, spin-echo EPI images

were acquired in opposite phase-encoding directions (three images

each with P-A and A-P phase encoding) with identical geometry to the

EPI data (TR/TE = 4,390/37.2 ms; flip angle = 90�) to be used as a

fieldmap to correct EPI distortions. High-resolution images of the whole

brain were acquired as anatomical references (multi-echo MPRAGE,

0.9 mm isotropic voxel size; TR = 2,550.0 ms/TEs = 1.63 ms, 3.45 ms,

5.27 ms, 7.09 ms/TI = 1,150 ms).

An upgrade to the trigger box occurred in the final months of data

collection at the IU site, and this sporadically resulted in an intermit-

tent missed trigger and delayed movie start for 35 scans. These scans

were identified empirically and adjusted accordingly (see Supporting

Information S1); these realignments did not influence the pattern of

results reported here, which were effectively identical when con-

ducted with the original (non-realigned) scans.

DICOM images were converted to BIDS format (Gorgolewski

et al., 2016) before being run through MRIQC (v0.15.2; Esteban

et al., 2017) for initial quality assessment using the functional image

quality metrics (IQMs) FWHM avg, SNR, TSNR, DVARS std, and GSR.

Outliers on these IQMs (the median for that data site plus or minus

1.5 times the interquartile range [IQR] for that IQM for that data site,

as appropriate for the measure in question) were flagged for manual

review by two of the authors (LB & DK). Following review, the con-

sensus decision was to exclude all such flagged scans from further

analyses (see Table 2).

After initial quality assessment, preprocessing was conducted

using fMRIPrep (Esteban et al., 2019). The boilerplate text generated

by fMRIPrep, with complete preprocessing details, is included in

Supporting Information S1. Briefly, using components from ANTs

(Avants, Epstein, Grossman, & Gee, 2008) FSL (v. 5.0.9; FMRIB's Soft-

ware Library, www.fmrib.ox.ac.uk/fsl) and Freesurfer (v.6.0.1, Dale,

Fischl, & Sereno, 1999), anatomical images were bias-corrected, skull-

stripped, segmented, and nonlinearly registered to MNI space. Func-

tional scans underwent rigid-body motion correction, fieldmap-based

distortion correction, and coregistration to the anatomical reference

scan, and confound regressors (head motion parameters, CSF, WM,

and whole-brain global signal) were computed.

For summarizing motion across a scan as well as identifying

epochs of excessive motion, we computed filtered framewise dis-

placement traces (FDfilt4) from the fMRIPrep-computed head motion

parameters, as the sums of the backwards difference across four TRs

of motion parameters that had been filtered to exclude respiratory

frequencies, as introduced by Power et al. (2019) and used previously

for the pilot acquisition (Byrge & Kennedy, 2020). FDfilt4 separates

head motions from respiratory fluctuations in multiband acquisitions

more effectively than the conventional framewise displacement com-

putations (Power et al., 2019). We excluded all scans with excessive

motion, as identified by mean FDfilt4 exceeding the median plus 1.5

times the IQR of the mean FDfilt4 across all scans (including scans

from ASD participants not included in the current analyses), computed

separately at each site, resulting in the following exclusion thresholds:

mean FDfilt4 > 0.4808 for Indiana, mean FDfilt4 > 0.5625 for Caltech

(see Table 2). To ensure highest data quality, we also censored time

points surrounding excessive motions: 10 frames before and 30 frames

after any frame with FDfilt4 > 3.75 mm; censored time points were

treated as missing data in all analyses, and the inclusion or exclusion

of censored data did not influence the overall pattern of results.

All reports generated by fMRIPrep were inspected by two inde-

pendent reviewers (two research assistants, one based at each site,

trained to conservatively flag any potential issues with anatomical and

functional scans and their alignment). All reports flagged by both

research assistants were then independently reviewed by both LB &

DK and a consensus decision was reached about whether to include or

exclude all such flagged scans from the current dataset (see Table 2).

Subsequent preprocessing used xcepengine version 1.2.1; detailed

in detail by Ciric et al. (2018). We preprocessed all functional data

(both video and rest scans) the same way for comparability, using the

“fc-24p_gsr” pipeline optimized for functional connectivity

processing; this configuration is publicly available at https://github.

com/PennBBL/xcpEngine/blob/master/designs/fc-24p_gsr.dsn.

Briefly, functional data was demeaned and detrended, aligned to the

anatomical reference scan, and bandpass-filtered within the range
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0.08–0.001 Hz using a Butterworth filter. Then, 36 confound regres-

sors (six head motion parameters, CSF, WM, global signal, their back-

wards differences, and then the squares of those 18 traces; all

temporally filtered in the same way as the data) were regressed from

the data, and then the residuals were spatially smoothed with a

2.54 mm filter, and then used as the “cleaned” data.
For the primary datasets, we examined average BOLD timeseries

across several different atlases. We focused exclusively on cerebral

cortex, excluding the cerebellum and all subcortical structures, follow-

ing the largely cortico-centric focus of the inter-subject synchrony lit-

erature. The primary atlases used were different parcellation scales of

the Schaefer atlas (Schaefer et al., 2018), which subdivides the intrin-

sic functional connectivity-based Yeo network parcellation of the cor-

tex (Yeo et al., 2011) into 100, 200, 400, 600, 800, and 1,000 cortical

regions. We also examined the structural Harvard-Oxford Atlas dis-

tributed with FSL, which had been previously used to parcellate the

pilot dataset. We restricted our analysis of the Harvard-Oxford

parcellation to cortical regions of interest (ROIs; 96) only, for consis-

tency with the Schaefer cortical parcellation. For all atlases, we

obtained ROI timeseries for each region as the mean of the “cleaned”
BOLD signal across all voxels in the given region, at each time point.

As an additional data quality assessment, for all video scans, we

examined BOLD time series from primary visual cortex and primary

auditory cortex in each hemisphere (using the Harvard-Oxford

parcellation), in order to identify and exclude scans where technical

problems with the stimulus presentation or visual or auditory aspects

of the stimulus occurred but were not noted at the time of scanning

(e.g., headphone or projector failure, or misalignment between the

start of image acquisition and the video). We approached this cau-

tiously and conservatively, because similarity of BOLD time series

among scans is also our measure of interest for this report; but, at the

same time, extremely low similarity to other participant timeseries in

primary sensory areas during long video scans is an indicator that

something has gone wrong in the scan acquisition process. Therefore,

separately within each dataset, for each video scan, and for each of

the four primary sensory regions of interest, we computed pairwise

correlations among all participant time series, and computed the

median minus three times the interquartile range of median pairwise

correlations for each participant as a threshold to identify extreme

outlier values suggestive of equipment issues. We excluded scans for

which the median pairwise correlation was below this data-driven

threshold in at least one of the sensory regions (see Table 2).

2.3.2 | Unmatched dataset

This acquisition and preprocessing pipeline is described more

completely in Byrge and Kennedy (2020). Briefly, images were col-

lected using a 3 T Magnetom Tim Trio system (Siemens Medical Solu-

tions, Natick, MA) with 32-channel head receive array, running

software version VB17. T2*-weighted multiband EPI data was acquired

using the following parameters: TR/TE = 813/28 ms; 1,200 volumes;

flip angle = 60�; 3.4 mm isotropic voxels; 42 slices acquired with inter-

leaved order covering the whole brain; multi-band acceleration factor

of 3. Gradient-echo EPI images (10 images each with P-A and A-P

phase encoding; TR/TE = 1,175/39.2 ms, flip angle = 60�) were used

as fieldmaps for EPI distortion correction. High-resolution T1-weighted

images of the whole brain (MPRAGE, 0.7 mm isotropic voxel size; TR/

TE/TI = 2,499/2.3/1,000 ms) were acquired as anatomical references.

Data were preprocessed using an in-house pipeline using FSL

(v. 5.0.8; FMRIB's Software Library, http://www.fmrib.ox.ac.uk/fsl),

ANTs (v2.1.0; Avants et al., 2011), and Matlab_R2014b (www.

mathworks.com, Natick, MA). Preprocessing steps included rigid-body

motion correction, fieldmap-based geometric distortion correction,

non-brain removal, weak highpass temporal filtering (>2,000 s FWHM)

to remove slow drifts. Denoising was preformed using FSL-FIX

(Salimi-Khorshidi et al., 2014) followed by mean cortical signal regres-

sion in a second step (effectively the same as global signal regression,

but using the signal across the cortex rather than whole brain; Burgess

et al., 2016), with the residuals analyzed as the “cleaned” data. Volu-

metric registrations were conducted using FSL and ANTs, using a com-

bined affine and diffeomorphic transformation matrix. Region of

interest (ROI) timeseries using the Harvard-Oxford Atlas distributed

with FSL were obtained as the weighted mean signal from the

“cleaned” BOLD signal across voxels within each of the 110 ROIs.

As these data were collected using a different repetition time

(TR) than the primary dataset (813 ms vs. 720 ms), the final

preprocessing step for this report was to resample these time series

to match the faster sampling rate of the primary dataset. There are

many possible ways to perform such resampling; here, we used Fou-

rier method resampling as implemented in scipy.signal.resample.

Differences between the primary and exploratory pilot

unmatched acquisitions are summarized in Table 1.

2.4 | Data analysis

Naturalistic fMRI data analysis requires evaluating the similarity of brain

response time series. Here, we examined similarity of brain responses

across sites at two distinct levels: similarity of group-average time

series from each site (Figure 1a), and similarity of pairs of individual

subject time series across sites and within each site (Figure 1b; pairwise

ISC; Hasson et al., 2004). At the group level, within each site, we used

median time series across subjects within each brain ROI to isolate the

common brain response pattern while reducing the influence of various

forms of noise. We take these measurements of across-site similarity at

both levels as our measures of cross-site consistency.

Unless noted, analyses are repeated on the two primary video trailer

scans (Videos 1 and 2) that were used as stimuli in each of the datasets.

Most analyses are conducted across multiple spatial scales using differ-

ent granularities of the Schaefer parcellation (Schaefer et al., 2018).

2.4.1 | Statistical comparisons

Consistency of brain responses across sites

As a first broad characterization of the extent to which there is shared

signal across sites, we visualized similarity between median time series
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for each site using Pearson correlations. To quantify whether a brain

region (ROI) was responding more consistently across sites during the

same video than expected by chance at this group level, we con-

ducted a nonparametric subject-wise bootstrapped procedure (follow-

ing recommendations of Chen et al., 2016). This tested whether the

median timeseries at each site were more similar when participants

were watching the same video at each site, versus when participants

watched different scans at different sites (e.g., Video 1 at one site and

Rest at the other site). We conducted the procedure separately for

each site (e.g., comparing Video 1 at IU to Video 1 at Caltech, and to

Rest at Caltech), and also conducted the procedure separately for two

comparison scan types—Rest, and a different video—due the different

statistical properties of the corresponding timeseries. In each case, for

10,000 iterations, participants at each site were resampled with

replacement, and the correlation across sites between the median

timeseries for each of the bootstrapped samples was computed, in

each ROI and for each scan pair. We formed an empirical distribution

from the difference of the magnitudes of these across-site correla-

tions in each ROI, comparing same-scan to different-scan. Note that

we compared differences of correlation magnitudes (absolute values)

rather than raw values to avoid exaggerated influence from very small

negative correlations, which were expected between video and rest

scans. We constructed a null distribution from this empirical distribu-

tion by shifting it by the observed median difference of correlation

magnitudes (as in Chen et al., 2016), and obtained an empirical one-

sided p-value (corrected to avoid bias due to finite sampling,

Davison & Hinkley, 1997). We then FDR-corrected these p-values for

the number of ROIs in the parcellation to address multiple compari-

sons. From this, we obtained a percentage of ROIs per parcellation

that responded more consistently than chance for the comparison

scan in question (rest or alternate video) and for the site in question.

In the text, we conservatively report the smallest such percentage for

each parcellation (note that results were highly consistent across com-

parisons scan types and sites), and consider a region as responding

more consistently than expected by chance only if it survived FDR

correction for all of these comparisons.

For individual-level analyses, for each scan and in each brain

region, we computed pairwise ISC as the Pearson correlation among

F IGURE 1 Schematic of approach for examining consistency of video-evoked brain responses across sites (black and blue) at the level of the
group (a) and individuals (b). Example individual time series depict the functional magnetic resonance imaging BOLD signal averaged across a
given region of interest, across the duration of the video. To examine consistency across sites at the group level (a), the average of all these
individual time series is computed for each site (bolded timeseries), and then the correlation between those average site-level time series is
computed (green arrow). To examine consistency across sites at the individual level (b), correlations between pairs of time series from individual
participants at different sites are computed (green arrows), and for some analyses compared to correlations between pairs of participant time
series from the same site (black arrows, or blue arrows)
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pairs of individual brain responses for all pairs of subjects. We also

computed pairwise similarity across different scans (e.g., between

Video 1 and Rest, or between Videos 1 and 2) for use in null distribu-

tions. We used nonparametric statistical comparisons, following the

recommendations of Chen et al. (2016), and pooled pairwise correla-

tions within and/or across sites without collapsing at the individual

level.

To evaluate whether a brain region responded more consistently

across sites than expected by chance at the individual level, we exam-

ined only ISC between pairs of participants from different sites, and

again asked whether the magnitudes of those correlations were

greater when both participants were watching the same video than

when one participant was watching the video and the other partici-

pant underwent a comparison scan (either rest, or a different video).

As describe above, we compared correlation magnitudes (absolute

values) to avoid exaggerated influence from very small negative corre-

lations, we conducted the procedure separately for each comparison

scan type (rest and different video), and we conducted the procedure

separately for each site, holding the comparison scans fixed. Specifi-

cally, within each brain region, for same video scan S and different

(comparison) scan D, across all across-site pairs of Indiana participants

Ii and Caltech participants Cj, we obtained: ΔrIndiana = median (j r(SI1,-
SC1) j, …, j r(SIi,SCj) j ) � median(j r(SI1,DC1) j, …, j r(SIi, DCj) j ) and
ΔrCaltech = median (j r(SI1,SC1) j, …, j r(SIi,SCj) j ) � median(j r(DI1, SC1) j,
…, j r(DIi, SCj) j ). We then permuted scan type labels (Same vs Differ-

ent) 10,000 times and computed this same measure to establish a null

distribution of median differences, and obtained a one-sided empirical

p-value (corrected to avoid bias due to finite sampling, Davison &

Hinkley, 1997) of observing ΔrIndiana and ΔrCaltech by chance. To

address multiple comparisons, we applied FDR correction within each

parcellation. We conservatively considered a region as responding

more consistently than expected by chance only if it survived FDR

correction for both ΔrIndiana and ΔrCaltech and for both comparison

scan types (note also that results were effectively the same across

sites/comparisons).

2.4.2 | Differences between sites

After examining consistency of brain responses between sites, we

examined differences. To do this, and to get estimates of variance, we

continued at the individual subject level, because group average time

series mitigate or even eliminate noise that might be unique to a given

site or scanner. Differences between datasets would manifest as dif-

ferences in within-site similarity versus across-site similarity. There-

fore, for each video, site, and brain region, we computed the observed

difference in within versus across-site ISC as the difference between

the median ISC among all subjects at the site in question and the

median ISC among all different-site subject pairs. As before, we com-

puted this measure separately for each site, because levels of within-

site similarity could be different. We then computed the empirical p-

value of observing this median difference as before using a permuted

null distribution constructed by shuffling site labels 10,000 times and

computing the permuted median difference. For this analysis, we con-

servatively used α = .05 with no correction for multiple comparisons,

in order to increase our sensitivity to detect potential differences

between datasets (at the expense of likely false positives). Finally, to

contextualize the magnitudes of differences between datasets, we

also compared distributions of within- and across- site ISC values

using Mann–Whitney rank sum tests and report the common-

language effect sizes (CLES; Vargha & Delaney, 2000) across ROIs.

CLES in the within—across direction reported here reflect the propor-

tion of pairs of observations in which within-site pairwise ISC is higher

than across-site pairwise ISC. CLES of 0.5 indicates no effect, and

CLES of 0.56, 0.64, and 0.71 roughly correspond with Cohen's

d values of 0.2, 0.5, and 0.8, indicating small, medium, and large effect

sizes (Ruscio, 2008). (Note that CLES below 0.5 would indicate higher

across-site ISC than within-site ISC with comparable interpretations,

for example, CLES of 0.44 would reflect a small effect.)

3 | RESULTS

3.1 | Similarity

3.1.1 | Consistent group-level brain responses are
evoked by the same videos at different sites

Average brain response time series across a group of participants

should capture common patterns of stimulus-evoked brain function

while mitigating the effects of physiological noise, scanner noise, and

individual differences in brain functioning. The hope, for generalizabil-

ity of vfMRI studies, would be that these group-level brain responses

would be largely similar across sites (as depicted in Figure 1a), espe-

cially when acquisitions and processing are matched as closely as they

are in these primary datasets. Figure 2 shows correlations between

the median time series across IU participants and the median time

series across Caltech participants in each brain region while watching

the videos, under different spatial scales of the Schaefer atlas

(Schaefer et al., 2018), which subdivides the intrinsic connectivity-

based Yeo network parcellation of the cortex into 100, 200, 400, 600,

800, and 1,000 regions. As is evident, average brain responses across

Indiana participants were highly similar to average brain responses

across Caltech participants, during both video scans, across all

parcellation scales examined. Highly similar brain responses were not

limited to the primary sensory areas expected to be driven by the

stimulus (c.f. visual and auditory timeseries shown in Figure 2) but

extended throughout the cortex (c.f. association timeseries shown in

Figure 2).

3.1.2 | Consistent group-level brain responses are
found through most of the cortex

As is evident in Figure 2, highly similar group-level brain responses

across scanners were not limited to the coarser parcellations. As
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F IGURE 2 Consistency of average group-level brain responses across sites while participants watched the same videos (see Figure 1a), for
matched datasets. Brain visualizations depict correlations between median time series across all participants at each site, in each brain region,
under different scales of the Schaefer parcellation (100–1,000 ROIs). The Schaefer parcellation is a cortical parcellation; black along the midline in
medial views here and elsewhere indicate missing data, not low correlations. Line plots depict median timeseries across participants at each site in
primary sensory areas (left) and association areas (right) using the 400-region Schaefer parcellation during Video 1 (top) and Video 2 (bottom). All
figures depict the left hemisphere; the pattern of results for the right hemisphere is effectively the same
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parcellation granularity increases, though, some correlation magni-

tudes decrease—as expected, as regional timeseries approach voxel-

level timeseries with correspondingly reduced spatial smoothing—to

the extent that it becomes unclear by eye whether brain response

similarity across scanners exceeds chance levels in some brain regions.

In all parcellations, the median time series at each site was more cor-

related than expected by chance in nearly all cortical regions (>96% in

all six cortical parcellations; ranging from 100% of ROIs in the

100-ROI parcellation and >96% in the 800- and 1,000-ROI

parcellations). However, the size of these effects varied across the

brain, as can be seen on the color axis, and in some association areas,

significant correlations between group-level brain responses at each

site were quite small (around r = .1, after FDR correction). One might

expect such a weak shared signal to be easily dominated by other fac-

tors (e.g., endogenous processing, scanner noise, registration inaccura-

cies) if not for averaging across multiple scans (i.e., participants).

Brain regions that did not respond consistently across sites at the

group level in at least one comparison predominantly included parts

of the temporal pole and orbitofrontal cortex (areas prone to suscepti-

bility artifacts) as well as the somatomotor strip and other areas

potentially related to bodily or internal processes, regions with low

correlations that can be observed in Figure 2.

3.1.3 | Participant-level brain responses are
consistent across sites throughout most of the cortex

Average time series across groups of subjects are effective at isolating

common response patterns by dampening down individual variability,

but they are not representative of any individual brain's functioning

and could minimize potential differences in noise properties across

scanners. Thus, next we examined consistency of individual brain

responses among pairs of participants as they watched the same

videos (as depicted in Figure 1b). Figure 3 (see also Figure S1) shows

the median of these pairwise ISC across sites in the center column,

along with pairwise ISCs within each site (left and right columns) for

comparison. As expected, based on increased noise and individual var-

iability in participant time series, the range of correlations is shifted

lower than in Figure 2, but the general conclusion remains the same:

consistent brain responses across sites are widespread throughout

the majority of the cortex. Nearly all ROIs (>90% in all six cortical

parcellations; ranging from 98% of ROIs in the 100-ROI parcellation

and 91% in the 1,000-ROI parcellation) were more similar between

cross-site pairs of subjects watching the same video than expected by

chance, using a null distribution comprised of pairwise brain response

similarity in which one participant watches this same video and the

other undergoes a different scan (either a resting state scan, or

watching a different video).

It is important to note, though, that above-chance similarity rela-

tive to resting state does not imply a large effect size, and the median

across-site pairwise ISCs in some ROIs that responded at above-

chance levels could be exceedingly small, even below 0.01. In other

words, although the common stimulus explained some proportion of

variance in these time series (and a vanishingly small proportion for

these smallest correlations), most variability is left unexplained—and

thus left to be explained in future studies of stimulus-level, contextual,

state-level, physiological, and phenotypic factors underlying these

individual brain responses (see for example, Chang et al., 2021). This is

the case even for the primary sensory areas most strongly driven by

the stimulus, where median across-site pairwise correlations could

exceed 0.5, which still leaves around 75% of the variance unexplained

by the common stimulus. Inspection of the randomly selected exam-

ple time series in Figure 3 (bottom) and Figure S1 suggests the possi-

bility that some specific moments of the stimulus may drive relatively

instantaneous similarity amid otherwise dissimilar brain responses in

some of the association areas that have low ISC that nonetheless

exceeds chance (c.f. Figure 3, PFCd), but future work will be needed

to examine that possibility directly.

3.1.4 | Consistent group- and individual- level brain
responses are evoked by a variety of video stimuli

Participants in the primary dataset watched different video stimuli

sampling a variety of genres: movie trailers (Videos 1 and 2; the main

stimulus throughout this manuscript), complete episodes of TV sit-

coms (“The Office”; Videos 3 and 4), an animated short film (“Partly
Cloudy”; Video 5), and a black-and-white Alfred Hitchcock film

(“Bang! You're dead”; Video 6). As is already apparent in Figure 2,

cross-site consistency at the group level was high for both Videos

1 and 2 despite varying stimulus content—each of those videos con-

sisted of sequences of trailers for entirely different movies. Figure 4

(top) shows the correlations between group-average timeseries at

both sites for all six video scans in the primary dataset, using the

coarsest and finest parcellation scales. As is evident, high cross-site

similarity between average time series is a feature of all the video

stimuli used, and not limited to movie trailers alone. Note that while

the maps look similar—qualitatively, regions that responded highly

consistently across scanners during one video also responded consis-

tently during the other video—the patterns are also not identical

across different videos. These differences could reflect differences in

stimulus content. For instance, reductions in cross-site similarity can

be observed in some temporal and frontal regions during the largely

silent animated film (Video 5). Notably, episodes of The Office were

chosen so as to emphasize social features in the video, and cross-site

consistency in medial prefrontal cortex appears elevated in Videos

3 and 4 relative to the other scans, potentially reflecting the increased

social processing demands of the stimulus. While these video scans

also differed in length, scan length did not appear to be the main

driver of these differences (see also Figure S2, which presents an

alternate version of this figure that was randomly downsampled to

address length differences, but shows largely similar patterns).

Figure 3 (top) and Figure S1 showed high levels of cross-site con-

sistency at the level of individual subject pairs for Videos 1 and 2. Fig-

ure 4 (bottom) shows median across-site (in black) and within-site

(in color) pairwise ISC for each of the video scans in each ROI. One of
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F IGURE 3 Similarity of individual participant brain responses within and across sites during Video 1 (see Figure 1b) for matched datasets.
Top: brain maps depict magnitudes of medians of pairwise correlations between participant brain response time series in each region, for the
most coarse (top) and the most fine (bottom) scales of the Schaefer cortical parcellation. The left and right columns show correlations among pairs
of participants at the same site (left: Indiana; right: Caltech). The center column shows correlations among pairs of participants spanning different
sites. While absolute values are depicted here for readability, nearly all median correlations were positive, except one temporal pole ROI with a
near- zero median correlation of �.0036. As in Figure 2, black along the midline in medial views indicates missing data, not low correlations. See
also Figure 4 (bottom panel, top plot) for a line version of this same data, and Table S2 for characterization of differences and effect sizes.
Bottom: line plots depict timeseries from five randomly-selected participants at each site in primary sensory areas (left) and association areas
(right), along with the site-level median time series shown in Figure 2. These line plots use the same mid-scale parcellation as Figure 2 (Schaefer
400x17). See also Figure S1 for the equivalent figure for Video 2, which is similar but supplemental for space purposes
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F IGURE 4 Legend on next page.
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the colored lines corresponds to the values that would be projected

onto a brain map if the data had been collected at a single site

(e.g., the red line for Video 1 in Figure 4 (bottom) is the same as the

Indiana within-site ISC map in Figure 3, upper left). While the colored

lines show small intermittent deviations above and below the black

line, the larger take-away is that the lines track one another closely.

The pattern of median within-site ISC across ROIs for one site is

highly correlated with the pattern of within-site ISC for the other site,

and both quantities are highly correlated with median across-site ISC

(all r > .91 across all videos and all parcellations). In other words, brain

responses for pairs of subjects at different sites are about as similar as

pairs of subjects at the same site. This close tracking is apparent both

for brain regions that are more evoked and less evoked by the stimuli,

as well as for different video stimuli that drive higher and lower ISC

values in the same brain regions (for instance, c.f. x = 41 [part of left

hemisphere temporal lobe] for Video 5 vs. the other video scans, for

the center panel with the 100-scale parcellation). Cross-site consis-

tency of brain responses for this set of stimuli is neither limited to a

few sensory regions that are most strongly driven by the video, nor a

subset of video stimuli that drive the brain especially strongly, but is

instead apparent throughout the different stimuli used here.

3.2 | Differences

3.2.1 | Differences across sites are minimal when
acquisitions and processing are matched

After establishing that brain responses across the cortex are indeed

consistent across sites, the natural question is to ask about differ-

ences. If there were no differences between datasets, an individual

scan would be just as similar to other scans at the same acquisition

site as it is to other scans from a different acquisition site. Arguably,

site-level differences could manifest as either increased or decreased

similarity among participants at the same site, depending on noise

properties. We thus evaluated potential site differences by testing

whether within-site pairwise similarity for either site differed from

across-site pairwise similarity in any brain region, by comparing the

observed differences of the medians to a permuted null distribution in

which site labels were shuffled. Because levels of within-site consis-

tency need not be the same for both sites, and therefore differences

between within-site and across-site similarity could differ, we

considered a brain region to have a site difference if such a difference

was observed for either site, and not necessarily for both sites. For

this analysis, to conservatively increase sensitivity for detecting any

potential differences, we did not correct for multiple comparisons,

and thus some false positives are likely.

For all video scans, and for all parcellations, the majority of brain

regions had no site differences at this conservative threshold. Propor-

tions of brain regions that did have site differences ranged (across

parcellation scales) as follows: Video 1, 0.13–0.17; Video 2, 0.09–

0.15; Video 3, 0.06–0.11; Video 4, 0.06–0.13; Video 5, 0.23–0.32;

Video 6, 0.35–0.47. As noted above, these proportions are likely to be

an overestimate. Differences can be observed in Figure 4 (bottom) as

gaps between the black and colored lines. Differences are generally

small relative to the level of ISC, and are found in regions including

those that are strongly driven by the stimulus (e.g., x = 53, part of the

right hemisphere peripheral visual network, for the center panel with

the 100-scale parcellation). Table S2 summarizes differences in the

distributions of within-site and across-site ISC values. For all videos

and all parcellations, median differences between within- and across-

site ISC values across ROIs were small (<0.03), with median CLES

across ROIs corresponding with small effect sizes. Maximum CLES

across ROIs reflected small or medium effects depending on the video

and parcellation (maximum CLES from 0.57 to 0.67), but never large

effects. Such differences could arise due to different levels of individ-

ual variability or effects of scanning equipment per se (or both).

Regardless of the sources, it is important to note that when datasets

are closely matched, as they are in this primary acquisition, most corti-

cal regions did not show site differences even at this sensitive thresh-

old, the effect sizes of site differences were predominantly small, and,

as noted earlier, patterns of within-site ISC for each site were highly

correlated with one another and with the pattern of across-site ISC.

3.2.2 | When acquisitions are not matched,
differences become more apparent, despite still-
widespread consistency

In an exploratory comparison we also examined cross-site differences

between the primary Caltech dataset and a pilot dataset (“Pilot”) also
collected at Indiana University prior to a scanner upgrade. These

unmatched datasets were collected using different scanner models,

protocols with numerous differences, and different preprocessing

F IGURE 4 Consistency in brain responses across sites while participants watched the same video, across a variety of different videos, in the
matched datasets. Top: brain maps show cross-site consistency at the group level (as in Figure 2, see also Figure 1a). Only parcellation scales of
100 and 1,000 ROIs are shown for space considerations. As in Figure 2, black along the midline in medial views indicates missing data, not low

correlations. Scan lengths vary across different videos. See also Figure S2 for a version of this figure that randomly downsamples to equate for
scan length. Bottom: line plots show median pairwise ISC among pairs of participants within each sites and across sites (see Figure 1b), for the
most coarse and most fine parcellation scales. Please see Table S1 for ROI labels, which are omitted for readability. The line plots for Videos 1 and
2 are the same values plotted on brains in Figure 3 (top) and Figure S1. Note that individual data points are connected with a line to facilitate
comparing overall patterns, but these plots are not time series. Rather, each data point reflects median similarity across pairs of timeseries. When
values for a given ROI are similar across different scans (e.g., x = 60 for top two-line plots), that reflects comparable levels of similarity across
entirely different brain response time series for different videos
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F IGURE 5 Exploratory comparison of brain response consistency for matched datasets and unmatched datasets, at the level of average time
series (see also Figure 1a), for Videos 1 and 2. Left and center brain maps show correlations between median time series for all participants at

each site (as in Figure 2, top); right shows the difference of the two maps. Matched datasets are Indiana and Caltech (as in Figure 2); unmatched
datasets are Pilot and Caltech. Black along the midline in medial views indicates missing data, not low correlations. Similarity of average time
series across datasets is high in general, but highest when acquisitions are matched. Time series figures show median time series for each site in
sensory areas (left) and association areas (right). All panels use the Harvard-Oxford 96-ROI cortical parcellation
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approaches (Table 1), but using the same scanner manufacturer

(Siemens) and field strength (3T). As these acquisitions were not

designed to systematically test the effects of varying all these parame-

ters, it will not be possible to disentangle the specific sources of any

differences identified. Nonetheless, we include this comparison as

somewhat more representative of real-world differences between

pre-existing datasets collected as participants watch the same video

stimulus.

Figure 5 (center) depicts consistency between these two

unmatched datasets at the level of median time series at each site,

along with consistency between the two primary matched datasets

(left), and the difference of these quantities (right), for comparison.

Median time series from all three sites are presented as well. The

same general pattern of results from Figure 2 is evident even though

the Caltech and Pilot acquisitions are unmatched: high similarity

across datasets at the group average level while participants watch

the same video stimulus. Despite this high similarity, though, it is also

visually apparent that similarity between the unmatched acquisitions

is reduced, relative to the matched acquisitions.

Because potential differences between datasets are expected to

manifest most strongly within individual subject data, we tested for

differences at the level of pairwise ISCs in the same way as described

previously, by testing whether within-site similarity differed from

across-site similarity for either site. Pairwise ISCs within and across

each of these unmatched datasets are mapped in Figure 6 (top, and

Figure S3), and also presented as line plots (bottom) to facilitate com-

parison. Differences in ISC levels are visible, with within-site similarity

for the Pilot dataset appearing elevated. To test for differences, as

before, to be conservative, we did not correct for multiple corrections,

and considered a brain region as having a site difference if differences

were observed for either site (and not necessarily both). In contrast to

the previous results for the matched datasets (IU vs. Caltech, see 2.1),

here, when datasets were unmatched in numerous ways, we observed

site differences in most brain regions: 89.6% of regions for Video

1, and 97.9% for Video 2.

As can be seen in Figure 6, differences between median within-

site and median across-site ISC varied across ROIs and varied by site.

They appear relatively minimal for the Caltech dataset but more

noticeable for the Pilot dataset, and they are not homogenous across

the brain. For instance, elevated within-site similarity in the Pilot

dataset was found throughout the superior temporal lobe extending

into the temporoparietal junction (c.f. Figure 6, x = 9 and 57, left and

right posterior superior temporal gyrus), but much less so for many

visual areas (c.f. x = 39 and 87, left and right occipital fusiform). For

the within-Pilot versus across-site ISC comparison (pink vs. black

lines), these differences ranged across ROIs from 0.008 to 0.2 (median

0.06; IQR 0.06) for Video 1 and from 0.006 to 0.24 (median 0.08; IQR

0.5) for Video 2. CLES for these differences ranged from 0.52 to 0.92

across ROIS (median 0.66; IQR 0.11) for Video 1 and from 0.52 to

0.95 (median 0.71; IQR 0.11) for Video 2. For the within-Caltech ver-

sus across-site ISC comparison (orange vs. black lines), the median dif-

ference across ROIS ranged from �0.05 to 0.12 (median 0.02; IQR

0.035) for Video 1 and �0.06 to 0.1 (median �0.006; IQR 0.03) for

Video 2. CLES ranged from 0.32 to 0.76 (median 0.49; IQR 0.1) for

Video 1 and from 0.32 to 0.81 (median 0.47; IQR 0.1) for Video 2. In

contrast to the matched datasets, then, quantitative comparisons of

pairwise ISC levels within- and across- sites can reveal differences

with medium-to-large effect sizes spanning ROIs.

Due to the numerous factors that vary between these unmatched

datasets (Table 1), it is not possible to pinpoint the exact cause(s) of

the elevated within-site similarity in the Pilot dataset; disentangling

these factors is beyond the scope of the current project and a ques-

tion for future targeted new acquisitions. Nonetheless, we present

these comparisons as a case study showing how similarity across and

within sites can vary when datasets using the same video stimuli are

unmatched. And while quantitative differences in ISC levels were

prevalent in comparing these unmatched datasets, it is important to

observe that qualitatively, the pattern of ISC remained similar across

sites and within each site. Figure 6 shows that all three lines increase

and decrease in tandem, and indeed they are all highly correlated for

both video scans (all r > .92, p < .0001). So, while levels of ISC can dif-

fer considerably when datasets are unmatched, ROIs with higher ISC

at one site also have higher ISC at the other site and across-sites, and

vice versa.

Altogether, these results indicate that differences in brain

responses across sites are more readily apparent when datasets are

unmatched, and can be considerable and nonhomogeneous across the

cortex—but, despite these quantitative differences, video stimuli drive

qualitatively consistent patterns of brain responding across sites even

when numerous acquisition, processing, hardware, and participant

details vary freely.

4 | DISCUSSION

We find that video fMRI paradigms evoke robustly similar brain

responses across different sites and samples of subjects, with consis-

tent brain responses found through most of the cortex. When

datasets are matched closely, such that scanner manufacturer, model,

imaging protocols, and preprocessing details are the same at each site,

differences in brain responses between datasets are minimal. When

datasets are unmatched, such that scanner model and acquisition and

processing details vary more freely, differences are more prevalent,

especially in pairwise comparisons of individual data. Nonetheless,

consistency of brain responses across unmatched datasets remains

high, although attenuated relative to matched datasets.

In the matched datasets, at the level of group-average time series,

we find that most regions of the brain (>96%) respond similarly across

sites, and this nearly cortex-wide similarity is observed across

parcellation granularities (from 100 to 1,000 ROIs)—it is not an artifact

of using a coarse parcellation and therefore spatially smoothing across

large swaths of cortex. We find comparable results at the level of indi-

vidual time series similarity, albeit with the reduced correlation magni-

tudes expected from pairwise correlations. Procedures adjusting for

individual differences in functional specialization and hemodynamic

responses (Dubois & Adolphs, 2016; Haxby, Guntupalli, Nastase, &

2986 BYRGE ET AL.



Feilong, 2020) could be employed in the future to potentially reveal

even higher similarity across sites.

Across parcellations, regions with consistent group-level brain

responses include some frontal and ventral regions that are not

typically observed on individual-level ISC maps. On one hand, this is

reminiscent of findings in task-based fMRI that averaging across larger

numbers of timeseries “unmasks” the involvement of common task-

locked signal in previously unappreciated regions (Gonzalez-Castillo

F IGURE 6 Exploratory comparison of brain response consistency across unmatched datasets, at the level of individual time series (Figure 1b),
for Video 1. Top: brain maps depict magnitudes of medians of pairwise correlations between participant brain response time series in each region.
The left and right columns show correlations among pairs of participants at the same site (left: Caltech; right: Pilot). The center column shows
correlations among pairs of participants spanning different sites (as in Figure 1b, green). Black along the midline in medial views indicates missing
data, not low correlations. Center: Time series plots show five randomly-selected individual time series for each site in sensory areas (left) and
association areas (right), along with the median time series across all participants at that site superimposed in bold. Bottom: Within- and across-

site ISC values from top panel (Video 1) and Figure S3 (Video 2) presented as a line plot, to facilitate comparison. See text for summary of
differences and effect sizes, and see Table S1 for ROI labels, which are omitted for readability. As in Figure 4 (bottom), individual data points are
connected with a line, but these plots are not time series. Rather, each data point reflects median similarity across pairs of timeseries. When
values for a given ROI are similar across the two different scans, that reflects comparable levels of similarity across entirely different brain
response time series evoked by different videos. All panels use the Harvard-Oxford 96-ROI cortical parcellation
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et al., 2012). On the other hand, cross-site similarity between group-

level timeseries in some of these regions is, while statistically signifi-

cant, quite weak, and similar correlations have been interpreted by

other groups as showing little evidence of synchronized brain

responses (Chang et al., 2021). We see this as a scenario akin to ask-

ing “is the glass half empty or half full?” Weak correlations between

time series undoubtedly indicate that the signal is predominantly

explained by other sources including endogenous processing, intrinsic

brain dynamics, and various sources of scanner and physiological

noise. Alternative methods for correcting for multiple comparisons

that capture underlying data dimensionality and potential dependen-

cies between timeseries could also shift the statistical threshold delin-

eating which ROIs can be considered weakly correlated above chance.

Nonetheless, identifying shared signal—albeit weakly shared—

between two datasets is stronger evidence than can be provided by

one dataset alone that there is something about these video stimuli

that can evoke common brain function in such areas, potentially indi-

rectly and potentially only momentarily. Better understanding the

aspects of the video stimulus that drive such weakly evoked

responses in brain areas more commonly associated with endogenous

brain function is an important topic of future study (see also Chang

et al., 2021; Yeshurun, Nguyen, & Hasson, 2021).

The specific moments of the video and specific features of the

stimulus that drive the most and least consistent brain responses

across sites is also a question for further study. A visual comparison

across the different video scans presented in Figure 4 shows clear

similarities in the patterns of group-level consistency (top) and

pairwise across-site ISC (bottom) evoked by all the different video

stimuli employed. In other words, brain regions that respond very con-

sistently across sites during one video tend to also respond very con-

sistently in a different video, and vice versa. This surely reflects

fundamental aspects of neural architecture for dynamic audiovisual

stimulation, as the most consistent brain regions were the primary

sensory areas expected to be most directly driven by the stimulus.

Some differences in ISC levels across each full-length scan could arise

due to differences in video lengths, which varied considerably. But

even after equating for video lengths, differences in group-level brain

response consistency across different videos could be observed (-

Figure S2). Presumably, these differences are elicited by specific video

stimulus features and idiosyncratic responses to those features, as

well as the processing demands they impose on the brain (see also

Hasson et al., 2010, for discussion of stimulus-specificity of within-

site reliability). For instance, cross-site consistency in medial prefron-

tal cortex (mPFC) for both episodes of The Office (Videos 3 and 4)

appears elevated relative to the other videos. This is noteworthy

because The Office is a TV show that is characterized by many socially

awkward moments and was specifically selected for its increased

demands on the social brain (including mPFC; Kennedy & Adolphs,

2012). Further work comprehensively decomposing these videos,

from low-level stimulus features (e.g., luminance changes and loud-

ness changes, including scene transitions and breaks between movie

trailer segments) to high-level semantic properties (e.g., social awk-

wardness), will be needed to verify this observation and more

generally understand how different video stimulus properties influ-

ence patterns of consistency across sites.

This range of correlation magnitudes across the cortex

(c.f. Figure 4) raises an important point. We see extremely high

across-site consistency, for instance, in the primary sensory areas that

we would expect, based on the extensive video fMRI literature of

nearly two decades (e.g., Bartels & Zeki, 2004; Hasson et al., 2004)

but also based on the extensive task-based fMRI literature dating back

even further (e.g., Engel, Glover, & Wandell, 1997). However, our

dataset does not include task data, and therefore does not permit us

to put the consistency of video fMRI in a particular region in the con-

text of cross-site reliability of task-evoked fMRI in that same region.

This would be a valuable contribution for a future dual-site matched

dataset that includes task-based data. As noted in the introduction,

advantages of video stimuli include increasing participant compliance

and therefore data quantity and quality, but whether video fMRI is

more, less, or equally reliable to task fMRI across sites remains a ques-

tion for future work. We note that such a comparison would be rather

involved: video fMRI has the advantage of simultaneously driving

much of the brain (c.f. Figure 2); presumably, a rather large task-based

fMRI battery would be needed to make such a comparison

comprehensively.

As noted, the comparison between the unmatched datasets was

presented as a case study and as an example with which to contrast

the high levels of cross-site similarity in the matched datasets. Particu-

larly with increasing data sharing efforts in recent years, this compari-

son has more real-world relevance for the pooling of some pre-

existing vfMRI datasets, which are unlikely to have been as carefully

matched as the primary samples in this study. For the unmatched

datasets in the current study, we observed quantitative differences in

group-level consistency and pairwise ISC, but qualitatively, the pat-

terns of pairwise ISC remained highly similar across and within each

site. For these unmatched datasets, differences in the acquisition and

processing varied considerably (Table 1), including participants, scan-

ner model, acquisition parameters including voxel size, sampling rate,

multiband parameters, and sequences used for anatomical scans and

fieldmaps, and preprocessing choices including denoising methodol-

ogy, temporal filtering, and smoothing. Many if not all of these factors

could influence cross-site consistency of brain responses

(e.g., Friedman et al, 2006; He et al., 2020; Yu et al., 2018). It is also

important to note that the levels of consistency observed in the

unmatched datasets are not intended to suggest a lower bound. All

datasets in this study used the same scanner manufacturer (Siemens)

and field strength (3T), and it is reasonable to expect that cross-

manufacturer or cross-magnet comparisons could potentially further

affect consistency. A full disentangling of the specific combinations of

factors that gave rise to the more prevalent differences observed in

the unmatched datasets is beyond the scope of the current project,

which was not designed to test these factors systematically. One

could speculate that higher intrinsic data smoothness in the Pilot

dataset could lead to the elevated ISC values observed within that

dataset, but ultimately an important question for future study would

be to unpack all these factors by parametrically varying differences
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between datasets. A further important extension would be to include

comparisons across different scanner manufacturers and different

field strengths. This would also guide the development of statistical

harmonization methods for pooling existing video fMRI data (as in Yu

et al., 2018; Yamashita et al., 2019, for resting state data), which could

span a variety of manufacturers and even field strengths.

It is important to emphasize that the high consistency between

the matched datasets should neither be interpreted to mean that

there are no differences between sites when protocols are matched,

nor that there is never a need to harmonize video fMRI data when

protocols are matched. There is strikingly high consistency between

the matched datasets, but there are some differences in a subset of

brain regions, and harmonization could be appropriate for some types

of research questions. We conducted some exploratory analyses to

assess whether the site differences observed in a small subset of indi-

vidual ROIs in the matched datasets might be sufficient to classify site

when taken together in multivariate approach. Using two different

approaches (see Supporting Information S1), we were unable to clas-

sify site with high accuracy, although accuracy modestly exceeded

chance in some cases, as might be expected given the few ROI-level

differences described earlier. For Video 1, accuracy ranged from

54.5% to 57.4% for binary classification of average within-site ISC

(IU vs. Caltech) and was 44.8% when classifying pairwise ISC as an IU-

IU pair, a Caltech-Caltech pair, or mixed-site pair. For Video 2, accu-

racy was 51.4–52.8 and 42.1%, respectively. While a comprehensive

exploration of different classification approaches is beyond the scope

of the current project, these initial classification analyses support the

consistency of video fMRI data in a multivariate, not only univariate,

characterization. An exploratory look at the similarity structure across

sites of fluctuations in group average timeseries across the cortex also

supports multivariate consistency. We created a temporal recurrence

matrix for each site that correlated the spatial patterns across cortical

ROIs from timepoint to timepoint (akin to Chang et al., 2021). Recur-

rence matrices for each site were highly correlated (r = .87 for both

Videos 1 and 2, using median timeseries at each site across the entire

schaefer400x17 parcellation), indicating that the similarity structure

across timepoints was similar between sites at the group level.

Even for the matched datasets, our existing data does not allow

us to conclusively separate effects caused by different scanners from

other factors that covaried between the matched datasets. Those fac-

tors were intentionally minimized, but do include both different physi-

cal scanners and different individual subjects with differences in age

and potentially other unmeasured factors (e.g., urbanicity: Blooming-

ton, IN, vs. greater Los Angeles). Some aspects of the differences that

were observed between these matched datasets could thus have

been driven by participant variability (for instance, ISC can vary over

large age ranges; Geerligs, Cam-CAN, & Campbell, 2018; Petroni

et al., 2018) rather than scanner differences. The goal of the current

project was to evaluate overall consistency of brain responses across

sites, and not to be an individual differences study. To fully decouple

individual variability from scanner variability, a new data acquisition

with traveling subjects that are repeatedly scanned at different loca-

tions (as has been done for resting state designs; Noble et al., 2017)

would be required, and would presumably further increase consis-

tency across sites. The current findings set the stage for such impor-

tant future investigations.

5 | CONCLUSION

In sum, we find similar group-level brain responses spanning the cortex

when participants at different sites watch the same video stimulus, and

these highly similar average time series occur with both matched and

unmatched datasets. When datasets are carefully matched such that

the acquisition and processing is effectively identical, differences

between datasets at the level of pairwise similarity of individual brain

responses are minimal, and some such differences could reflect individ-

ual variability rather than scanner-specific effects. When dataset

parameters vary more freely, differences between sites are more prev-

alent, which points to the importance of both careful control for such

differences in analyses and of the development of harmonization pro-

tocols specific to ISC analyses of video fMRI data for at least some pur-

poses. Nonetheless, the overarching conclusion indicates high levels of

consistency in video-evoked fMRI data across these different sites,

across matched and unmatched datasets alike. The ability to quantify

this consistency highlights one of the unique features of video fMRI

and holds promise for further development of this approach to studies

of individual differences in healthy and clinical populations alike.
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