
����������
�������

Citation: Li, H.; Xia, Y.; Tian, Z.; Jin,

Y.; Bai, F.; Cheng, Z.; Swietnicki, W.;

Wu, W.; Pan, X. Dihydrolipoamide

Acetyltransferase AceF Influences the

Type III Secretion System and

Resistance to Oxidative Stresses

through RsmY/Z in Pseudomonas

aeruginosa. Microorganisms 2022, 10,

666. https://doi.org/10.3390/

microorganisms10030666

Academic Editor: Martin Filion

Received: 11 January 2022

Accepted: 17 March 2022

Published: 21 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

microorganisms

Article

Dihydrolipoamide Acetyltransferase AceF Influences the Type
III Secretion System and Resistance to Oxidative Stresses
through RsmY/Z in Pseudomonas aeruginosa
Haozhou Li 1, Yushan Xia 1, Zhenyang Tian 1, Yongxin Jin 1, Fang Bai 1, Zhihui Cheng 1, Wieslaw Swietnicki 2 ,
Weihui Wu 1 and Xiaolei Pan 1,*

1 State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and
Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences,
Nankai University, Tianjin 300071, China; shipinxueyuanlhz@163.com (H.L.); yushanxia1993@163.com (Y.X.);
zhenyang_tian@126.com (Z.T.); yxjin@nankai.edu.cn (Y.J.); baifang1122@nankai.edu.cn (F.B.);
zhihuicheng@nankai.edu.cn (Z.C.); wuweihui@nankai.edu.cn (W.W.)

2 Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental
Therapy, Polish Academy of Sciences, ul. R. Weigla 12, 53-114 Wroclaw, Poland;
wieslaw.swietnicki@hirszfeld.pl

* Correspondence: pxlay@hotmail.com

Abstract: Carbon metabolism plays an important role in bacterial physiology and pathogenesis. The
type III secretion system (T3SS) of Pseudomonas aeruginosa is a virulence factor that contributes to
acute infections. It has been demonstrated that bacterial metabolism affects the T3SS. Meanwhile,
expression of T3SS genes is negatively regulated by the small RNAs RsmY and RsmZ. In this study,
we studied the relationship between the dihydrolipoamide acetyltransferase gene aceF and the T3SS.
Our results reveal an upregulation of RsmY and RsmZ in the aceF mutant, which represses the
expression of the T3SS genes. Meanwhile, the aceF mutant is more tolerant to hydrogen peroxide. We
demonstrate that the expression levels of the catalase KatB and the alkyl hydroperoxide reductase
AhpB are increased in the aceF mutant. The simultaneous deletion of rsmY and rsmZ in the aceF mutant
restored the expression levels of katB and ahpB, as well as bacterial susceptibility to hydrogen peroxide.
Thus, we identify a novel role of AceF in the virulence and oxidative response of P. aeruginosa.

Keywords: Pseudomonas aeruginosa; AceF; RsmY/Z; sRNA; hydrogen peroxide tolerance

1. Introduction

Pseudomonas aeruginosa is a Gram-negative bacterial pathogen that causes various
chronic and acute infections in humans [1]. The bacterium harbors an arsenal of virulence
determinants that play important roles in infections [1]. The type III secretion system (T3SS)
is a syringe-like complex that directly translocates effector proteins into the host cell cytosol,
which leads to the malfunction or death of the cell [2,3]. The expression of the T3SS genes is
activated under Ca2+ depletion (e.g., by EGTA) or contact with host cells [2,3]. Four major
T3SS effectors have been identified in P. aeruginosa, namely, ExoY, ExoT, ExoU and ExoS [2].
ExoU has been shown to function as a phospholipase, which directly damages the host cell
membrane and causes rapid necrotic death [4]. P. aeruginosa strains with the ability to inject
ExoU are usually associated with poor clinical outcomes and increased mortality rates [5].

The T3SS machinery and effector genes are regulated by the master regulator ExsA [6].
The exsA gene is located in an exsC-exsE-exsB-exsA operon. The transcription of the exsA
gene is driven by its own promoter (PexsA) and the exsC promoter (PexsC), which are posi-
tively regulated by Vfr and ExsA, respectively [7–9]. In addition to transcriptional regula-
tors, small RNAs (sRNAs) are involved in the regulation of T3SS genes [10]. The sRNAs
RsmY and RsmZ repress the expression of the T3SS genes by sequestering RsmA, a post-
transcriptional regulator that positively regulates the T3SS genes and represses the type
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VI secretion systems (T6SSs) and biofilm formation [11–13]. The expression of rsmY and
rsmZ is controlled by the GacS-GacA two-component system [14], whose function is re-
pressed by RetS and activated by LadS [15]. The sensor kinase GacS phosphorylates the
response regulator GacA, which binds to the promoters of rsmY and rsmZ and activates
their transcription [14]. RetS is a hybrid two-component regulator with a sensor kinase
domain and two response regulator domains [16]. It has been demonstrated that RetS
inhibits the GacS activity through three mechanisms: (1) the siphoning of phosphates from
the catalytic domain of GacS; (2) the inhibition of GacS autophosphorylation through direct
interaction; and (3) the dephosphorylation of the receiver domain of GacS [16–19]. A recent
study identified host-derived mucin glycans as ligands of RetS. The presence of mucin
glycans represses the GacS-GacA two-component system through RetS [20]. Meanwhile,
the GacS-GacA two-component system is positively regulated by two hybrid histidine
kinases, PA1611 and LadS. PA1611 directly binds to RetS, which counteracts the repressive
effect of RetS on GacS [21]. LadS activates the GacS-GacA two-component system by
directly phosphorylating GacS [15].

Metabolism plays important roles in bacterial virulence [22]. It has been demonstrated
that tryptophan and histidine utilization interfere with the expression of the T3SS genes
in P. aeruginosa [23,24]. The catabolite repression control protein Crc is required for the
expression of the T3SS genes in P. aeruginosa [25], indicating a relationship between carbon
metabolism and the T3SS. The function of Crc is antagonized by a small RNA (sRNA),
CrcZ [26]. In our previous screening for T3SS-related carbon metabolism genes, we found
that triosephosphate isomerase (TpiA) affects T3SS gene expression through CrcZ [22].
The isocitrate lyase is required for the expression of the T3SS genes under oxygen-limited
conditions [25]. Dacheux et al. found that transposon insertions in genes encoding the
pyruvate dehydrogenase (PDH) subunits AceE and AceF (previously called AceA and
AceB) resulted in the defective expression of the T3SS genes upon Ca2+ depletion, which
was restored by expression of exsA in trans [27]. A mutation in the E1 subunit (AceA/AceE)
of pyruvate dehydrogenase resulted in the defective expression of exoS in response to Ca2+

depletion in a minimal medium containing 0.1% tryptone and glutamate [28]. In this study,
we demonstrate that the dihydrolipoamide acetyltransferase AceF inversely influences the
T3SS and bacterial tolerance to oxidative stress through RsmY/Z.

2. Materials and Methods
2.1. Bacterial Strains and Plasmids

The bacterial strains, primers and plasmids used in this study are shown in Table S1.
All strains were cultured in Luria–Bertani (LB) broth with agitation at 200 rpm at 37 ◦C.
Antibiotics were used as follows: for Escherichia coli, ampicillin at 100 µg/mL, tetracycline
at 10 µg/mL; for P. aeruginosa, tetracycline at 50 µg/mL, carbenicillin at 150 µg/mL.
Construction of the aceF gene deletion mutant in the wild-type Pseudomonas aeruginosa
reference strain PA14 was performed as described previously [29]. A 1005 bp fragment and
a 1152 bp fragment that are upstream and downstream of the aceF open reading frame were
amplified by PCR, respectively. The PCR products were ligated to the plasmid pEX18Tc.
The resultant plasmid was transferred into an E. coli conjugation donor strain S17-1 and
then transferred to wild-type PA14 by conjugation. The PA14 strains with the plasmid
integrated into the chromosome (single-crossover mutant) were selected by tetracycline.
The single-crossover mutants were grown in LB overnight and plated on plates with 5%
sucrose. The aceF deletion mutants (double-crossover mutants) were screened by PCR with
primers targeting the coding region of aceF (Table S1). Other chromosomal gene mutations
were generated in the same way. For the overexpression of aceF and exsA, the coding
regions with their native ribosome binding sequences were amplified by PCR using the
PA14 chromosomal DNA as the template with the primers shown in Table S1. The PCR
products were cloned into the pUCP20 plasmid in which the transcription of the genes is
driven by the tac promoter on the plasmid.
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2.2. Cytotoxicity Assay

Bacterial cytotoxicity was measured by examining the survival of the A549 cells follow-
ing P. aeruginosa infection. A549 cells were cultured in RPMI 1640 medium containing 10%
(v/v) heat-inactivated fetal bovine serum (hiFBS), penicillin (100 mg/mL) and streptomycin
(100 mg/mL) at 37 ◦C with 5% CO2. Then, 1 × 105 cells were seeded into each well of a
24-well plate 20 h before bacterial infection. Overnight bacterial cultures were diluted into
fresh LB and cultured at 37 ◦C to an OD600 of 1.0. Then, bacterial cells were washed once
with PBS and resuspended in PBS. A549 cells were infected with the bacteria at a multiplic-
ity of infection (MOI) of 50. After 3 h of infection, the medium was removed, and each well
was washed with PBS twice and stained with 0.25% crystal violet at room temperature for
15 min. An amount of 0.2 mL 95% ethanol was added to each well, followed by incubation
for 30 min at room temperature with gentle shaking. Each sample was then subjected to
measurement for OD590 using a Varioskan Flash multimode microplate reader (Thermo
Scientific, Vantaa, Finland).

2.3. Murine Acute Pneumonia Model

The animal experiments were in accordance with Chinese National and Nankai Univer-
sity guidelines for animal research. The protocol was approved by the animal care and use
committee of Nankai University College of Life Sciences with the permit number NK-04-
2012. The animal facility in Nankai University College of Life Sciences has been approved
by Tianjin Municipal Science and Technology Bureau with the permission number SYXK
2019-0003. The animal care and use committee of Nankai University College of Life Sciences
has been authorized by the local (Tianjin) government to review and approve animal experi-
ment protocols. The animal facility and protocols are inspected by the local government reg-
ularly. The murine acute pneumonia model was performed as previously described [30,31].
The bacteria were cultured to OD600 of 1.0. Bacterial cultures were washed twice with PBS
and resuspended to 2 × 108 CFU/mL. BALB/c mice (6 weeks, female) were anesthetized
with 90 µL of 7.5% chloral hydrate by intraperitoneal injection and then intranasally inoc-
ulated with 4 × 106 CFU bacteria. The mice were sacrificed 12 h post infection (hpi) by
asphyxiation with carbon dioxide. The euthanasia of mice was performed following the
guidelines from the American Veterinary Medical Association (AVMA) for the euthanasia of
animals: 2020 Edition (https://www.avma.org/KB/Policies/Documents/euthanasia.pdf,
accessed on 10 January 2022). Less than four mice were placed in a cage. Carbon dioxide
was introduced with a flow rate of 3–4 L/min until the mice were unconscious. The death
of each mouse was confirmed by respiratory and cardiac arrest. The lungs were isolated
and homogenized in PBS containing 1% peptone. The homogenate was serially diluted
in LB and then plated on LB plates. The plates were incubated at 37 ◦C for 20 h before
colony counting.

2.4. Histology

After infection with the indicated strains (4 × 106 CFU/mouse) for 12 h, the lungs of
mice were removed and fixed with 4% paraformaldehyde (Servicebio, Wuhan, China) for
12 h, followed by dehydration in ethanol. The lungs were then embedded in paraffin and
sectioned, followed by staining with hematoxylin and eosin. The samples were observed
with microscopy as previously described [32].

2.5. Real-Time qPCR

Bacteria were cultured overnight and then diluted in fresh LB until they reached an
OD600 of 1.0. Total RNA was isolated using the ZOMANBIO RNA Rapid Extraction Kit
(Zomanbio, Beijing, China). cDNA was synthesized with reverse transcriptase and random
primers (TaKaRa, Dalian, China). SYBR II green Supermix (TaKaRa, Dalian, China) was
used to perform real-time qPCR (RT–qPCR). To ensure the reliability of the results, we
used the housekeeping genes rpsL and PA1805 as the internal controls for each RT–qPCR
assay [33,34].

https://www.avma.org/KB/Policies/Documents/euthanasia.pdf
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2.6. β-Galactosidase Assay

Overnight bacterial cultures were diluted in LB and grown to an OD600 of 1.0 at 37 ◦C.
A 500 µL volume of the bacterial cultures was resuspended in Z-buffer (8.5 g/L NaH2PO4,
4.8 g/L Na2HPO4, 0.75 g/L KCl, 0.12 g/L MgSO4, and 0.35% (v/v) β-mercaptoethanol,
pH 7.0). The OD600 of the bacterial suspensions were measured. Then, 10 µL of 0.1% SDS
and 10 µL of chloroform were added to the bacterial suspension and vortexed for 15 s.
Then, the mixture was incubated at 37 ◦C immediately after adding 100 µL of 4 mg/mL
orthonitrophenyl-galactopyranoside (ONPG) (BBI Life Sciences, Shanghai, China). When
the color of the mixture turned yellow, the reaction was stopped by addition of a 500 µL
volume of 1 M Na2CO3. OD420 of the reaction mixtures was measured. The β-galactosidase
activities (Miller units) = (1000 × OD420)/T/500/OD600; T represents reaction time [35].

2.7. H2O2 Susceptibility Assay

Bacteria were grown at 37 ◦C to an OD600 of 1.0. The bacterial cells were washed twice
with PBS. After resuspension in PBS, the bacteria were incubated in the presence or absence
of 300 mM H2O2 for 1 h at 37 ◦C. The bacterial survival rate = (live bacterial number with
H2O2 treatment)/(live bacterial number without H2O2 treatment).

3. Results
3.1. Mutation in the aceF Gene Reduces the Expression of Type III Secretion System Genes

In our previous screening for metabolic genes that influence bacterial cytotoxicity,
we found that an aceF::Tn mutant displayed defective cytotoxicity [22]. AceF, AceE and
LpdG form the pyruvate dehydrogenase that connects the glycolysis pathway and the
tricarboxylic acid cycle (Figure 1). To verify the role of AceF in bacterial cytotoxicity, we
constructed an aceF in-frame deletion mutant. The deletion of the aceF gene reduced the
cytotoxicity, which was restored by complementation with an aceF gene (Figure 2A). In P.
aeruginosa, the T3SS plays an important role in bacterial cytotoxicity. In agreement with
the reduced cytotoxicity, the mutation of aceF reduced the expression of the T3SS genes,
including the regulatory genes exsA and exsC, the structural gene pcrV and the effector
genes exoU, exoT and exoY (Figure 2B, Figure S1). Complementation with the aceF gene
or the overexpression of the exsA gene restored the expression of these genes (Figure 2B).
These results suggest that AceF affects bacterial cytotoxicity by regulating the expression of
the T3SS genes.
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Figure 2. AceF influences the T3SS. (A) Cytotoxicity of wild-type PA14, the ∆aceF mutant, and the
mutant complemented with an aceF gene or overexpressing the exsA gene. A549 cells were infected
with the bacteria for 3 h (MOI = 50). The cytotoxicity was determined by measuring crystal violet-
stained cells. (B) mRNA levels of the T3SS genes. Bacteria were grown in the presence and absence
of 5 mM EGTA for 4 h. The relative mRNA levels of pcrV, exsA, exsC and exoU were determined by
real-time PCR. Data shown represent mean ± standard error of mean from three samples. * p < 0.05;
** p < 0.01 by ANOVA.

3.2. AceF Affects the Expression of the T3SS Genes through RsmY and RsmZ

Given the role of AceF in carbon metabolism, we suspected that CrcZ might be
involved in the regulation of the T3SS in ∆aceF. The CrcZ level in the ∆aceF mutant was 1,



Microorganisms 2022, 10, 666 6 of 14

which is 9-fold lower than that in the wild-type PA14 (Figure S2). Since CrcZ antagonists
the function of Crc that positively regulates the T3SS, the downregulation of CrcZ in the
∆aceF mutant is unlikely to cause the defective T3SS. We next examined the expression
levels of RsmY and RsmZ. qRT–PCR revealed upregulation of RsmY and RsmZ in the
∆aceF mutant (Figure 3A). By using transcriptional fusions between a lacZ reporter gene
and the promoters of rsmY and rsmZ (PrsmY-lacZ and PrsmZ-lacZ), we found that the
promoter activities of rsmY and rsmZ were enhanced in the ∆aceF mutant (Figure 3B).
To examine whether the upregulation of RsmY/Z leads to the repression of the T3SS, we
deleted rsmY and rsmZ in the ∆aceF mutant, which restored the expression of exsA and
exoU and bacterial cytotoxicity (Figure 4A,B). However, compared to the ∆aceF∆rsmY/Z
triple mutant, the pcrV mRNA levels were higher in the ∆rsmY/Z mutant in the absence
and presence of EGTA, and the mRNA level of exsC was higher in the ∆rsmY/Z mutant
in the presence of EGTA (Figure 4B). These results indicate that AceF might regulates the
transcription or stabilities of pcrV and exsC through an RsmY/Z-independent mechanism.
Collectively, these results demonstrate that AceF affects the T3SS and cytotoxicity mainly
through RsmY/Z.
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Figure 3. Mutation of the aceF gene upregulates rsmY and rsmZ. (A) The bacteria were grown in LB
with or without 5 mM EGTA to an OD600 of 1. The RNA levels of rsmY and rsmZ were determined by
real-time PCR. (B) PA14, the ∆aceF mutant and the complemented strain containing the PrsmY-lacZ
(left) and PrsmZ-lacZ (right) transcriptional fusion were cultured in LB with or without 5 mM EGTA
to an OD600 of 1, followed by determination of the β-galactosidase activity. Data shown represent
mean ± standard error of mean from three samples. * p < 0.05; ** p < 0.01 by ANOVA.
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Figure 4. RsmY and RsmZ repress the T3SS in the ∆aceF mutant. (A) Cytotoxicity of wild-type
PA14, the ∆aceF mutant, the complemented strain, the ∆aceF∆rsmYZ triple mutant and ∆rsmYZ
double mutant. A549 cells were infected with the bacteria for 3 h (MOI = 50). The cytotoxicity was
determined by measuring crystal violet-stained cells. (B) mRNA levels of the T3SS genes. Bacteria
were grown in the presence and absence of 5 mM EGTA for 4 h. The relative mRNA levels of pcrV,
exsA, exsC and exoU were determined by real-time PCR. Data shown represent mean ± standard
error of mean from three samples. * p < 0.05; ** p < 0.01; *** p < 0.001 by ANOVA.

3.3. Role of AceF in Bacterial Virulence in an Acute Pneumonia Model

Since the P. aeruginosa T3SS plays an essential role in acute infections, we examined
the virulence of the ∆aceF mutant in a murine acute pneumonia model by inoculating
4 × 106 CFU of bacteria into each mouse. A pathology analysis of the infected lungs



Microorganisms 2022, 10, 666 8 of 14

showed that the mutation of aceF alleviated the host inflammatory response, which is in
agreement with the defective T3SS in the ∆aceF mutant (Figure 5A). However, the bacterial
loads of the lungs infected by the ∆aceF mutant were similar to those infected by wild-type
PA14 (Figure 5B). These results indicate that mutations in aceF might enhance a mechanism
that promotes the bacterial survival independent of the T3SS. To test our hypothesis, we
compared the bacterial loads of a ∆exsA mutant and a ∆exsA∆aceF double mutant. The
deletion of exsA significantly attenuated the bacterial virulence. At the dose of 4 × 106

CFU per mouse, both the ∆exsA and ∆exsA∆aceF mutants were cleared at 12 hpi (data not
shown). Thus, we increased the dose to 4 × 108 CFU per mouse. The bacterial loads in the
∆exsA∆aceF mutant infected mice were higher than those infected by the ∆exsA mutant
(Figure 5C). Given that the P. aeruginosa T3SS preferentially targets bactericidal neutrophils
in the acute pneumonia model [36–38], these results suggest that the T3SS-defective ∆aceF
mutant might be more tolerant to the killing mechanisms of neutrophils.
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Figure 5. Mutation of the aceF gene affects bacterial pathogenesis in a murine acute pneumoniae
model. (A,B) Each mouse was intranasally inoculated with 4 × 106 CFU of bacteria. (A) At 12 hpi,
the lung sections were observed with a 20× objective lens following hematoxylin and eosin staining.
(B) Bacterial numbers in the lungs from the infected mice at 12 hpi. (C) Each mouse was infected with
4 × 108 CFU of ∆exsA or ∆exsA∆aceF. At 12 hpi, the bacterial numbers in the lungs were determined.
ns, not significant; * p < 0.05 by ANOVA.

3.4. Mutation of the aceF gene Increases Bacterial Tolerance to Hydrogen Peroxide

The generation of reactive oxygen species (ROS) is a major bactericidal mechanism of
neutrophils [39,40]. P. aeruginosa strains that are defective in the oxidative stress response
have been shown to be attenuated in virulence [41,42]. We thus examined bacterial survival
following H2O2 treatment. Compared to wild-type PA14, the ∆aceF mutant displayed a
higher survival rate (Figure 6A).
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mean from three samples. * p < 0.05; ** p < 0.01; *** p < 0.001 by ANOVA.
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To understand the mechanism of the increased tolerance to H2O2, we examined the
expression of genes involved in bacterial oxidative stress response, including the regulator
gene oxyR, catalase genes katA and katB and alkyl hydroperoxide reductase genes ahpB
and ahpC. The mutation of the aceF gene resulted in the upregulation of ahpB and katB and
reduced the mRNA levels of katA and ahpC by 1.4- and 1.7-fold (Figure 6B). The deletion
of ahpB and katB reduced the H2O2 tolerance of the ∆aceF mutant, which reduced the
differences in survival between wild-type PA14 and the ∆aceF mutant from 26.8-fold to 2-
and 4.2-fold, respectively (Figure 6C). These results indicate that the upregulation of ahpB
and katB contributes to the increased H2O2 tolerance of the ∆aceF mutant.

We next examined whether RsmY/Z are involved in the regulation of ahpB and katB
in the ∆aceF mutant. The deletion of rsmY/Z reduced the expression levels of ahpB and
katB (Figure 6B) as well as bacterial survival following H2O2 treatment (Figure 6D). These
results demonstrate that the upregulation of RsmY/Z increases the expression of ahpB and
katB and subsequent H2O2 tolerance in the ∆aceF mutant.

4. Discussion

In this study, we found that the mutation of the dihydrolipoamide acetyltransferase
gene aceF in P. aeruginosa resulted in defective T3SS and enhanced H2O2 tolerance, which is
due to the upregulation of RsmY/Z. By using PrsmY-lacZ and PrsmZ-lacZ transcriptional
fusions, we found that the activities of the rsmY/Z promoters were elevated in the ∆aceF
mutant. The transcription of rsmY/Z is under the direct regulation of the two-component
regulatory system GacS-GacA. However, we did not observe an upregulation of gacS or
gacA in the ∆aceF mutant (data not shown). This warrants further studies to examine
whether the activity of GacS-GacA is enhanced (e.g., phosphorylation of GacA) or whether
other regulatory genes are involved in the regulation of rsmY/Z.

P. aeruginosa produces catalases and alkyl hydroperoxide reductases to detoxify
ROS [43]. The expression of these oxidative response genes is activated by the transcrip-
tional regulator OxyR upon oxidative stresses [44]. OxyR is an LysR-type transcriptional
regulator that consists of an N-terminal DNA-binding domain and a C-terminal regulatory
domain. The presence of H2O2 leads to the formation of an intramolecular disulfide bond
in the C-terminal regulatory domain, which results in the activation of OxyR [45,46]. In the
∆aceF mutant, ahpB and katB were upregulated, and ahpC and katA were slightly downreg-
ulated. However, the mRNA levels of oxyR were similar to wild-type PA14. These results
suggest that AceF is unlikely to influence the protein level or function of OxyR. Since the
deletion of rsmY and rsmZ reduced the expression levels of ahpB and katB, it might be
possible that an unknown regulatory gene is involved in the regulation of rsmY and rsmZ
and subsequent ahpB and katB in the ∆aceF mutant. In addition to OxyR, the stress sigma
factor RpoS positively regulates the catalase genes katA and katB [47,48]. In Pseudomonas
fluorescens, the expression of rpoS is activated by GacA and repressed by RsmA [49]. Further
studies are warranted to examine whether the mutation of aceF affects the level of RpoS.
The stringent response has been shown to control the expression of the catalase genes
in P. aeruginosa and promotes the bacterial survival under oxidative stresses [47,50]. The
stringent response is controlled by the molecule guanosine tetra- and penta-phosphate
(p)ppGpp [51]. The homeostasis of (p)ppGpp is controlled by two enzymes, namely RelA
and SpoT. RelA is a (p)ppGpp synthetase that is activated by amino acid starvation. SpoT
functions as both (p)ppGpp synthetase and hydrolase [52]. It has been demonstrated that
in E. coli, acyl carrier protein (Acyl-ACP) activates the (p)ppGpp hydrolysis activity of
SpoT, whereas uncharged ACP activates the (p)ppGpp synthetase activity [53], indicating a
connection between carbon metabolism and the stringent response. The pyruvate dehydro-
genase connects the glycolysis and the TCA cycle by converting pyruvates to acetyl-CoA
that influx into the TCA cycle. Thus, the mutation of aceF might impede the TCA cycle,
which might affect the activity of SpoT. Further studies are needed to examine whether the
stringent response is activated in the ∆aceF mutant.
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Previously, we found that the mutation of another carbon metabolism gene eno results
in the downregulation of ahpB and ahpC, which increases bacterial susceptibility to oxidative
stresses [32]. The eno encoded enolase is a glycolytic enzyme that reversibly catalyzes the
dehydration of 2-phosphoglycerate to phosphoenolpyruvate [54]. In addition, enolase
interacts with ribonuclease (RNaseE), polynucleotide phosphorylase (PNPase) and the
RNA helicase RhlB to form the RNA degradosome, which plays important roles in RNA
processing and degradation [55,56]. Further studies are warranted to elucidate whether the
downregulation of ahpB and ahpC is due to defective assembly of the RNA degradosome or
carbon metabolism.

Overall, our results demonstrated that the mutation of aceF induces the expression of
the sRNA RsmYZ, which represses the expression of T3SS genes and increases bacterial
tolerance to H2O2. Previous and current studies have revealed that interruptions of carbon
metabolism in different reactions result in distinct expression patterns of bacterial virulence
factors, demonstrating a complex relationship between bacterial metabolism and virulence.
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