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Abstract: Fine-particulate pollution is a major public health concern in China. Accurate assessment of
the population exposed to PM2.5 requires high-resolution pollution and population information.
This paper assesses China’s potential population exposure to PM2.5, maps its spatiotemporal
variability, and simulates the effects of the recent air pollution control policy. We relate satellite-based
Aerosol Optical Depth (AOD) retrievals to ground-based PM2.5 observations. We employ block
cokriging (BCK) to improve the spatial interpolation of PM2.5 distribution. We use the subdistrict level
population data to estimate and map the potential population exposure to PM2.5 pollution in China at
the subdistrict level, the smallest administrative unit with public demographic information. During
8 April 2013 and 7 April 2014, China’s population-weighted annual average PM2.5 concentration
was nearly 7 times the annual average level suggested by the World Health Organization (WHO).
About 1322 million people, or 98.6% of the total population, were exposed to PM2.5 at levels above
WHO’s daily guideline for longer than half a year. If China can achieve its Action Plan on Prevention
and Control of Air Pollution targets by 2017, the population exposed to PM2.5 above China’s daily
standard for longer than half a year will be reduced by 85%.

Keywords: PM2.5; population exposure; MODIS (Moderate Resolution Imaging Spectroradiometer)
AOD; China

1. Introduction

Airborne particulate matter (PM) has become a major public health concern in China after three
decades of rapid economic growth that heavily relies on fossil fuel consumption [1,2]. Epidemiological
evidence consistently shows that PM pollution is associated with adverse health outcomes [3–6].
Fine particles with aerodynamic equivalent diameter less than 2.5 µm called Particulate Matter 2.5
(PM2.5) are particularly harmful [7]. According to the Global Burden of Disease Study 2010, ambient
air pollution in China, largely driven by high levels of PM2.5, is the fourth leading risk factor for
disability-adjusted life-years [8]. Therefore, many countries, including China, have identified PM2.5 as
a key target in air quality management.

Although PM10 has been regulated for about two decades, China’s PM2.5 pollution did not draw
national and international attention until a series of “airpocolypse” events in recent years. The frequent
attacks of extreme air pollution episodes triggered the government to include fine particles in the
revised air quality standards [9]. Pursuant to the new regulation, environmental protection agencies
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have systematically reported PM2.5 data since 2013. Using the first batch of ground-based observations,
we assess the population exposure to PM2.5 with a fine spatiotemporal resolution at the national scale.

Accurate exposure assessment requires high-resolution PM2.5 data [10]. However, simple
interpolation methods such as ordinary block kriging (BK) [11] that rely on sparsely located ground
monitors are subject to large estimation errors. To address this challenge, satellite remote sensing
has been used to improve the accuracy of spatial interpolation of PM2.5 concentrations [12–14].
The applicable approaches include exposure indicator variables, interpolation methods, dispersion
models, and land use regression models [15]. Among these alternatives, the interpolation methods
that incorporate ground-based measurements with satellite-retrieved Aerosol Optical Depth (AOD)
are particularly promising [16,17]. Because AOD is intrinsically correlated with particulate matter
concentrations, it provides secondary information about the spatial distribution of PM2.5 over
the domain.

In this paper, we use AOD as auxiliary information to interpolate daily PM2.5 levels for each
subdistrict. More specifically, we employ block cokriging (BCK) [11] to combine information from
Moderate Resolution Imaging Spectroradiometer (MODIS) AOD retrievals [18–20] and ground-level
PM2.5 measurements. One advantage of the BCK method is to estimate fine-scale spatial distribution
of PM2.5 concentrations in high frequency (e.g., daily). Another advantage is to handle missing values
in AOD retrievals caused by cloud or snow cover [20]. Without requiring AOD to cover the whole
space exhaustively, the BCK method can still make full use of the spatial autocorrelation and cross
correlation of both ground-level measurements and MODIS AOD retrievals. In order to assess model
accuracy, we validate our model by means of the leave-one-out cross-validation (LOOCV) method.

The interpolated PM2.5 levels are used to calculate population exposure. Exposure is the contact
between pollutant and the outer boundary of a human [21]. Because the information required for
estimating actual exposure to PM2.5 for each subdistrict in China is overwhelming, we use simplified
exposure indicators. We define exposure duration as the total number of days in a year exceeding
certain daily PM2.5 standards, total exposure as the product of exposure duration and exposed
population, and exposure intensity as the product of exposure duration and exposed population density.
Although these three indicators are relatively rough estimates, they provide essential information
about the population exposed to PM2.5 at a fine spatiotemporal resolution.

The dataset for this analysis is assembled from various sources. First, the ground-based
observations of daily average PM2.5 concentrations were collected by web-scraping the website of the
Ministry of Environmental Protection of China. The data cover the period of 8 April 2013 to 7 April
2014 for all 945 monitoring stations in 190 cities. Second, we obtained daily MODIS AOD Collection
5 from the Atmosphere Archive and Distribution System. We extracted AOD at the wavelength of
0.55 µm. Third, the subdistrict-level demographic information is from the 2010 National Population
Census. Fourth, the boundaries data for 654 cities as 1:4,000,000 maps are obtained from China’s
National Fundamental Geographical Information System.

To the best of our knowledge, we are the first to assess China’s potential population exposure to
PM2.5 on a daily basis at the subdistrict level. In this paper, we use the term subdistrict to represent all
types of township-level administrative units, which is the smallest administrative unit with public
demographic information. Previous studies on China’s population exposure to PM2.5 only focus on
one major metropolitan area, such as Beijing or Tianjin [22,23]. In comparison, our study covers the
whole country at a fine spatial and temporal resolution, taking advantage of both ground-based PM2.5

observations and satellite remote sensing. In addition, by linking detailed PM2.5 pollution levels with
fine-scale demographic data, it allows us to make more comprehensive and accurate assessment of the
PM2.5 exposure.



Int. J. Environ. Res. Public Health 2018, 15, 2683 3 of 13

2. Data

2.1. Ground-Based PM2.5 Measurements

China’s Ministry of Environmental Protection (MEP) and its local agencies maintain a nationwide
network of air quality monitoring stations, which monitor concentrations of particulate and gaseous air
pollutants at the ground level. Although fine particles are the most harmful components of particulate
matters, PM2.5 has not been regulated until very recently due to technical and economic constraints.
The 2012 Ambient Air Quality Standards and Technical Regulation on Ambient Air Quality Index
required cities to report hourly concentrations of six criteria pollutants including PM2.5 in real time by
January 2013. All provincial capitals and some municipalities in the developed regions are among the
first group to disclose PM2.5 information. By the end of 2013, China had established 945 monitoring
stations, increasing from 670 in 2012. We have collected daily average PM2.5 concentrations from
8 April 2013 and 7 April 2014 from all monitoring stations in 190 cities. The one year of in situ
observations at daily level for each station are used as a key input for pollution exposure estimation.

Ground-based monitoring stations are sparsely located. Figure 1a shows the locations of all
monitoring sites. Figure 1b is the spatial interpolation of the duration of PM2.5 above China’s daily
standard, which is obtained by applying the kriging method to the ground-based observations only.
We notice that a similar approach has been used by the Chinese government to illustrate the spatial
pattern of smog duration. However, the spatial resolution of the interpolated PM2.5, which relies on
ground-based observations only, is very coarse.
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designed to systematically retrieve aerosol properties over both land and ocean on a daily basis [18]. 
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Figure 1. Panel (a): spatial distribution of monitoring stations in 190 Chinese cities and Moderate
Resolution Imaging Spectroradiometer (MODIS) Aerosol Optical Depth (AOD) at 550 nm average
from 8 April 2013 to 7 April 2014 as the background of this panel. By the end of 2013, 945 stations
have disclosed PM2.5 concentrations to the public. Panel (b): the duration of PM2.5 above China’s
daily standard spatially interpolated by ground-based observations only. We convert the number of
pollution days to months by assuming 30 days in a month.

2.2. MODIS AOD Retrievals

Satellite remote sensing has been used to estimate PM2.5 concentrations in the areas lacking
ground-level measurements [12,13]. The MODIS sensor is one of the first passive satellite radiometers
designed to systematically retrieve aerosol properties over both land and ocean on a daily basis [18].
NASA released global retrievals of MODIS AOD with the nadir resolution of 10 km. The uncertainty
of the MODIS derived AOD is expected to be ±(0.05 + 15%) over the land [19]. In the MODIS AOD
Collection 5 retrieval algorithm, three different channels—0.47, 0.66, and 2.12 µm—are primarily
employed for over-land aerosol retrievals. These three wavelength channels are simultaneously
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inverted to finally report AOD values at the wavelength of 0.55 µm. More details about the retrievals
of the MODIS AOD product are discussed in Remer et al. [18] and Levy et al. [20]. In this paper, we use
the MODIS AOD retrievals to improve daily PM2.5 estimates for the whole country. We obtained the
daily MODIS AOD Collection 5 from the Atmosphere Archive and Distribution System. These AOD
retrievals were screened from cloud and bright surfaces. We extracted AOD at 0.55 µm as auxiliary
information to spatially interpolate PM2.5 levels.

2.3. Population

The population density data for each subdistrict were obtained from the 6th National Population
Census in 2010, which covers the People’s Republic of China but does not include Hong Kong,
Macau, and Taiwan. China has three forms of township-level administrative units: subdistrict (jiedao),
town (zhen), and township (xiang). Subdistrict is mainly in cities; its counterpart in suburbs and rural
areas is town or township. Hereafter in this paper, we use the term subdistrict to represent all types
of township-level administrative units in China. The subdistrict boundary data are obtained from
the National Data Sharing Infrastructure of Earth System Science (www.geodata.cn). A subdistrict
includes dozens of census units and it is the smallest population unit available to the public. As of
2010, China has about 40,000 subdistricts; average subdistrict population density is close to 1 thousand
persons per km2. In the 2010 census, the population is divided into three segments: children (0–14),
adults (15–64), and seniors (≥65), which we admit it is not consistent with commonly adopted age
segmentations, e.g., 0–18, 18–64, and above 65. The age information allows us to assess exposure for
the most susceptible members of population, such as children and seniors.

2.4. City Boundaries

We analyze and rank the population exposure to PM2.5 in each city by aggregating the
subdistrict-level data to the city level. The city boundaries data, in the form of 1:4,000,000 maps,
are obtained from the National Fundamental Geographical Information System of China. Our study
covers 654 cities in China, in which 286 cities are at the prefecture level or above and the rest are
county-level cities. It is worth noting that a Chinese city proper contains both rural and urban land uses.

3. Method

3.1. Interpolating PM2.5 Concentrations

One challenge to map high-resolution PM2.5 concentrations is the sparsely located monitoring
stations. To address this challenge, satellite-retrieved AOD has been used to improve the accuracy of
spatial interpolation of PM2.5 concentrations. In general, there are mainly two ways to estimate
PM2.5 from ground monitoring stations with satellite-retrieved AOD. One approach uses AOD
retrievals as a covariate to predict ground-level PM2.5 concentrations with general regression
models [16]. The other approach uses AOD retrievals as auxiliary information in various types
of kriging algorithms [17]. In this paper, we employ block cokriging (BCK) algorithms [11] to improve
PM2.5 concentration interpolation by combining information from daily MODIS AOD retrievals and
ground-level measurements.

Let Z1 designate PM2.5 ground observations and Z2 designate MODIS AOD retrievals. Since Z1

and Z2 are spatially and mutually correlated, the spatial variation of Z2 can be used to predict that of
Z1. BCK estimates the average value of the variable Z1 over an area v with covariate Z2 as

Ẑ1(v) =
n1

∑
i=1

λ1i(v)Z1(s1i) +
n2

∑
i=1

λ2i(v)Z2(s2i) (1)

www.geodata.cn
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where s1 and s2 denote set of spatial coordinates, n1 and n2 are the number of observations for Z1

and Z2, respectively. The above estimator is unbiased if the BCK weights λ1i(v) and λ2i(v) satisfy the
following constraints:

n1

∑
i=1

λ1i(v) = 1and
n2

∑
i=1

λ2i(v) = 0 (2)

The system of Equation (1) determining the weights in the BCK estimator is obtained by imposing
two constraints that require the estimator to be unbiased and efficient [11,24]. Using the solution of this
system, we can derive the estimates and standard errors for the BCK prediction of PM2.5 concentrations
at the subdistrict level.

Our model is validated by the LOOCV method. It works as follows. The model predicts an annual
time series of daily PM2.5 concentrations for each station using the observations from its neighboring
stations. BCK uses both ground-level observations and MODIS AOD retrievals; BK (block kriging)
uses ground-level observations only. The predicted PM2.5 concentration is compared with the actual
PM2.5 observation to derive the cross-validation statistics. Model accuracy is assessed by using the
Pearson’s correlation coefficient (COR) and the root-mean-square error (RMSE):

RMSE =

√
1
n

n

∑
i=1

(
Ẑ1(vi)− Z1(vi)

)2 (3)

In this form, n is the number of observations, Ẑ1(vi) is the cross-validation estimate, and Z1(vi) is
the observed PM2.5 concentration at subdistrict i. In model comparisons, the preferred model is the
one associated with higher COR and smaller RMSE.

3.2. Potential Population Exposure

Our exposure measurement is formed by the interaction of the number of pollution days and the
exposed population. We define a pollution day as its 24-h average of PM2.5 concentrations exceeding
China’s or WHO’s air quality standard. Let v index subdistrict, t index day, c designate daily average
PM2.5 concentration, C designate PM2.5 standard, and p designate the size of population or population
segment. The total exposure E for subdistrict v over a period of time τ = t2 − t1 is given by

Ev = ∑t2
t=t1

pv1(cvt ≥ C) (4)

where 1() is an indicator function of whether PM2.5 concentration of a particular day is above the
standard. Total exposure (person days) measures the aggregated public health risk of PM2.5 in any
given area or period. However, this indicator is not appropriate for the mapping purpose because land
areas vary hugely among subdistricts and cities; the large areas will be visually over-represented on
the map. Therefore, we use exposure intensity EI to map PM2.5 exposure for each subdistrict:

EIv = Dτ
v

pv

av
(5)

In this form, av is the land area of subdistrict v and Dτ
V = ∑t2

t=t1
1(cvt ≥ C) is the exposure duration

(number of pollution days) in period τ.

4. Results

By applying BCK to ground-level PM2.5 measurements and MODIS AOD retrievals, we obtain 365
maps for interpolated PM2.5 concentrations at the subdistrict level. The daily mean time series of PM2.5

concentration over China is shown in Supplementary Materials, Figure S3. For comparison, we also
apply BK, which uses the ground data only, to generate daily PM2.5 concentrations. We validate our
model using the LOOCV method. Model accuracy, as well as model comparison, is assessed using
Pearson’s correlation coefficient (COR) and root-mean-square error (RMSE). The time series of RMSE
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are illustrated in Supplementary Materials, Figure S4. The validation results show that the yearly
mean COR for BK and BCK is 0.832 and 0.864 respectively; the yearly mean RMSE for BK and BCK is
21.5 µg/m3 and 19.6 µg/m3 respectively. Since the preferred model is associated with higher COR and
smaller RMSE, both statistics indicate that BCK fits the data very well; it also improves the accuracy of
PM2.5 estimation compared with BK.

We find that Chinese people were exposed to serious PM2.5 pollution between 8 April 2013 and 7
April 2014. The population-weighted annual average PM2.5 concentration reaches 68.3 µg/m3. It is
nearly 7 times the annual average level of 10 µg/m3 recommended by WHO. Using China’s daily
standard of 75 µg/m3, an average Chinese person experienced 113 pollution days in the past year.
If we use the WHO’s daily guideline of 25 µg/m3, the exposure duration increases to 257 days in
that year.

WHO suggests three interim target (IT) levels for the daily average PM2.5 concentration [25]:
75 µg/m3 (IT-1), 50 µg/m3 (IT-2), and 37.5 µg/m3 (IT-3). Population exposures under various standards
are illustrated in Figure 2. It shows that the amount of exposed population increases dramatically as
the applicable standard becomes more stringent. The simulation results demonstrate that 223 million
people were exposed to PM2.5 above China’s ambient PM2.5 standard (or IT-1) for longer than half a year.
The exposed population increases to 776 or 1195 million if IT-2 or IT-3 level is used. Using the WHO
guideline of 25 µg/m3, 1322 million people, or 98.6% of the Chinese population in 2010, were exposed
to PM2.5 above WHO’s daily standard for over half a year. Additional exposure measurements are
reported in the Supplementary Materials, Table S1.
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The x-axis represents exposure duration that measures the cumulative time exceeding certain PM2.5

standard. The y-axis represents exposed population. Each standard is represented by one colored
curve. A dot (x, y) on a curve s means that y million people are exposed to PM2.5 above the standard s
for over x months.

4.1. Spatiotemporal Variation

We illustrate the spatial heterogeneity of PM2.5 by aggregating exposure duration to the yearly
level in Figure 3. The most pronounced PM2.5 hotspot is a diamond-shaped large area that sprawls
across eastern and central China. The area is anchored by four major metropolitan areas: Beijing in
the north, Shanghai in the east, Guangzhou in the south, and Chengdu in the west. The pollution
center is formed due to a combination of factors, such as fossil fuel combustion, industrial processes,
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and natural conditions. We estimate exposure duration for 654 cities (Supplementary Materials,
Figure S1). The result shows that northern cities are worse than southern cities, inland cities are worse
than coastal cities, and plain and basin cities are worse than plateau and hilly cities. In addition, we rank
major cities and city regions by PM2.5 exposure and discuss the spatial pattern in the Supplementary
Materials, Tables S2–S4.Int. J. Environ. Res. Public Health 2018, 15, x  7 of 13 
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Figure 3. China’s three major PM2.5 pollution hotspots. The color bar measures the total number of
days with daily average PM2.5 concentration exceeding China’s daily standard from 8 April 2013 to 7
April 2014. The number of pollution days is converted to months by a factor of 30. Taiwan, Hong Kong,
and Macau are colored in grey due to the missing data. The spatial resolution is subdistrict.

We demonstrate the seasonality of PM2.5 by calculating the percentage of days within a month
that exceeds China’s daily PM2.5 standard. Figure 4 illustrates the spatiotemporal variation of exposure
duration. The seasonal fluctuation spreads and congregates in space due to a complex interplay of
weather variability, diffusion conditions, and coal combustion [26]. Overall, PM2.5 pollution of winter
half year (from October to March) is much more severe than that of summer half year (from April to
September). The whole country is exposed to high levels of PM2.5 in December and January due to the
influence of downdraft and coal-fired heating [27,28]. Pollution starts to abate during February and
reaches the lowest level in August. In spring and summer, pollution is limited to a number of areas
in the north due to energy consumption structure or heavy industries development and spring dust
storms occasionally [29]. However, PM2.5 in North China still has a high level even between May and
September. Pollution starts to increase again after August; it gradually expands from the north to the
south until it covers most parts of China in December.
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percentage of days with PM2.5 concentration exceeding China’s daily standard for each month between
8 April 2013 and 7 April 2014. No ground observations are used for Taiwan, Hong Kong, and Macau.
The spatial resolution is subdistrict.

4.2. Population Segments

Studies reveal that children and seniors are more susceptible to the adverse health effects of PM2.5

pollution [30,31]. Therefore, we estimate the exposure intensity for different population segments
including children (≤14) and seniors (≥65). We calculate exposure intensity based on the exposure
duration and population density in each subdistrict. Because PM2.5 and population density are
positively correlated, nearly all densely populated subdistricts are among the worst polluted regions.
Therefore, exposure intensity is more spatially concentrated compared to population density.

The spatial distribution of each population segment is slightly different. The correlation matrix
in the Supplementary Materials, Table S5, shows that children on average have higher risk of PM2.5

exposure than the average population. This is perhaps due to the high birth rate in the more populated
and then more polluted areas. The condition for the senior subpopulation, however, is better than the
average and young population. This might be explained by the fact that seniors tend to stay in places
with better environment. Another possible explanation is that adults between 15 and 64 are likely to
migrate to population centers for better job opportunities, which turn out to also be pollution hotspots.
The exposure intensity for children and seniors is mapped in Figure 5. The figure reveals different
spatial patterns for children and seniors. Nevertheless, the exposure intensity for the susceptible
subpopulation (children and seniors combined) has a similar pattern with that of the total population
(Supplementary Materials, Figure S2).



Int. J. Environ. Res. Public Health 2018, 15, 2683 9 of 13Int. J. Environ. Res. Public Health 2018, 15, x  9 of 13 

 

  

(a) children’s exposure intensity (b) seniors’ exposure intensity 

Figure 5. Exposure intensity (pollution days*persons per km2) for the susceptible subpopulation: (a) 
children (≤14), and (b) seniors (≥65). Exposure intensity is the product of exposure duration and 
exposed population density. Exposure duration is the total number of days in a year exceeding 
China’s daily PM2.5 standard. The spatial resolution is subdistrict. 

4.3. Policy Simulation 

We simulate the effects of the most recent air pollution control policy: the Action Plan on 
Prevention and Control of Air Pollution (hereinafter referred to as the Action Plan). The Action Plan 
is arguably the toughest regulation on PM pollution in Chinese history. It stipulates differentiated 
targets for all provinces (Supplementary Materials, Table S6). The three major metropolitan areas—
Beijing-Tianjin-Hebei, Yangtze River Delta, and Pearl River Delta—are required to reduce their 
annual average PM2.5 concentrations by 25%, 20%, and 15% by 2017, respectively. The second-tier 
provinces are required to reduce annual average PM10 concentrations. The remaining provinces have 
no quantified targets but are required to make continuous improvements. 

The simulation result in Figure 6 demonstrates that the population exposure to PM2.5 will be 
reduced significantly if China can successfully achieve its targets in the Action Plan. Based on 
China’s daily standard, the population exposed to PM2.5 above the standard for over half a year 
will be 33 million people; the population-weighted average exposure duration will be 86 days. 
Compared with 223 million people and 113 days of exposure during 2013–2014, the PM2.5 exposure 
risk by 2017 will be significantly lower. 

In particular, the population-weighted annual average PM2.5 concentration will be reduced 
from 68.3 µg/m3 (2013–2014) to 58.4 µg/m3 (2017). The PM-mortality effect estimated in the Huai River 
study suggests that a 30 µg/m3 increase in PM2.5 is associated with 3 years of shortened life  
expectancy [32,33]. Based on this estimate, the Action Plan, through reducing PM2.5 concentration by 
about 10 µg/m3, can avoid approximately a 1-year loss of life expectancy for an average Chinese person. 

Our simulation assumes that the population density in 2017 is the same as that in 2010. However, 
migration and urbanization can shift population densities across space over the period 2010–2017. In 
order to assess the sensitivity of our results to the assumption of population density, we conduct 
a counterfactual analysis by using 2010 population density and 2000 population density 
(Supplementary Materials, Table S7). The result shows that the shifting population density during 
2000–2010 does not significantly affect our estimated population exposure, suggesting that our 
results are robust to the assumption of population density. 

Figure 5. Exposure intensity (pollution days*persons per km2) for the susceptible subpopulation:
(a) children (≤14), and (b) seniors (≥65). Exposure intensity is the product of exposure duration and
exposed population density. Exposure duration is the total number of days in a year exceeding China’s
daily PM2.5 standard. The spatial resolution is subdistrict.

4.3. Policy Simulation

We simulate the effects of the most recent air pollution control policy: the Action Plan on
Prevention and Control of Air Pollution (hereinafter referred to as the Action Plan). The Action Plan is
arguably the toughest regulation on PM pollution in Chinese history. It stipulates differentiated
targets for all provinces (Supplementary Materials, Table S6). The three major metropolitan
areas—Beijing-Tianjin-Hebei, Yangtze River Delta, and Pearl River Delta—are required to reduce
their annual average PM2.5 concentrations by 25%, 20%, and 15% by 2017, respectively. The second-tier
provinces are required to reduce annual average PM10 concentrations. The remaining provinces have
no quantified targets but are required to make continuous improvements.

The simulation result in Figure 6 demonstrates that the population exposure to PM2.5 will be
reduced significantly if China can successfully achieve its targets in the Action Plan. Based on China’s
daily standard, the population exposed to PM2.5 above the standard for over half a year will be
33 million people; the population-weighted average exposure duration will be 86 days. Compared
with 223 million people and 113 days of exposure during 2013–2014, the PM2.5 exposure risk by 2017
will be significantly lower.

In particular, the population-weighted annual average PM2.5 concentration will be reduced
from 68.3 µg/m3 (2013–2014) to 58.4 µg/m3 (2017). The PM-mortality effect estimated in the Huai
River study suggests that a 30 µg/m3 increase in PM2.5 is associated with 3 years of shortened life
expectancy [32,33]. Based on this estimate, the Action Plan, through reducing PM2.5 concentration
by about 10 µg/m3, can avoid approximately a 1-year loss of life expectancy for an average
Chinese person.

Our simulation assumes that the population density in 2017 is the same as that in 2010. However,
migration and urbanization can shift population densities across space over the period 2010–2017.
In order to assess the sensitivity of our results to the assumption of population density, we conduct a
counterfactual analysis by using 2010 population density and 2000 population density (Supplementary
Materials, Table S7). The result shows that the shifting population density during 2000–2010 does not
significantly affect our estimated population exposure, suggesting that our results are robust to the
assumption of population density.
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5. Discussion

PM2.5 data are critical for epidemiological, environmental, urban planning, and economic studies.
However, their applications in China have been hampered by the limited availability of pollution
data, especially those with fine resolution. This study contributes to China’s air pollution studies by
systematically documenting, synthesizing, and sharing fine-resolution PM2.5 data. The output of this
paper—maps, data, and results—is disclosed to the public at the website of the Beijing City Lab (BCL),
in order to provide better information for citizens, researchers, policy makers, and firms to address the
challenge of fine-particulate matter pollution.

It is worth noting that BCK is only one of the spatial statistical techniques that can take advantage
of both ground- and satellite-based observations. More studies recently have used land-use regression
(LUR) models [15,16] or geographically weighted regression (GWR) models [14] to estimate local PM2.5

concentrations with spatially predicting variables. Both LUR and GWR models require the covariates
to have spatially exhaustive coverage. Satellite-retrieved AOD, as one of the most crucial covariates
in regression models, however, commonly has large missing values due to cloud or snow cover [20].
Therefore, it is a challenge to estimate fine-scale PM2.5 concentrations at a high frequency (e.g., daily)
with large missing values in AOD by using regression models. BCK has a distinct advantage that it
does not need AOD to exhaustively cover space. Therefore, it can make full use of cross correlation
with MODIS AOD to optimally estimate values at each sub-district per day.

The fine-scale PM2.5 data generated by this paper can be used in many other studies. One direction
is to link with time-stamped and geocoded health data like hospital admission and discharge data [34].
This enables us to study the PM2.5—health relationship at the national scale with a fine resolution,
which can facilitate holistic policy analysis. Another direction is to analyze the driving factors of PM2.5

pollution, such as the factors related to urban form [35]. Our estimates of PM2.5 concentrations with
high resolution are essential to understand intra-urban heterogeneities, which can inform planners to
design better urban form to improve environmental quality.
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Please note that our study has several potential caveats. The first concern is about the data quality
of the ground-based observations. A recent study finds suggestive evidence that a large number of
Chinese cities are suspected to manipulate PM10 data around the cutoff for “blue-sky days” during
2001–2010 [36]. Since 2010, the credibility of air pollution data has improved significantly thanks to the
direct online reporting system that largely prevents data falsification. We compared the PM2.5 data
reported by the MEP and the U.S. Embassy in Beijing. The pollution distributions have no significant
difference. The results are illustrated in Figure S5.

Second, our measurement of population exposure to PM2.5 does not take into account avoidance
behavior such as canceling outdoor activities, wearing face masks, and installing air purifiers.
The behavioral adaptation will reduce actual pollution exposure and hence mitigate the negative
health impacts of PM2.5. In addition, our analysis does not involve indoor air pollution, which is
another major cause of particulate matter exposure [37]. An accurate assessment has to account for the
duration of indoor and outdoor activities. Thus, our indicator of potential pollution exposure is likely
to be the upper bound of the actual exposure.

Third, our estimates of pollution exposure are associated with large uncertainty in the locations
where ground monitoring stations are sparse. Over 400 Chinese cities have no monitoring stations.
Their PM2.5 concentrations are heavily determined by the MODIS AOD images. The best way to
improve the estimation in these cities is to increase the number of monitoring stations, which calls for
additional investment from the central and local governments.

6. Conclusions

In this paper, we assess China’s potential population exposure to PM2.5, map its spatiotemporal
variability, and simulate the effects of the recent air pollution control policy. We find that about
1322 million people, or 98.6% of the total population, are exposed to PM2.5 above the WHO daily
guideline for longer than half a year during 2013–2014. The proposed Action Plan to tackle fine particles
is costly, which requires a total investment of US$277.5 billion over the next 5 years [9]. However,
the benefit of air quality improvement is also tremendous. If China can successfully achieve its targets
in the Action Plan by 2017, it will reduce population-weighted annual average PM2.5 concentration
by about 10 µg/m3, which might avoid an approximate 1-year loss of life expectancy for an average
Chinese person based on the recent estimate of PM mortality [32,33]. With a population over 1.3 billion,
the Action Plan can justify its hefty cost of fine-particulate pollution control. Therefore, the successful
implementation of the Action Plan can significantly reduce PM2.5 exposure risk. However, the annual
PM2.5 concentration by 2017, which is about 6 times the WHO guideline, is still at a high level harmful
to public health.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-4601/15/12/2683/s1,
Table S1: Potential Exposure to PM2.5, Table S2: PM2.5 pollution in major city regions, Table S3: Top 20 best and
worst Chinese cities in PM2.5 exposure duration, Table S4: Ranking of Chinese cities in potential population
exposure to PM2.5 pollution, Table S5: Pearson correlation matrix for population density and exposure duration,
Table S6: Provincial targets under the Air Pollution Prevention and Control Action Plan, Table S7: Exposure
estimation using 2010 and 2000 population density; Figure S1: Exposure duration (polluted days) at the city
level. Exposure duration is the total number of days in a year exceeding China’s current PM2.5 standard (Figure
produced from ArcGIS 10.2), Figure S2: Exposure intensity (person days per km2) for (A) total population and
(B) susceptible subpopulation (children and seniors). The spatial resolution is subdistrict (Figure produced from
ArcGIS 10.2), Figure S3: The time series of daily mean PM2.5 concentration in China, Figure S4: The time series of
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the MEP and the U.S. Embassy in Beijing.
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