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Metabolic signatures are frequently observed in cancer and are starting to be recognized
as important regulators for tumor progression and therapy. Because metabolism genes
are involved in tumor initiation and progression, little is known about themetabolic genomic
profiles in low-grade glioma (LGG). Here, we applied bioinformatics analysis to determine
the metabolic characteristics of patients with LGG from the Cancer Genome Atlas (TCGA)
and the Chinese Glioma Genome Atlas (CGGA). We also performed the
ConsensusClusterPlus, the CIBERSORT algorithm, the Estimate software, the R
package “GSVA,” and TIDE to comprehensively describe and compare the
characteristic difference between three metabolic subtypes. The R package WGCNA
helped us to identify co-expression modules with associated metabolic subtypes. We
found that LGG patients were classified into three subtypes based on 113 metabolic
characteristics. MC1 patients had poor prognoses and MC3 patients obtained longer
survival times. The different metabolic subtypes had different metabolic and immune
characteristics, and may have different response patterns to immunotherapy. Based on
the metabolic subtype, different patterns were exhibited that reflected the characteristics
of each subtype. We also identified eight potential genetic markers associated with the
characteristic index of metabolic subtypes. In conclusion, a comprehensive understanding
of metabolism associated characteristics and classifications may improve clinical
outcomes for LGG.
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INTRODUCTION

Low-grade glioma (LGG) is the most common slow-growing brain cancer in central nervous
system neoplasms (De Andrade Costa et al., 2021). Diffusely infiltrating LGGs include
astrocytomas, oligodendrogliomas, and mixed oligoastrocytomas (WHO grade 2) (Louis
et al., 2016). LGGs are typically nonmalignant and slow-growing, and account for 6.4% of
all adult primary CNS tumors. LGGs are characterized as indolent tumors, with survival rates
that range from 1 to 15 years (Gargini et al., 2020). The long-term survival of LGG mainly
depends on the resection extension, molecular subtyping such as isocitrate dehydrogenase
(IDH) 1 and 2 mutations (Huang et al., 2020), and 1p19q codeletion (Merchant et al., 2009;
Gargini et al., 2020). LGGs exhibit widespread genetic and phenotypic heterogeneity, which is
characterized by a mutation in the IDH enzyme (Binder et al., 2019). Most LGGs inevitably
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progress to higher-grade tumors, and about 50–75% LGG
patients often evolves to pathological progression and
deterioration. Hence, an intensive exploration of the regulation
mechanism in LGG initiation and progression is vital for
biomarker identification and determination of therapeutic
targets.

Aberrant cellular metabolism alters the metabolic and
immune microenvironments, and has emerged as a
therapeutic target in cancer diagnosis and therapy. The
evidence indicates that metabolism-associated genes may
contribute to progression by altering tumor metabolism
and behavior or impacting the tumor microenvironment
(Chen et al., 2019). Metabolism-associated genes play key
roles in cancerous cells, and cancerous cell-metabolism
reprogramming is considered the new direction for future
cancer research (Hanahan and Weinberg, 2011). Studies have
demonstrated that metabolic alterations may promote tumor
cell proliferation and migration (Zhu et al., 2020). Therefore,
metabolism-associated genes may be a fruitful focus for
identifying the genomic profiles and inner regulation
mechanism of LGG.

In the current study, we applied bioinformatics analysis
based on the Cancer Genome Atlas (TCGA) and the Chinese
Glioma Genome Atlas (CGGA). We performed the
ConsensusClusterPlus to identify metabolic subtypes, the
CIBERSORT algorithm to calculate relative immune
abundance, the Estimate software application to evaluate
immune infiltration and the R package “GSVA” for
enrichment analysis. TIDE and the R package WGCNA
were applied to evaluate potential clinical effects in
immunotherapy and identify co-expression modules with
associated metabolic subtypes. In the end, we also
identified eight potential biomarkers reflecting metabolic
subtype characteristics which have potential become novel
therapeutic targets for LGG therapies.

MATERIALS AND METHODS

Data Collection
We downloaded LGG patients’ gene transcriptome profiles
and corresponding RNA-seq data from TCGA database
(https://portal.gdc.cancer.gov/) and the Genomic Data
Commons (GDC) tool. 509 LGG samples logged in TCGA
were available for analysis. Additionally, mRNA-seq 693
(batch 1) and mRNA_seq325 (batch 1) datasets were
downloaded from CGGA (http://www.cgcg.org.cn/). Next,
these two RNA-seq datasets were merged into one
metadata set; 408 samples were ultimately included in
this study.

Metabolism-Relevant Gene Selection
Previous studies by other researchers screened a set of metabolic
genes relevant to malignant tumor activity and stemness
properties required for tumorigenesis (Possemato et al., 2011).
A total of 2,752 metabolism-relevant genes which encoded
metabolic enzymes and transporters were selected.

Genomic Data Pre-treatment
Poor-quality samples were excluded before data preprocessing.
Samples without clinical data and with more than 50% missing
were removed. In the end, we obtained an expression
profile dataset containing 20,485 genes profiles for subsequent
analysis.

Metabolic Subgroup Classification
ConsensusClusterPlus implements the consensus clustering (CC)
method, which facilitates more quantitative stability evidence in
unsupervised class discovery (Wilkerson and Hayes, 2010). We
used the Normalized Enrichment Score (NES) to measure the
gene-sets enrichment (Wilkerson and Hayes, 2010; Yang et al.,
2020), and obtained 113 normalized enrichment scores of
metabolism-relevant gene signatures. Each of the
113 metabolism-related signatures had a class of gene sets and
contained multiple genes. We adopted the “PAM” algorithm
along with “Canberra” as a measure of distance, and
performed 500 bootstraps, each involving 80% of the patients
in the training set. The clustering number was set as 2–10, and the
consistency matrix and consistency cumulative distribution
function were calculated to determine the best classification.

Tumor Immune Infiltration
To infer the relative abundance of 22 types of tumor-infiltrating
immune cells and non-immune cells in the tumor
microenvironment, we applied the CIBERSORT algorithm via
the “CIBERSORT” R package (CIBERSORT R script v1.03; http://
cibersort.stanford.edu/). We adopted the ESTIMATE package to
determine the presence of infiltrating immune cells (Yu et al.,
2019), using the ImmuneSignature gene set based on LGG RNA-
seq data (Jusakul et al., 2017).

Gene Set Variation Analysis and Functional
Annotation
To further explore the differences between different clusters in
biological processes, we performed the gene set variation analysis
(GSVA) with the R package “GSVA” to estimate pathway
enrichment for different clusters. In total, 113 metabolism-
associated pathways were included in GSVA analysis genesets.
R package clusterProfiler (https://guangchuangyu.github.io/
software/clusterProfiler) was used to process the GSEA analysis.

Metabolic Subtype Characteristic Score
Construction
Considering that different metabolic characteristics existed in
different metabolic subtypes, we applied the principal
components analysis (PCA). And we established subtype
classification scores better to quantify metabolic characteristics
of patients in different sample cohorts. Specifically, we used 113
metabolic characteristics for PCA analysis, and the first two-
component scores. Then, we calculated the metabolic subtype
characteristic score of each sample and calculate the formula
MRGs-score � ∑(PC1 I + PC2 I), where I represented metabolic
characteristics.
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RESULTS

Metabolism-Associated Gene Identification
and Classification
To identify prognosis-related metabolic signatures, we calculated
enrichment score and prognosis features of 113 metabolic genes
from LGG patients in the TCGA and CGGA cohorts. The results
indicated that there were 69 prognosis-related metabolic
signatures in the TCGA database, and 73 prognosis-associated
metabolic genes (Figure 1A). Furthermore, we adopted
ConsensusClusterPlus to explore reasonable classifications
according to the characteristics of the 509 LGG sample, and
classified these similar characteristics genes into one category.
The corresponding cumulative distribution function (CDF) curve
and the delta area plot indicated that the optimal choice was
K � 3 (Figures 1B,C). Finally, we obtained three different
metabolic clusters (MC) which were characterized by

consistent metabolic subtype-related specificities (Figure 1D).
We further investigated the prognosis linked to these three
clusters. Results for overall survival (OS) indicated that MC1
predicted the shortest survival time compared with MC2 and
MC3 in the TCGA dataset (Figure 1E). The progression-free
survival (PFS) outcomes showed that the MC1 subgroup had the
poorest survival rates in both the TCGA cohort and the CGGA
cohort (Figures 1F,G).

Distinct Clinical Signatures and Outcomes
for the Three Metabolic Clusters of
Low-Grade Glioma
To clarify the clinical signatures between the three clusters, the
results demonstrated that there was no significant difference in
occurrence of any signature based on age or gender (Supplementary
Figures S1A,B). There was a remarkable variation in IDHmutation

FIGURE 1 |Metabolic subtypes in LGGA. (A) The intersection of prognostic metabolic signatures between TCGA and CGGA. (B) CDF curve of the TCGA cohort.
(C) CDF delta area curve. The horizontal axis represents the category number k and the vertical axis represents the relative change in area under the CDF curve. (D)
Sample clustering heatmap, k � 3. (E) Overall survival curve of three metabolic subtypes in the TCGA cohort. (F) PFS curve of metabolic subtypes in TCGA cohort. (G)
OS curves of three subtypes in the CGGA cohort.
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in the TCGA database, and IDH mutation in the MC2 and MC3
subgroups was significantly higher than that in the MC1
subgroup (Supplementary Figure S1C). The probabilistic
infiltration weighted gradient maps also demonstrated that
the chromosome 1p and 19q (1p/19q) codeletion status was
significantly higher compared with MC2 and MC1 in the TCGA
dataset (Supplementary Figure S1D). The methylguanine-
DNA methyl-transferase (MGMT) expression in MC1 was
obviously decreased compared with the MC2 and MC3
subgroups (Supplementary Figure S1E). At the same time,
we explored these features in the CGGA database, and
noticed that consistent with the prior observations, the three
clusters did not differ significantly based on age or gender
(Supplementary Figures S1F,G). IDH mutation and 1p19q
co-deletion were significantly higher in MC2 and MC3
compared with MC1 (Supplementary Figures S1H,I).
MGMT expression was not significantly different in the three
subgroups (Supplementary Figure S1J).

Metabolic Characteristics of the Three
Clusters
To thoroughly investigate the metabolic characteristics, we applied
differential expression analysis to identify subtype-specific

metabolic characteristics based on the GSVA scoring system.
According to the results, 47 specific metabolic characteristics
were present in MC1, 6 in MC2, and 39 in MC3, as visualized
by the heatmap (Supplementary Figure S2). These genes were
applied to further distinguish between metabolic subgroups.

Distribution of Mutation Characteristics
Between the Three Metabolic Subtypes
We also analyzed the differences in genomic changes among
these three metabolic subtypes in the TCGA cohort. The MC3
subtype exhibited a lower aneuploidy score (Figure 2A), fraction
altered (Figure 2B), number of segments (Figure 2C), and
number of homologous recombination defects (Figure 2D).
Tumor mutation burden was similar in all three subgroups
(Figure 2E). In addition, we analyzed the correlation between
gene mutations and metabolic subtypes, and found metabolic
subtypes. There was a significant correlation with gene mutation.
TP53, IDH1, ATRX, and EGFR genes showed extensive somatic
mutations in LGG, among which the IDH1 gene had a higher
mutation frequency inMC2 andMC3 subtypes, and patients with
tumors with IDH1/2 mutations had favorable prognoses. The
mutation frequency of the ATRX gene in the MC2 subtype was
the highest, followed by MC1. EGFR had a higher mutation

FIGURE 2 | The genomic alteration of the three clusters in the TCGA cohort. (A–E) Comparisons of aneuploidy score, fraction altered, number of segments, tumor
mutation burden and homologous recombination defects in the TCGA cohort. (F) The somatic mutations and copy number mutations of the three clusters.
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frequency in the MC1 subtype, but a lower frequency in both
MC2 and MC3 subtypes. In terms of copy number variation, the
MC1 subtype had a wide range of copy number amplification and
deletion frequencies (Figure 2F).

Heterogeneity Analysis of Metabolic
Subtypes
To comprehensively investigate the tumor heterogeneity among
different metabolic subtypes, we obtained genomic characteristics
including tumor purity, ploidy, amplification, and intertumoral

heterogeneity from known studies (Thorsson et al., 2018). They
indicated that the purity, ploidy, and intratumor Heterogeneity
of MC1 and MC3 were significantly lower than those of
MC2 (Supplementary Figures S3A–C). MC1 showed the
highest proliferation score, followed by MC2 and MC3
(Supplementary Figure S3D). Studies have demonstrated that
LGG patients with higher mRNAsi indices have a better
prognosis than those with low mRNAsi indices (Tan et al.,
2021) (Supplementary Figure S3E). We obtained and
analyzed mRNAsi differences in LGG patients from our
data, and found that the mRNAsi indices of MC2 and MC3

FIGURE 3 | Comparison of differences in classical immune cell typing and immune cell composition analysis. (A) Comparative analysis of the metabolic molecular
subtypes in TCGA and the reported six classical subtypes. (B) Comparative analysis of the metabolic molecular subtypes in TCGA and the previous six pan-cancer
immunemolecular subtypes. (C) Immune cell composition and proportion in the TCGA cohort given by ESTIMATE software. (D) Immune cell composition and proportion
in the CGGA cohort given by ESTIMATE software. (E) Immune cell composition and proportion in the TCGA cohort given by CIBERSORT software. (F) Immune cell
composition and proportion in the CGGA cohort given by CIBERSORT software.
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were significantly higher than that of MC1. We also analyzed
epigenetic regulation based on index (EREGmRNAsi) differences
among different metabolic subtypes, and found that there
was no significant difference between EREGmRNAsi subtypes
(Supplementary Figure S3F).

Comparison of Metabolic Subtypes and
Immune Cell Infiltration
To compare the differences between the three metabolic subtypes
identified by us and the seven metabolic subtypes reported in
previous studies (Ceccarelli et al., 2016), we determined that
Codel and G-CIMP-high were higher in MC2 andMC3 subtypes.
The percentages of patients with Codel and G-CIMP-high were
35 and 57%, respectively, in the MC2 subtype, and 55 and 36%,
respectively, in the MC3 subtype. Patients with Codel and
G-CIMP-high had a better prognosis (Figure 3A). We also
compared the metabolic subtypes with the six previously
reported immunomolecular subtypes (Thorsson et al., 2019),
and found C3 to have the best prognosis and C4 and C6
subtypes to have the worst. The percentages of C5 subtype in
MC2 and MC3 subtypes were 77 and 86% respectively, while the
percentage of C4 subtype in the MC1 subtype was 62%, higher
than those in MC2 and MC3 subtypes (Figure 3B). Immuno-
infiltration analysis showed that MC1 had the highest immuno-
microenvironment infiltration in the TCGA cohort, followed by
MC2, and MC3 had the lowest immune-infiltration score
(Figure 3C). Consistent findings were also observed in the
CGGA cohort: MC1 subtype had the highest immune
infiltration, significantly higher than that of MC2 and MC3
metabolic subtypes (Figure 3D). We then applied the
CIBERSORT method to investigate the components of
immune cells in each metabolic subtype. The results
demonstrated that there were significant differences among
different subtypes of immune cells. In the TCGA cohort, the
Macrophages_M2 was significantly enriched in the MC1 subtype,
and the CD8+ T cells, Naïve CD4+ T cells, activate CD4+ memory
T cells, follicular helper T cells, Treg, gamma delta T cells, M1
macrophages, activated dendritic cells, mast cells, eosinophils,
and neutrophils were differently expressed in the three clusters
(Figure 3E). In the CGGA cohort, Macrophages_M2 in the MC1
subtype was significantly higher than that in MC2 and MC3,
while naïve B cells, memory B cells, plasma cells, CD8+ T cells,
resting memory CD4+ T cells, gamma delta T cells, resting NK
cells, monocytes, M1 macrophages, and neutrophils were
differently expressed in these classifications (Figure 3F). In
addition, we also applied the xCell, EPIC, and MCP-counter to
comprehensively evaluate the tumor-infiltrating immune cell score
in the TCGA database and CGGA dataset. And results
demonstrated that the MC1 subtype had the highest immune
infiltration, while the MC2 and MC3 metabolic subtypes were
significantly lower than the MC1 subtype. In addition, most
immune cells had significant differences between subtypes in
the TCGA database and CGGA database Supplementary
Figure S4. These findings suggested that our metabolism-related
classification was closely related to immune cell infiltration, which
may be an effective evaluationmethod in LGG immune evaluation.

Metabolism Subtypes Have Predictive
Value for Immunotherapy
To evaluate the different immunotherapy and potential clinical
effects of metabolism-associated subtypes, we adopted TIDE
(http://tide.dfci.harvard.edu/) software and determined that
MC had the highest TIDE score in the TCGA cohort, which
suggested a higher possibility of MC2 immune escape and a lower
possibility of benefit from immunotherapy (Figure 4A). We also
compared the differences in T cell dysfunction scores and T cell
rejection scores among different molecular metabolic subtypes in
the TCGA cohort. The results indicated that the MC2 subtype
had the lowest T cell dysfunction scores but the highest T cell
rejection scores. The T cell dysfunction scores of MC1 and MC3
subtypes were higher than that of the MC2 subtype, but the T cell
rejection scores were lower. However, there was no significant
difference in T cell dysfunction scores and T cell rejection scores
between the MC1 and MC3 subtypes (Figures 4B,C). Similar
results were also observed in the CGGA cohort (Figures 4E–G).
In addition, we investigated the differences in the predicted
immunotherapy response for different metabolic subtypes, and
the results showed significant differences in immunotherapy
response status between the MC2 and MC3 subtypes. In the
CGGA cohort, there was a significant difference between the
MC1 subtype and the MC2 and MC3 subtypes (Figures 4D,H).
Furthermore, we carried out subclass mapping and compared the
immunotherapy data on the three metabolic subtypes; we found
that the MC1 subtype in the TCGA and CGGA cohorts was
sensitive to anti-PD1 therapy, while the MC3 subtype was
sensitive to CTLA4-R (Figures 4I,J).

Construction of the Metabolic Subtype
Characteristic Score
Because different metabolic subtypes have different metabolic
characteristics, we performed PCA to construct a subtype
classification feature score and thus better quantify the
metabolism-related characteristics of each sample. The PCA
indicated that PC1 and PC2 could successfully discriminate
and classify LGG samples according to the metabolic subtypes
classification features in the TCGA database (Figure 5A). The
results revealed that the three metabolic subtypes had
significantly different microenvironment-related genes scores
(Figure 5B). The receiver-operating characteristic (ROC)
curve, combining sensitivity and specificity, showed the
performance of different metabolic subtype feature scores of
different clusters. The multiclass area under the curve (AUC)
was 0.86, which indicated that this signature score model had
excellent predictive power (Figure 5C). We also observed similar
features in the CGGA database (Figures 5D–F), in which the
multiclass AUC was 0.85.

Correlation Analysis Between Metabolic
Subtype Signature Score and Immune
Infiltration
To assess the correlation between metabolic subtype characteristics
scores and immune cell characteristics, we performed Pearson’s
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correlation analysis, and found that metabolic subtypes signature
scores had no significant correlation with immune cells, with the
exception of M2 macrophages and eosinophils.

These results highlighted the fact that M2 macrophages had a
remarkably strong negative correlation with metabolism-
associated scores, and eosinophils had a positive correlation
with these scores (Supplementary Figure S5A). The results
for M2-macrophage infiltration in the CGGA cohort agreed
with those from the TCGA cohort (Supplementary Figure
S5B). Furthermore, to better describe the correlation analyses
between metabolic subtypes, metabolic score, and immune
checkpoint molecules, we adopted correlation row analysis,
and we found that the metabolic subtypes, metabolic score
and immune checkpoint molecules have significant correlation
with each other (Supplementary Figure S6). These findings

suggested that the metabolic signature had good cooperativity for
not only metabolic score but also immune associated molecules.

Co-Expressed Gene Identification
To further identify metabolism subtypes associated with co-
expressed gene models, we performed a weighted gene co-
expression network analysis (WGCNA) to identify modules
connected with a variety of LGG metabolism signature-based
subtypes. The genes, whose MAD (median absolute difference)
were more than 50%, were selected for further WGCNA analysis
in the TCGA gene expression profile. The sample clusters are
illustrated in Figure 6A. To ensure a scale-free network, a power
of β � 8 (scale-free R2) was selected as the soft-thresholding
parameter (Figures 6B,C). Furthermore, similar clusters were
merged into newmodules using the following settings: height � 0.25,

FIGURE 4 | The immunotherapy response difference between the three clusters. (A) TIDE scores of all three metabolic subtypes in the TCGA cohort. (B) T cell
dysfunction scores of all threemetabolic subtypes in the TCGA cohort. (C) T cell rejection scores of different metabolic subtypes of TCGA. (D) Immune response status in
different metabolic subtypes of TCGA. (E) TIDE scores of different metabolic subtypes in the CGGA cohort. (F) T cell dysfunction scores of differentmetabolic subtypes in
the CGGA cohort. (G) T cell rejection scores of different metabolic subtypes in the CGGA cohort. (H) Differences of immune response status in different metabolic
subtypes in the CGGA cohort. (I) Different immunotherapy sensitivity in programmed cell death protein 1 inhibitor therapy in the TCGA cohort. (J) Different
immunotherapy sensitivity in programmed cell death protein 1 inhibitor therapy in the CGGA cohort.
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deepSplit � 2, and min ModuleSize � 30. This produced 18 gene
molecules (Figure 6D). The 18 gene numbers of each co-expression
network are illustrated in Figure 6E. We further analyzed the
correlation between each co-expressed gene module and Age,
Gender, IDH1/IDH2 mutation status, MGMT methylation status,
1P/19Q CODEL status, and MC1, MC2, and MC3. The results
showed that the green module had the highest correlation withMC1,
the Cyan module was significantly positively correlated with MC2,
and the blue module was significantly positively correlated withMC3
(Figure 6F). The Green module had a significant correlation with
MC1 (Figure 6G, cor � 0.69, p � 2.4e−82). The Cyan module had a
significant correlation with MC2 (Figure 6H, cor � 0.47, p �
7.8e−11). The Blue module had a significant correlation with
MC3 (Figure 6I, cor � 0.62, p � 1.2e−116).

Functional Enrichment Analysis of the
Metabolic Co-Expression Gene Modules
We calculated the correlation between the feature vectors of
the 17 modules (excluding the Grey module) and the
metabolic subtype feature index, as shown in Figure 7A.
The Green and Cyan modules had significant negative

correlation with the metabolic subtype feature score (Figures
7B,C). The blue module was significantly positively correlated
with the metabolic subtype characteristic score (Figure 7D). We
screened the genes of the three modules for functional enrichment,
with the following results. As shown in Figures 7E–G, our green
module is related to leukocyte proliferation, positive regulation of
leukocyte activation, T cell activation, and other immune processes.
The KEGG pathway was enriched in the intestinal immune
network for IgA production and Th17 cell differentiation. The
Cyan module was significantly enriched to protein targeting to
membrane, protein localization to endoplasmic reticulum, and
other processes (Figure 7F). Furthermore, the results of
significant enrichment in the blue module are shown in
Figure 7G.

Hub Gene Selection and Prognosis Analysis
In addition, we identified 24, 13, and 21 key genes in the green, Cyan,
and Blue modules, respectively, with correlation coefficients greater
than 0.9 and significant association with prognosis (Figure 8A). We
then used a Venn diagram to identify the intersection of a total of
eight key genes: BTK, ALOX5, ARPC1B, REL-10, ITGB2, GPSM3,
LAPTM5, and MYO1F (Figure 8B).

FIGURE 5 | Construction of metabolic subtype characteristic score. (A) The relationship between two key metabolic signatures and metabolic subtypes in the
TCGA cohort. (B) The metabolic subtype signature scores of different subtypes in the TCGA cohort. (C) The ROC curve for metabolic subtype signature scores in the
TCGA cohort. (D) The relationship between two key metabolic signatures and metabolic subtypes in the CGGA cohort. (E) The metabolic subtype signature scores
between different subtypes in the CGGA cohort. (F) The ROC curve for metabolic subtype signature scores in the CGGA cohort.
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FIGURE 6 | Co-expressed gene modules identification. (A) Clustering tree of each sample. (B) The scale-free fit index for various soft-thresholding powers (β). (C)
The mean connectivity for various soft-thresholding powers. (D) Dendrogram of all differentially expressed genes/lncRNAs, clustered based on a dissimilarity measure.
(E) Co-expression module gene statistical results. (F) Correspondence between each module and clinical information. (G) Scatter diagram for module membership vs
gene significance for MC1 in the green module. (H) Scatter diagram for module membership vs gene significance for MC2 in the cyan module. (I) Scatter diagram
for module membership vs gene significance for MC3 in the blue module.
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FIGURE 7 | Functional enrichment analysis of metabolic co-expression gene module. (A) Correlation analysis between module feature vector and metabolic
subtype feature index. (B) The correlation between the feature vector of the green module and the feature index of metabolic subtypes. (C)Correlation between the cyan
module and the feature index of metabolic subtypes. (D) Correlation between the blue module feature vector and the metabolic subtype feature index. (E–G) Functional
enrichment analysis results for green, cyan, and blue modules.
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According to gene expression levels, patients were divided into a
high-expression group and low-expression group. Kaplan-Meier
prognostic analysis revealed that high expression levels of these

eight genes were correlated with poor prognosis (Figure 8C). In
conclusion, these eight genes are potential markers associated with
the metabolic subtype characteristics score.

FIGURE 8 | Hub genes identification of metabolic co-expressed gene module. (A) The protein interaction network between the key genes of the modules; the
different colors of the network nodes indicate different modules. (B) Venn diagram of key genes. (C) Kaplan-Meier prognostic curve of marker genes related to metabolic
subtype feature score.
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DISCUSSIONS

LGG is the most commonly diagnosed brain tumor (Merchant
et al., 2009). Metabolism-associated genes are reported to play
an important role in the tumor microenvironment and tumor
genotype construction (Bi et al., 2020). A series of studies have
demonstrated that IDH mutation, 1p19q mutation, and
MGMT methylation status are the most common molecular
mutations with noteworthy (Jenkins et al., 2006; Eckel-Passow
et al., 2015). These three mutations occur earlier than glioma
formation, and are widely expressed in glioma. They have vital
early diagnosis and long-term prognosis prediction value in
clinical treatment. In this study, we applied bioinformation
analysis to identify the distribution of metabolism-associated
genes, and classified these genes into three different clusters
with different molecular characteristics. In addition, we
analyzed the clinical features of the three clusters. The
results demonstrated that the MC3 cluster predicted poor
prognosis, combined with IDH mutation, 1p19q mutation,
and high MGMT promoter methylation. These metabolic
gene-based classifications are linked to specific characteristics,
which are well characterized and have overlapping as well as
distinct functions. This classification is of direct clinical
importance and contributes to improved outcomes in
patients with LGG. We have demonstrated that the metabolic
profiles of the glioma cell lines are significantly associated with
their malignant features. Thus, metabolic prognostic risk
signatures that combine the expression of multiple
metabolism-related genes will be helpful for the diagnosis,
treatment, and prognosis of LGG. The present study
identified eight hub signature genes such as BTK, ALOX5,
ARPC1B, REL-10, ITGB2, GPSM3, LAPTM5, and MYO1F.
These genes were metabolic signatures associated genes.
BTK was a non-receptor kinase belonging to the Tec family
of kinases which played a vital role in the proliferation and
survival of malignant activities (Ahn and Brown, 2021).
ARPC1B played an essential role in the maintenance and
assembly of the ARP2/3 complex and could function in
multiple cellular activities, such as cell migration,
progression, and DNA repair (Sprenkeler et al., 2021).
ALOX5 and its metabolite 5-hydroxyeicosatetraenoic acid (5-
HETE) were involved in tumorigenesis, development, and
metastasis (Weigert et al., 2018). Besides, ITGB2 was one
subunit of the β2 integrins, which were heterodimeric surface
receptors expressed by leukocytes. Additionally, ITGB2 was
involved in the development, metastasis, and invasion of
various tumors (Xu et al., 2021). It was reported that GPSM3
could act as an NLRP3-interacting protein and a negative
regulator of IL-1β production triggered by NLRP3-dependent
inflammasome activators (Giguère et al., 2014). LAPTM5, a
protein, is preferentially expressed in immune cells (Berberich
et al., 2020), and could interact with the Nedd4 family of
ubiquitin ligases, which played an essential role in multiple
tumor initiation and progression. Finally, MYO1F functioned as
an unconventional myosin (Diquigiovanni et al., 2018; Sun
et al., 2021) and promoted the expression of critical genes for

antifungal innate immune signaling and proinflammatory
responses.

Human gliomas are molecularly heterogeneous tumors
(Mahlokozera et al., 2018). Tumor heterogeneity in glioma
presents a formidable obstacle to personalized therapies
(Kondratova et al., 2019). Oncogenic driver mutations may
influence tumor initiation and LGG burden, as well as
progression to lethal high-grade gliomas (Vitucci et al.,
2017). By conducting metabolic profiling on LGGs, we
discovered that the metabolic subtypes are associated with
particular characteristics, mutation signatures, and intra-
tumor heterogeneity. In clinical prognosis, MC1 had the
shortest overall survival time compared with the other
subgroups. We suspected that the poor prognosis linked
with MC1 was mainly due to high EGFR mutations,
broad copy number amplification, and high frequency of
deletion. Epigenetically regulated mRNAsi, a stemness
index, shows a negative correlation with tumor pathology
and clinical features (Malta et al., 2018) which mainly
results from a high frequency of IDH1/2 mutations and
resulting DNA hypermethylation. Consistent with previous
research, MC1 had a higher proliferation index and a low
mRNAsi index. The MC3 subgroup had a better prognosis
mainly because MC3 exhibited high IDH mutation and
1p19q combination deletion. TP53, IDH1, ATRX, and EGFR
genes are widely mutated in tumors (Lhomond et al.,
2018). The mutation signature results demonstrated that
MC3 had high IDH1 mutations. The heterogeneric studies
showed that MC3 had the lowest proliferation index, tumor
purity ploidy, and intratumor heterogeneity, but a high
mRNAsi index.

Growing evidence has demonstrated that metabolic
alterations have a profound impact on the fate of immune
cells (Wang et al., 2021). Cellular metabolism is involved in
immune cell composition and immune response (Tomas et al.,
2018). In immune cells, infiltration is typically correlated with
favorable prognosis and immunotherapy response (Robertson
et al., 2017). In our study, inhibitory immune cells (M2
macrophages) were highly infiltrated in the MC1 subgroup.
In addition, MC1 contained the highest frequency of the
C4 subtype previously reported in the immune cell
landscape (Thorsson et al., 2019). Immune checkpoint
blockade has led to great achievements in cancer therapy
(Chen et al., 2016), but the response to immune therapy is
limited (Chen et al., 2016). The MC1 subgroup was sensitive to
anti-PD1 therapy, which may pave the way for LGG-associated
immunotherapies.

In conclusion, we established a stable metabolic signature
classification model and identified eight potential metabolic
biomarkers for LGG prognosis and progression.
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