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Accumulating evidence suggests that oxidative stress plays a major role in the pathogenesis of multiple sclerosis
(MS). Reactive oxygen species (ROS), which if produced in excess lead to oxidative stress, have been implicated
asmediators of demyelination and axonal damage in bothMS and its animalmodels. One of themost studied cell
populations in the context of ROS-mediated tissue damage in MS are macrophages and their CNS companion,
microglia cells. However, and this aspect is less well appreciated, the extracellular and intracellular redox milieu
is integral to many processes underlying T cell activation, proliferation and apoptosis. In this review article we
discuss how oxidative stress affects central as well as peripheral aspects of MS and how manipulation of ROS
pathways can potentially affect the course of the disease. It is our strong belief that the well-directed shaping
of ROS pathways has the potential to ameliorate disease progression in MS.

© 2015 Elsevier Inc. All rights reserved.
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1. Introduction to the disease

1.1. General remarks

Multiple sclerosis (MS) is the most frequent neurological disease in
young adults with a complex and still uncertain pathogenesis. The
most widely accepted hypothesis is that auto-reactive T cells and B-
cells induce myelin damage, neuroinflammation and neurodegenera-
tion (Compston and Coles, 2008; Fletcher et al., 2010; Trapp and Nave,
2008). However, primary oligodendrocyte dysfunction has also been
considered as a potential disease-promoting or disease-triggering factor
(Barnett and Prineas, 2004). Whatever the trigger factors for lesion
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Fig. 1. Scheme ofNrf2 activation. Under basal conditions, Nrf2 interacts with Keap1, which
results in degradation of Nrf2. In response to cellular stress, Nrf2 is liberated from its cyto-
solic inhibitor, trans-locates into the nucleus and binds to antioxidant response elements
(AREs) in the promoters of target genes. Nrf2-regulated genes mainly include genes cod-
ing for antioxidative and detoxifying enzymes.
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formation inMS are,we nowknow that both, central and peripheral cel-
lular components are critically involved in the disease process. Despite
being of unknown etiology, the (histo-) pathological hallmarks of MS
lesions are well-defined. They include focal as well as diffuse demyelin-
ation, oligodendrocyte loss, activation of brain resident immune cells
such as microglia and astrocytes, and damage of the neuro-axonal
unit. Such cellular alterations can be found in various brain regions
including diverse white and gray matter areas (Bo et al., 2006; Kipp
and Amor, 2012). The fast activation of brain intrinsic cells, in particular
microglia followed by the activation of astrocytes, is most frequently
linked to the expression and release of oxidative-stress related
molecules.

In this review article we first give a brief definition of “oxidative
stress” and “reactive oxygen species (ROS)” and then describe the path-
ways and factors involved in this ubiquitous cellular state. Since MS
pathogenesis is characterized by the interplay of central and peripheral
cellular elements, we then go on to explain how both compartments are
regulated by ROS. Finally, we will argue that currently approved treat-
ment options, most importantly Fumaric acid esters (FAEs), interfere
with oxidative stress pathways and by this mechanism exert their ben-
eficial function. However, modulation of central and peripheral ROS
pathways might result in side effects.

2. Reactive oxygen species and oxidative stress

2.1. Definition of oxidative stress and ROS

Oxygen is pivotal for multicellular life. At the same time, it is one of
the most reactive and life-threatening agents known. However, at least
for aerobic organisms, oxidation has become the main means of energy
generation. To guard against the possible deleterious effects of oxygen,
intracellular homeostasis is maintained by a balancing of oxidation
and reduction (redox) reactions, the so-called “intracellular redox equi-
librium”. In extreme cases, when metabolic processes or toxic insults
lead to a situation where pro-oxidants outbalance the anti-oxidative
counterparts, a state of “oxidative stress” is reached. This breakdown
of cellular homeostasis results in oxidation-induced damage to lipids,
proteins, carbohydrates and nucleic acids, eventually leading to cell
death.

The agents inducing oxidative stress are chemical compounds
classed as reactive oxygen species (ROS) or reactive nitrogen species
(RNS). ROS/RNS are both instable, and mostly exist in a radical form,
which means that they contain unpaired electrons on the outer orbital.
The best-studied ROS/RNS include radicals of oxygen [superoxide anion
(O2

−), hydroxyl radicals (OH.), and peroxyradicals (ROO•)] or nitrogen
[nitric oxide (NO.)] aswell as non-radical species, such as hydrogen per-
oxide (H2O2) and singlet oxygen. Nitric oxide, itself less reactive and
generally non-damaging, can rapidly react with a superoxide anion to
form peroxinitrate (ONOO−), one of the most deleterious ROS/RNS
known. ROS and RNS have long been implicated in the pathogenesis
of a plethora of diseases such as stroke, Parkinson's disease or
Alzheimer's disease (Lin and Beal, 2006). On the other hand, and this as-
pect of ROS/RNS has been less well studied, low levels of ROS/RNS can
act as second messengers for signal transduction/amplification and
fulfill specific intracellular functions (Reth, 2002). Key transcription
factors regulated by ROS include p53, AP-1 (c-Jun, c-Fos), NF-ĸB and,
as discussed in this review article, the transcription factor Nrf2.

2.2. Cellular ROS-defense mechanisms

All cells are equipped with an intrinsic mechanism that neutralizes
excess ROS and protects against oxidative injury. This so-called oxida-
tive stress response is mainly, but not exclusively, controlled by the
transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2).
Nrf2 plays a vital role in maintaining cellular homeostasis, especially
upon exposure of cells to chemical or oxidative stress, through its ability
to regulate basal and inducible expression of a multitude of antioxidant
proteins, detoxification enzymes and xenobiotic transporters (Kensler
et al., 2007). In anti-oxidative stress responses, Nrf2 upregulates phase
II detoxifying enzymes and antioxidant proteins. This Nrf2-induced
enzymatic machinery includes enzymes mediating glutathione (GSH)
synthesis, the thioredoxin (Trx) enzyme system and detoxifying
enzymes like heme oxygenases (HO), or NAD(P)H: quinone oxidore-
ductase 1 (NQO1).

How do these components protect the cell? Reduced GSH acts by
scavenging oxidative species such as superoxides, hydroxyl radicals,
nitrogens, and ONOO (Forman et al., 2009). The crucial cysteine
molecule is the key to the protection afforded by GSH. Its sulfur
atom scavenges destructive molecules (peroxides and free radicals)
converting them to harmless compounds, such as water. Trx plays an
important role in maintaining a reduced environment in the cells
through thiol-disulfide exchange reactions and, thus, protects cells
and tissues from oxidative stress. NQO and HO are important as cata-
lysts of heme and quinone degradation. Free heme is liberated under
oxidative conditions andmediates ROS production. Quinones are highly
redox active and also lead to formation of ROS. Since NQO and HO elim-
inate heme and quinone, they can exert an anti-oxidative function.
Besides the induction of anti-oxidative factors, Nrf2 also contributes to
different cellular functions such as differentiation, proliferation, inflam-
mation and lipid synthesis, and there is increasing evidence of an asso-
ciation between aberrant expression and/or malfunctioning of Nrf2 and
diverse pathologies including cancer, neurodegeneration or cardiovas-
cular disease.

2.3. The Nrf2–Keap1–ARE pathway and its relevance for inflammation and
degeneration

Having outlined the protective potential of the transcription-factor
Nrf2, we will now describe its mode of action. The Nrf2 cell defense
pathway is tightly regulated. Under quiescent conditions, Nrf2 is
retained and degraded in the cytosol by Kelch ECH associating protein
1 (Keap1) (Zhang and Hannink, 2003) (Fig. 1). Various stress-
associated stimuli, such as oxidative stress, induce conformational
changes in Keap1 that result in the release of Nrf2 from its Keap1-
binding. Subsequently, Nrf2 trans-locates into the nucleus where it
trans-activates the expression of genes containing an antioxidant re-
sponse element (ARE) in their promoter regions (Kensler et al., 2007).
Although it is well established that Nrf2 activity is controlled, in part,
by the cytosolic protein Keap1, the nature of this pathway and the
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mechanisms by which Keap1 acts to repress Nrf2 activity remain to be
fully characterized (Nguyen et al., 2009).

Whatever mechanisms are involved in Nrf2 liberation and subse-
quent ARE-binding, activation of this promoter region results in in-
creased expression of cytoprotective genes. The first of these to be
described under the regulation of ARE-activity were the two major de-
toxification enzymes, GSTA2 (glutathione S-transferase A2) and NQO1
(Favreau and Pickett, 1991; Friling et al., 1990). Thus, alteration of the
cellular redox status due to elevated levels of ROS and electrophilic spe-
cies and/or a reduced antioxidant capacity (e.g. GSH) appears to be an
important signal for triggering the transcriptional response mediated
by ARE. Besides its critical role in inducible gene expression, the ARE
site is also pivotal for the low-level constitutive (or basal) expression
of several genes under physiological conditions. Because ROS and
other endogenous reactive molecules are continuously generated
by normal (i.e. physiological) aerobic metabolism, ARE appears to be
pivotal for the maintenance of cellular redox homeostasis under both
stressed and non-stressed conditions.

Since inflammation is closely linkedwith oxidative stress, it is hardly
surprising that Nrf2 deficientmice have aworse disease outcome in sev-
eral inflammation-mediated animal models, including experimental
asthma (Rangasamy et al., 2005), acute lung injury (Reddy et al.,
2009), sepsis (Thimmulappa et al., 2006), T cell-mediated hepatitis
(Osburn et al., 2008), or dextran sulfate sodium-induced colitis (Khor
et al., 2006). Interestingly, late adult Nrf2−/− female mice are prone to
develop autoimmune syndromes that closely resemble the human dis-
order systemic lupus erythematosus (Ma et al., 2006). T cells contribute
to appearance and progression of inflammation and are associated
with the above-mentioned disease models. The possible interaction of
ROS–Nrf2 and T-cell priming and effector function will be discussed
later in this review article.

Besides being expressed in peripheral organ systems, Nrf2 is recog-
nized as an important regulator of inflammation and cell death in the
brain. Findings highlighting the relevance of the Nrf2–Keap1–ARE sys-
tem for neurodegenerative and neuroinflammatory diseases include de-
creased nuclear Nrf2-levels in the hippocampus of Alzheimer's disease
patients, increased Nrf2 nuclear translocation in Parkinson's disease
(Ramsey et al., 2007), a prominent decrease in GSH levels in the
substantia nigra of Parkinson's disease patients (Sian et al., 1994), and
lowerNrf2 paralleled by higher Keap1 levels in amyotrophic lateral scle-
rosis vs. control samples (Sarlette et al., 2008). Taken together, although
only a few studies have been conducted in humans, these do indicate
that the Nrf2 system is dysregulated in brains of individuals suffering
from neurodegenerative diseases and that this dysregulation may well
contribute to chronic neuron degeneration in these disorders. Besides
its likely impact on pathological progression in classical neurodegener-
ative disorders, the Nrf2–Keap1–ARE system appears at the same time
to be a potent regulator of neuroinflammatory diseases. In Nrf2-
deficient mice, the inflammatory response in the brain and magnitude
of microglia activation in response to lipopolysaccharide is much more
pronounced than in normal animals (Innamorato et al., 2008), and
treatment with sulforaphane, a potent Nrf2-inducing agent, was
found to be effective in reducing neurotoxicity associated with herpes
simplex virus-stimulated microglial ROS production (Schachtele et al.,
2012). Furthermore, Nrf2 deficient mice also show a more severe
pathology in experimental autoimmune encephalomyelitis (EAE)
(Johnson et al., 2010), the most widely used autoimmune-related MS
animal model.

3. The current views of the contribution of ROS to MS lesion
formation and progression

Although the pathogenesis of MS lesion development is complex
and involves the activation of both central and peripheral elements
of the immune system, adaptive immune-responses undoubtedly play
an important role. Dysregulation of various different cell types of the
adaptive immune system appears to contribute to lesion formation
and progression, as shown for Th1 and Th2 (Hermans et al., 1997),
Th17-cells (Tzartos et al., 2008), regulatory T (Treg) cells (Chen et al.,
1994; Viglietta et al., 2004), B-cells (Sekizawa et al., 1974), and
myeloid-derived suppressor cells (MDSCs) (Zhang et al., 2015). The
later constitute a very heterogeneous and plastic cell population that
consists of myeloid progenitor cells and immature myeloid cells.

The most popular concept of MS lesion formation is that acute
demyelinating lesions are generated by phagocytes that internalize
and degrade apparently normal myelin sheaths in the presence of infil-
trating T cells. Immune cell recruitment is an early or even initial event
in the formation of MS lesions in this model (Frischer et al., 2015;
Lucchinetti et al., 2000). In sharp contrast to this idea, results of other
studies suggest that extensive oligodendrocyte apoptosis with early,
focal microglia activation is the major pathological feature in newly
forming lesions, and immune cell recruitment is a response to this
primary oligodendrocyte pathology (Barnett and Prineas, 2004; Stys
et al., 2012). Whether or not the initial event of MS lesion formation is
recruitment of auto-reactive T cells across the blood brain barrier into
the brain parenchyma, without doubt the inflammatory process
involves the activation and recruitment of T cells, macrophages andmi-
croglia to lesion sites. Once active demyelination is established, periph-
eral immune cells (such as lymphocyte, recruited monocytes, MDSC)
and their central counterparts (astrocytes and microglia) contribute to
progressive tissue damage in MS.

These inflammatory processes critically involve ROS-mediated tis-
sue injury. Activated microglia and infiltrated macrophages are able to
generate vast amounts of proinflammatory mediators and oxidizing
radicals, such as superoxide, hydroxyl radicals, hydrogen peroxide and
nitric oxide (Colton and Gilbert, 1993). Furthermore, the activation of
immature myeloid cells (i.e. MDSCs) has been linked to the induction
of NO and ROS production (Zhang et al., 2015).

Most studies addressing the relevance of oxidative stress for MS le-
sion formation and progression have focused on brain intrinsic cells
and recruited monocytes. For example, it has been demonstrated that
in white and graymatter lesions myeloperoxidase, a lysosomal enzyme
which produces hypochlorous acid from hydrogen peroxide and chlo-
ride anion, is predominantly expressed by macrophages and/or activat-
ed microglia (Gray et al., 2008a, 2008b), emphasizing the key role of
thesemyeloid cells in the generation of ROS. Further results from autop-
sy studies showed that in active lesions of thewhitematter and cerebral
cortex, demyelination and neurodegeneration are closely associated
with the presence of oxidized lipids (such as oxidized phospholipids
andmalondialdehyde) inmyelinmembranes, in apoptotic oligodendro-
cytes (Haider et al., 2011) and in the neuro-axonal compartment
(Fischer et al., 2013; Haider et al., 2011). Furthermore, nuclei of dystro-
phic glia cells and neuronswere found to contain oxidized DNA (Haider
et al., 2011), and oxidative injurywas associatedwith inflammation and
oxidative burst in activated microglia and macrophages expressing
p22phox, an essential subunit of NADPH oxidases (Fischer et al., 2012,
2013). Although this situation appears to be only partly reflected in rel-
evantMS animal models (Schuh et al., 2014), oxidative injury also takes
place there. Macrophages and microglial cells, isolated from the CNS of
Lewis rats with clinical signs of EAE, exhibited significantly elevated
spontaneous and inducible ROS levels compared to similar cells isolated
from healthy controls, or rats sacrificed before manifestation of clinical
signs of EAE (Ruuls et al., 1995). From a functional point of view,
treatment of EAE-rats with catalase, which scavenges the ROS H2O2,
markedly suppressed the severity of the disease. Beyond that, the ROS
protectant heme oxygenase-1 (HO-1) is expressed by monocytes in
EAE (Schluesener and Seid, 2000), ROS aid phagocytosis of myelin by
activated macrophages (van der Goes et al., 1998), and stabilization of
mitochondria (which are a major source of ROS) ameliorates axonal
damage in EAE (Forte et al., 2007; Qi et al., 2007). Although the EAE an-
imal model is a heterogeneous group of experimental tolls to study MS
pathogenesis (van der Star et al., 2012), these results foster the view
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that ROS are critically involved in autoimmune-mediated tissue damage
in MS.

ROS accumulation is also evident in other in vivo demyelinating
models such as in corona-virus-induced inflammatory demyelination
(Schuh et al., 2014). Furthermore, our group observed strong induction
of HO-1 after short-term cuprizone exposure (own observation, unpub-
lished). Taken together, there is ample evidence that ROS actively
contribute to tissue damage during MS lesion development and pro-
gression, and that the activation of the Nrf2 pathway might play a pro-
tective role in the pathogenesis of MS by operating on levels of certain
enzymes. Such effects might include the induction of several antioxi-
dant enzymes that can directly scavenge ROS, increasing levels of
antioxidant enzymes that might reduce microglial activation and limit
myelin phagocytosis and breakdown, and induction of antioxidant
enzymes that might prevent oxidative damage to neurons and oligo-
dendrocytes. However, as we will point out in the next chapter, ROS
are also potent regulators of the adaptive immune-response. The func-
tionality of ROS in MS patients should therefore be reflected in both
compartments.
4. Molecular insight into the adaptive immune response

Cells belonging to the adaptive immune response, and in particular
CD4+ T helper (Th) cells, play an important role in the pathogenesis of
MS lesions. T cell activation relies on the binding between T cell recep-
tors (TCRs) and antigens, which are typically short peptides presented
by MHC molecules that are displayed on the surface of antigen-
presenting cells (APCs), including macrophages, B cells and dendritic
cells (DCs), as the most “professional” APC populations. In addition, T
cell activation requires a second signal from co-stimulatory molecules
(CD80/CD86). Stimulation of T cells through the TCR and co-receptor
CD28 (CD80/86 ligand) induces transcriptional programs – including
activation of NF-ĸB – which initiate the production of cytokines such
as IL-2 that in turn are important for T cell proliferation and activation.
Cytokines are also key regulators of T cell differentiation towards one
of several Th cell subtypes, including Th1, Th2, Th17 and inducible Treg
cells. Interleukin (IL)-12 and IFN-γ are two important cytokines for
Th1 differentiation, while IL-4, IL-2, IL-7 and thymic stromal
lymphopoietin drive Th2 differentiation. Transforming growth factor
(TGF) β induces Th17 differentiation in the presence of IL-6, IL-21 and
IL-23, while TGF-β in the presence of IL-2 induces Treg cells (rev. in
Zhu and Paul (2010)). Once differentiated, Th cell subtypes are further
defined by their pattern of cytokine production and by their distinct
functions. Th1 cells produce interferon (IFN)-γ and are important for
protective immune responses to intracellular viral and bacterial infec-
tions. In contrast, Th2 cells are critical for clearance of extracellular
parasites, whereas Th17 cells play an important role in protection from
bacterial and fungal infection. Beyond their central role in adaptive im-
mune responses against pathogens, Th cells, especially through their
autoreactive or exaggerated responses, are also involved in autoim-
mune reactions. Until recently Th1 cells were thought to be the main
effector T cell in MS, but more recent studies have highlighted an addi-
tional pathogenic role for Th17 cells (Fletcher et al., 2010). Autoreactive T
cells aremostly deleted in the thymus, but some of them escape this so-
called central tolerance. Consequently, several mechanisms evolved to
control autoreactive Th cells in the periphery (peripheral tolerance).
Dominant tolerance by Treg cells is one strategy to prevent autoimmune
disease andmaintain immune homeostasis by suppressing autoreactive
and exaggerated T cell responses (Campbell and Koch, 2011). Treg cells
are categorized as thymus-derived (tTreg cells) or induced (iTreg cells).
As the name implies, tTreg cells develop in the thymus, whereas iTreg
cells differentiate from naive T-cell precursors in the periphery. Both
Treg-cell types express FoxP3, the lineage-specific and most important
transcription factor for maintenance of the Treg cell phenotype and
suppressor function (Fontenot et al., 2003; Hori et al., 2003).
With regard to MS and EAE, an imbalance of pro-inflammatory re-
sponses such as Th1 and Th17 and anti-inflammatory responses mediat-
ed by Treg or Th2 cells appears to be crucial for disease development and
progression (Fletcher et al., 2010) (Fig. 2). Th1 and Th17 can be found in
MS lesions (Lock et al., 2002; Tzartos et al., 2008) where they initiate
and exacerbate an inflammatory cascade by the release of cytokines
and recruitment of further inflammatory immune cells. Treg cells,
which one would expect to control these exaggerated Th1 and Th17 re-
sponses, are characterized by several aberrancies in MS. Although
there are no numerical deficits in Treg cells in MS, the suppressive func-
tion of Treg cells appears to be disturbed (Frisullo et al., 2009; Haas et al.,
2005; Venken et al., 2008; Viglietta et al., 2004). Furthermore, Treg cells
reveal an impaired capacity to proliferate in relapsing-remitting MS
(RRMS), and express reduced levels of Foxp3, which is critical for main-
taining function and lineage stability (Carbone et al., 2014; Huan et al.,
2005). Recent reports also raise the question of whether defects in Treg
function are caused by an enhanced plasticity of Tregs towards a proin-
flammatory, cytokine-producing effector phenotype. Patients with
untreated RRMS have higher frequencies of Th1-like, IFN-γ-secreting
Foxp3+ T cells, with a reduced suppressive capacity (Dominguez-Villar
et al., 2011). A shift of Treg cells towards IL-17 producing cells is associat-
edwith psoriasis, autoimmunehepatitis and systemic sclerosis, but so far
no direct association has been detected in MS.

In vivo studies from rodent EAE models demonstrate the central
function of Treg cells in autoimmune neuroinflammation. Transfer of
Treg cells ameliorates EAE symptoms (Kohm et al., 2002) and non-
specific Treg cell ablation by anti-CD25 antibodies exacerbates EAE
severity (Gartner et al., 2006). In addition, frequencies of Treg cell popu-
lation within the CNS are elevated during the recovery phase of actively
induced EAE (McGeachy et al., 2005).

Although the importance of Treg cells for MS disease development
and progression is well appreciated, basic aspects of Treg cell biology re-
main unresolved. Whether Treg cells are suppressive at inflammatory
sites or act predominantly to limit the priming of naive T cells in the
lymph nodes (LNs) remains a controversial issue (Fig. 2). With respect
to central effects, Treg cells isolated from the CNS during EAE were
capable of suppressing Th1 but not Th17 cells (O'Connor et al., 2007)
but were not able to suppress effector T cells directly isolated from the
acutely inflamed CNS (Korn et al., 2007). With respect to peripheral
effects, it has been shown that in the absence of Treg cells, there is an en-
hanced migration of effector T cells from the periphery (Lowther et al.,
2013). Furthermore, Treg cells influence EAE course by affecting the
priming and polarization of effector T cells (Kohm et al., 2002) and
can also set a threshold for activation of autoreactive effector T cells by
inhibiting their contacts with antigen-loaded dendritic cells (DCs) in
the lymph nodes (Tadokoro et al., 2006). The interplay of local tissue
inflammation and Treg cells is poorly understood butmight be an impor-
tant factor for the resolution of autoimmunity. In addition to Treg cells,
innate immune cells are also capable to suppress T cell responses. For
example, MDSCs have been described to suppress the activation of T
cells, which makes them attractive targets for the treatment of autoim-
mune diseases. High accumulation of MDSCs in MS and EAE indicates
that MDSCs play an important role (Zhang et al., 2015). However, ben-
eficial (Moline-Velazquez et al., 2011) as well as pathogenic functions
(Yi et al., 2012) of MDSCs in EAE are reported, therefore their exact
role remains to be elucidated.

5. Relevance of ROS for lymphocyte polarization and effector
function

Both, ROS and T-cells are important players in the cascade of
MS pathogenesis. Do both interact, and if so, what is their site of
“communication”?

Oxygen-derived reactive species have long been known to exert
diverse effects on cultured mammalian cells, depending on the cell
type considered, the oxidative stimulus, and the intensity and timing



Fig. 2. Treg cells fail to control effector T cells in the periphery and in the CNS under auto-immune conditions. In peripheral lymphnodes, DCs activate T cells and induce their differentiation
towards inflammatory Th1 and Th17 cells by the release of cytokines, like IL-6 and IL23 (Th17) and IL-12 (Th1). InMS, Treg cells eventually fail to control this T cell activation process. Activated
T cellsmigrate to and enter the CNSwhere they become reactivated by local APCs, and again are not adequately suppressed by Treg cells. Teff cells then expand and drive CNS inflammation.
After having successfully entered the CNS, T cells are exposed to a completely novel oxidativemilieu. There, ROSmolecules aremainly produced bymacrophages,microglia and astrocytes
and lead to damage of neurons, axons, myelin and oligodendrocytes (indicated by arrows). MDSCs can suppress activated T cells, but can also differentiate into dendritic cells and
macrophages in the CNS and influence the entire scenario.
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of stimulation. These effects are most frequently “positive”, or
mitogenic, at low levels of oxidative stress and “negative”, i.e., toxic or
growth-arresting, at greater oxidative burdens (Pani et al., 2000). In
consequence, scavenging of endogenous oxygen species by either anti-
oxidant enzymes or cell-permeant antioxidant and reducing agents
would interfere with normal cell responses, attenuating or abolishing
their effects. This general concept of ROS biology and pathology is also
relevant to the immune system.

The concept that ROS are implicated in body defense is definitely not
novel. The killing of bacteria through the generation of superoxide,
H2O2, and hypochlorous acid by the coordinated action of NADPH
oxidase and myeloperoxidase is a key event in the protective function
of neutrophils and “professional” phagocytes (Pani et al., 2000). ROS
have also been implicated inmechanisms of target cell killing by natural
killer cells and in cytolysis by CD8+ lymphocytes. However, while well
recognized as effectors of innate immunity, oxygen radicals are just
starting to be considered as potential regulators of antigen-specific
immunity and, by extension, of T-lymphocyte function.

Todaywe know that ROS and redox states are both central to immu-
nity and T-cell function. First, and maybe most importantly, T-cells can
sense redox stress (Secchi et al., 2015). Furthermore, redox stress is im-
portant for the functional outcome during experimentally-induced
adaptive-immunity responses; e.g. in a graft-versus-host disease
mouse model, free radical scavenger therapy with NecroX-7 attenuates
disease severity, probably via the induction of Treg cells (Im et al., 2015)
and oxidative damage regulates antigen-specific T cell responses in age-
relatedmacular degeneration (Cruz-Guilloty et al., 2014). In this context
it is important to note that T-cell receptor activation results in intracel-
lular ROS production (Devadas et al., 2002; Gutscher et al., 2008), and
that the simultaneous action of the oxidative signal and Ca2+ influx
is indispensable for T-cell activation-induced gene expression. Taken
together, these findings illustrate that ROS and T-cell function are
intimately linked.

Effects of ROS on adaptive immune responses probably depend on at
least two variables, (i) lymphocyte subset and (ii) intra- or extracellular
mode of actions. With respect to the first aspect it has been shown
that distinct T-cell subsets have different redox statuses, and differential
ROS susceptibility. Tregs, for example, are more resistant to oxidative
stress-induced cell death compared to other T cell populations. This is
paralleled by a greater secretion of redox proteins such as Trx. Further-
more, it has been shown that human Tregs express high levels of cell
surface thiols, which are important reducing agents, and harbor an in-
creased intracellular antioxidative capacity (Mougiakakos et al., 2009).
Thus, ROS effects studied in one lymphocyte population do not neces-
sarily exert the same effects in other ones (if applied at the same
concentration).

Secondly, the intra- and extracellularmodes of ROS action need to be
studied separately. T cell receptor engagement triggers ROS production
(Devadas et al., 2002) and these intracellularly produced ROS species
might impact on T-cell function. Obviously, the intracellular redox
state needs to be finely regulated, and a dysregulation of this dedicated
networkmight impact on proper T-cell functioning. On a more detailed
level, intracellular ROS play an important role in the immediate early
events of T cell activation (Devadas et al., 2002; Los et al., 1995). How-
ever, under certain conditions the potentiation of oxidative stress by,
for example, GSH depletion can result in impaired T cell activation
(Rajah and Chow, 2014).

With regard to the extracellular mode of ROS action, ROS can act in
mammalian cells as biochemical mediators involved in signal transduc-
tion from cell surface to the nucleus; implicated mechanisms are
(i) induction of protein phosphorylation, and (ii) activation/inhibition
of various redox-sensitive transcription factors, among them, Nrf2. The
extracellular ROS milieu is indeed important for proper T-cell effector
function,most notably by influencing the equilibriumbetween oxidized
and reduced thiols on exofacial membrane proteins (Gelderman et al.,
2006). Impaired functioning of the NADPH-oxidase complex, which re-
sults in lower ROS levels, is associated with an increased number of re-
duced thiol groups (−SH) on T cell membrane surfaces. This reducing
extracellularmilieu boosts T cell response and proliferation, thus show-
ing that ROS production plays a key role in regulating surface redox
levels on T cells and thereby suppresses autoreactivity. Among the
APCs contributing to this reducing milieu, the action of DCs at the
level of the immune synapse is of primary importance (Fig. 3C)
(Angelini et al., 2002; Yan et al., 2009). In line with these findings,
sustained pro-oxidant extracellular conditions have been shown to in-
hibit T cell activation (Matsue et al., 2003; Tse et al., 2007) and induce
apoptosis in T cells (Hildeman et al., 1999; Tripathi and Hildeman,
2004) (Fig. 3B).



Fig. 3. Redox regulation of T cell activation. (A) Induction of Treg cells by macrophages is dependent on ROS production (Kraaij et al., 2010). (B) Sustained pro-oxidant extracellular
conditions inhibit T cell activation and induce apoptosis in T cells (Tripathi and Hildeman, 2004). (C) Interaction of DCs with T cells leads to cysteine accumulation in the extracellular
space,whichproduces an extracellular redox potential promoting T cell proliferation (Angelini et al., 2002). (D) Treg cells inhibit dendritic cell induced extracellular reduced redox potential
(Yan et al., 2010).
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Impaired T-effector cell activation and reactivity in an oxidative en-
vironment might also be mediated by the suppressive action of Treg
cells. For example, it has been shown that the induction of Treg cells by
macrophages is dependent on production of ROS (Fig. 3A), and ROS de-
ficiency may lead to decreased Treg induction and may hamper T-cell
suppression (Kraaij et al., 2010). Furthermore, it was elegantly demon-
strated that Treg cells disturb intracellular redox homeostasis in Teffs by
interfering with extracellular redox remodeling ((Yan et al., 2010; Yan
et al., 2009), Fig. 3D). In addition to that, MDSC-mediated suppression
of T cell function involves ROS, NO and peroxynitrite, which induce
post-translational modification of T-cell receptors and may thereby
cause antigen-specific T-cell unresponsiveness (Gabrilovich and
Nagaraj, 2009).

Notably, extracellular and intracellular ROS-related pathways are
not completely separated. The antioxidant GSH serves as an important
proliferative signal in T cells (Suthanthiran et al., 1990). Naive T cells re-
quire cysteine for GSH synthesis and activation, but are unable to import
cystine, which can efficiently be converted to cysteine within the cell.
They are thus, dependent on cysteine secretion by APCs. To make the
situation even more complicated absolute ROS levels also appear to
play an important role. Prolonged exposure to high ROS concentrations
can inhibit T-cell proliferation and induce apoptosis, whereas low
concentrations of ROS in T cells are a prerequisite for cell survival
(Kesarwani et al., 2013).

In summary, ROS levels can impact on the acquired immune system
via a variety ofmechanisms and are thus critically involved in the devel-
opment and progression of auto-immune disorders, including MS. Still,
we are far away to completely understand this complicated scenario.

6. Impact of oxidative stress onMS — central and peripheral aspects

In the previous chapter we have seen that ROS levels and T cell
functioning are intimately linked. Although somewhat neglected by
the research community, it appears that oxidative stress not only regu-
lates disease outcome in MS patients by acting within the CNS, but may
impact on disease burden by shaping the immune response outside of
the CNS.

Such a regulation might, for example, occur at the level of the endo-
thelium. Endothelium cells, which are found at the interface between
the CNS and periphery, are regulated in a MS-relevant manner by ROS.
High ROS levels damage brain endothelium and affect blood–brain
barrier (BBB) permeability (Imaizumi et al., 1996; Olesen, 1987). Thus,
regulative effects of oxidative stress in MS probably include but are
not limited to the CNS parenchyma. It may also regulate immune cell
recruitment at the level of post-capillary venules.

An important question arising here is whether ROS can also regulate
other peripheral aspects of the disease, namely, T effector cell polariza-
tion and proliferation. Results from other diseases strongly suggest that
this is indeed the case. In many cases, mitochondrial disorders, which
are closely linked to a disturbed oxidative environment, have hemato-
logical manifestations and result in recurrent infections. Complex I-
deficient patients, in particular, present with a severely impaired im-
mune response. They are prone to concomitant infections that inevita-
bly lead to a worsening of symptoms or can even trigger primary
occurrence of the disease. A close link between disturbed immune toler-
ance andmitochondrial ROS generationwas found in systemic lupus er-
ythematosus patients where T cells are characterized by a higher
mitochondrial mass, persistently hyperpolarized mitochondria and ele-
vated ROS levels (Gergely et al., 2002). In addition, T-cell mitochondria
and presumably activation-induced mitochondrial ROS release play an
important role in the pathology of the acquired-immunodeficiency syn-
drome (AIDS) (Kaminski et al., 2013). Thus, ROS and auto-immunity are
indeed closely linked.

With respect to MS patients, a plethora of studies have analyzed
changes in oxidative stress parameters. However, these studies were
mainly conducted on serum and/or plasma samples (Fiorini et al.,
2013), which somewhat limits their interpretation. In one study, uri-
nary 8-iso-PGF2α levels, which reflect the degree of lipid peroxidation
due to ongoing oxidative stress, were found to be significantly higher
in MS subjects than in controls (Guan et al., 2015). Similar results
have been reported for peripheral blood mononuclear cells (Wang
et al., 2014). Other markers for oxidative stress that are found to be el-
evated in the serum and/or plasma of MS patients include a reduced
serum ferroxidase activity, which can potentially lead to a rise in oxida-
tive stress (Cervellati et al., 2014), lower antioxidant capacity (Karlik
et al., 2015), and higher advanced oxidation protein products along
with lower thiol group levels (Pasquali et al., 2015). Interestingly, MS
patients with a favorable disease course show higher antioxidant
factors, including CoQ10 and anti-OxLDL autoantibodies, which may
shape the immune system in the periphery (Gironi et al., 2014). On
the cellular level, ROS production by macrophages and lymphocytes
was reported to be higher in MS vs. control patients, and decreased in
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peripheral blood mononuclear cells of IFNβ-1a-treated patients (Koch
et al., 2008; Lucas et al., 2003). To conclude, these findings suggest a
role of ROS in the peripheral component of MS lesion pathogenesis.

In summary, there is ample evidence for a critical function of redox
homeostasis disruption in the pathogenesis of MS, and we suggest
that this disrupted redox homeostasis is not limited to the brain but
also occurs in the periphery in MS patients. The finding that peripheral
immune cellswithstandoxidative stress, due to upregulated cellular an-
tioxidant defensemechanisms, suggests that ROS formation inMS is not
necessarily deleterious but might form part of a finely tuned regulatory
network. This delicate network could possibly be targeted by novel
therapeutic interventions, as a supplement to established treatments.

7. Therapeutic manipulation of oxidative stress mechanisms in MS

Anumber of different therapeutic options are available to ameliorate
disease activity in MS patients. More and more evidence suggests that
currently approved drugs act both within the brain parenchyma and
in the peripheral lymphoid organs. For example, the protective effects
of the orally available sphingosine 1-phosphate (S1P) receptormodula-
tor fingolimod (also known as FTY720 or Gilenya®), have for a long
time been attributed to the hindrance of lymphocyte trafficking to tar-
get organs through lymphocyte sequestration in secondary lymphoid
structures. This drug internalizes the S1P1-receptor subtype in T cells
with subsequent degradation (i.e. acts as a functional antagonist at
S1P1), preventing T-cell egress from lymphoid organs into the blood-
stream, thus limiting the entry of pathogenic T cells into the CNS paren-
chyma. However, its efficacy in MS and related animal models may in
part be due to additional, direct effects within the brain, and other S1P
receptor subtypes appear to be involved (Kipp and Amor, 2012). In par-
ticular, it has been shown that due to its lipophilic character, fingolimod
is able to access the CNS parenchyma through the blood–brain barrier.
S1P receptors are expressed by neuroectodermal cell types such as oli-
godendrocytes, neurons or astrocytes, and may thus regulate neuron
and/or glia cell morphology, migration, process extension, cell growth,
differentiation, apoptosis and/or survival (Kipp and Amor, 2012).
Furthermore, a direct neuroprotective effect of fingolimod has been
demonstrated in recent preclinical studies (Slowik et al., 2015).
Similarly, IFN-β has been shown to be a potent lymphocyte regulator
(i.e. peripheral effect) but at the same time might interact with cells of
the CNS (Esen et al., 2014; Vergara et al., 2010). Thus, the therapeutic ef-
ficacy of established interventionsmay originate in peripheral lymphoid
organ but at the same time be manifested within the brain.

Dimethyl fumarate (DMF), marketed as Tecfidera® from Biogen
Idec, has just recently been granted approval as an indicated treatment
for MS by the US Food and Drug Administration (FDA). In the European
Union, the medication received approval by the European Medicines
Agency (EMA) in early 2013. DMF is a relatively simple molecule de-
rived from fumaric acid. While fumaric acid itself is poorly absorbed
by the gastrointestinal tract, its ester derivatives, monomethyl fumarate
(MMF) andDMF, both proved beneficial in treating the skin disease pso-
riasis when administered either topically or orally (Altmeyer et al.,
1994). In vitro studies have demonstrated that DMF is rapidly metabo-
lized at the level of the gastrointestinal tract to its primary, active
metabolite MMF by the abundant esterases present in the tissues.

The ultimatemechanism of action responsible for the positive treat-
ment effects of FAEs is still under investigation. What has become clear
so far is that, like other medications such as interferon or fingolimod,
FAEs do not have a singlemode of action but instead exertmultitude bi-
ological effects. Immunomodulatory effects include a shift towards a Th2
response (de Jong et al., 1996; Litjens et al., 2004), and such a shift could
result in decreased Th1 cell activation and tissue infiltration. This balance
plays a key role inMS and a shift fromTh1 towards a Th2 cytokine profile
could have a beneficial effect on the clinical course of disease. However,
it is not clear if these effects are indeed T cell intrinsic or mediated by
APCs. FAEs also inhibit DC differentiation and reduce production of
those cytokines that drive Th1 and Th17 cells (IL-12 and IL-6, IL-23)
(Ghoreschi et al., 2011; Peng et al., 2012). With this regard, it might
also be interesting to analyze if and how FAEs, which have been
shown to inhibit dendritic cell maturation (Peng et al., 2012), regulate
MDSC activation and/or differentiation into inflammatory APCs.

Furthermore, it has been reported that FAEsmight enhance T cell ap-
optosis (Treumer et al., 2003), or might interfere with leucocyte migra-
tory properties. In one study FAEs reduced the migratory activity of
lymphocytes in vitro, most probably by changing their activation state,
as no effect was seen on the expression of MMPs, chemokine receptors,
and adhesion molecules (Dehmel et al., 2014). Furthermore, FAEs were
shown to decrease the expression of adhesion molecules (CD25, HLA-
DR) in lymphocytes in vitro (Rubant et al., 2008). Thus, FAE actions on
lymphocytes are diverse.

With regard to oxidative stress in MS, another interesting FAE prop-
erty emerging in preclinical trials was its ability to positively impact the
natural anti-oxidative stressmachinery of cells. As pointed out above, in
resting states, Nrf2 is sequestered in the cytoplasm by Keap1. FAE has
been shown to bind to Keap1 and enable the nuclear translocation of
Nrf2, resulting in transcription of cytoprotective genes including
hemoxygenase-1 (HMOX1) and NQO1 (Chen et al., 2014). In MOG-
induced EAE, FAEs have been shown to destabilize theNrf2-Keap1 com-
plex, thus promoting anti-oxidative Nrf2 pathway activation (Linker
et al., 2011). Interestingly, in vitro, MMF, the primary metabolite of
DMF, protected cultured neurons and astrocytes from H2O2-induced
cell death (Linker et al., 2011). Beyond, FAEs also suppressed nitrite
production and inducible nitric oxide synthase (iNOS) levels in human
astrocytes, where overproduction contributes to oligodendrocyte and
neuronal damage (Lin et al., 2011). A decreased synthesis of the proin-
flammatory mediators iNOS, TNF-alpha, IL-1beta and IL-6 was also
observed in activated FAE treated rat microglia and astrocytes in vitro
(Wilms et al., 2010). These studies demonstrate that FAEs exert neuro-
protective as well as anti-inflammatory effects. While the details of the
interaction between FAEs and its target structures and cell types contin-
ue to be unveiled, further studies will be needed to show towhat extent
FAEs have a direct neuroprotective action, how immunosuppression is
exerted, and whether Nrf2 is a critical link in these events.

As an inducer of Nrf2, FAEs clearly have the potential to become a
classical neuroprotective compound. Several earlier studies elaborated
on the possible neuroprotective effects of other inducers of Nrf2, includ-
ing ceftriaxone (Lewerenz et al., 2009), sulforaphane (Danilov et al.,
2009), and chitosan (Khodagholi et al., 2010). Furthermore, Nrf2-
pathway activation by FAEs might manipulate the oxidative network
in lymphocytes by favoring Th2 or Treg activation. Anti-inflammatory ef-
fects of Nrf2 activation and the proinflammatory effects of Nrf2 deletion
have been demonstrated in a large number of studies with Nrf2 defi-
cient (Nrf2−/−) mice, which also included T cell dependent models
(as explained in detail above). Furthermore, T cell studies demonstrate
that Nrf2 activation inhibits Th1 cytokine production,while concurrently
promoting Th2 cytokine production (Rockwell et al., 2012). The role of
Nrf2 signaling in Treg cells is less clear. The fact that Treg cells, for exam-
ple, are more resistant to oxidative stress-induced cell death than con-
ventional T cells (Mougiakakos et al., 2009), and that this increased
resistance is associated with a greater expression of Nrf2 mediated
genes (Mougiakakos et al., 2009; Pae et al., 2003), suggest that Nrf2 sig-
naling critically influences Treg cells. In conjunction with these studies
and the present data, we propose a dual mechanism of action for FAEs
in MS: targeting immune cells on the one hand and CNS cells on the
other (as summarized in Fig. 4). Further exploration of themechanisms
operating during immune effector cell priming will require the use of
conditional, tissue-specific knock-out animals.

8. Concluding remarks

As pointed out above, there is substantial evidence that ROS produc-
tion is important for the regulation of surface redox levels of T cells and



Fig. 4. Immunomodulatory and neuroprotective effects of FAEs. FAEs activate the cellular stress response by activating Nrf2 and thereby protect neurons and oligodendroytes from oxi-
dative injury (Linker et al., 2011). In addition, FAEs reduce secretion of proinflammatory cytokines by astrocytes and macrophages (Lin et al., 2011; Wilms et al., 2010). FAEs inhibit leu-
kocyte migration and thereby infiltration of immune cells in the CNS (Dehmel et al., 2014; Rubant et al., 2008). In the periphery FAEs reduce DC maturation and release of DC cytokines
driving a Th1/Th17 response (de Jong et al., 1996). FAEs might also directly mediate a shift towards Th2 instead of Th1 differentiation (Litjens et al., 2004). How FAEs affect MDSC function
and/or differentiation towards inflammatory APCs remains to be elucidated.
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thereby suppresses auto-reactivity and auto-immune disease develop-
ment. Thus, ROS can exert anti-inflammatory effects! In contrast,
boosting of Nrf2-activity, which antagonizes ROS-mediated effects – at
least in part – can as well ameliorate inflammation. It thus appears
that ROS-mediated effects depend on the fine-tuning of a multi-
cellular andmulti-cascade network, andwe are just beginning to under-
stand these finely tuned events. Fumaric acid esters (i.e. DMF/MMF),
which are prescribed for the treatment of psoriasis and MS, are consid-
ered to have a favorable risk profile. However, treatment-related pro-
gressive multifocal leukoencephalopathy (PML) has been reported in
association with long-lasting, severe lymphocytopenia (Ermis et al.,
2013; Nieuwkamp et al., 2015; Rosenkranz et al., 2015). Since the
number of patients who are being treated with DMF has been rapidly
increasing since approval of delayed-release DMF (Tecfidera) as a
first-line treatment for RRMS, a better understanding is needed of the
relevance of ROS to immune-cell function. There is no doubt that ROS-
mediated pathways and cellular effects are involved in immune cell
priming in the peripheral lymphoid organs. To exert their deleterious
effects, Teff as well as Tmem cells travel through the circulation into the
brain parenchyma where they are re-activated in MS by local APC
such as microglia or macrophages. Since the oxidative brain environ-
ment is altered in MS patients, T-cell reactivation might be affected
depending on the redox status in these tissues. For future studies, we
recommend detailed examination of the interaction of recruited im-
mune cells with brain resident cells such as microglia and astrocytes,
as this would help to establish the circumstances under which T-cells
can promote inflammatory cascades within the brain parenchyma and
thus regulate the formation and progression of new MS lesions.
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