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Abstract: In patients with cutaneous T-cell lymphoma (CTCL) bacterial infections 

constitute a major clinical problem caused by compromised skin barrier and a progressive 

immunodeficiency. Indeed, the majority of patients with advanced disease die from 

infections with bacteria, e.g., Staphylococcus aureus. Bacterial toxins such as 

staphylococcal enterotoxins (SE) have long been suspected to be involved in the 

pathogenesis in CTCL. Here, we review links between bacterial infections and CTCL with 

focus on earlier studies addressing a direct role of SE on malignant T cells and recent data 

indicating novel indirect mechanisms involving SE- and cytokine-driven cross-talk 

between malignant- and non-malignant T cells. 
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1. Introduction 

Cutaneous T-cell lymphoma (CTCL) comprises a heterogeneous group of lymphoproliferative 

disorders defined by primary expansion of malignant T lymphocytes in the skin. The two most 

common forms, mycosis fungoides (MF) and Sézary syndrome (SS), constitute approximately  

50%–70% of all de novo cases of CTCL, with MF accounting for the majority of cases. In this review, 

CTCL will refer exclusively to mycosis fungoides and Sézary syndrome. Early skin lesions in CTCL 

usually present as erythematous patches that notoriously resemble benign inflammatory skin disorders 

like psoriasis, chronic eczema or atopic dermatitis—collectively, making an early diagnosis very  

difficult [1–6] even though promising new approaches using miRNA expression profiling seem to 

discriminate between the benign inflammatory and malignant conditions inflammation with high 

accuracy [7,8]. Although patients diagnosed in the early stages of disease often experience an indolent 

disease course, a subgroup of patients experience an aggressive clinical course with tumor 

development, skin ulceration, involvement of lymph nodes, bone marrow and internal organs and 

gradual development of immunodeficiency at later stages of disease. Concomitant with disease 

progression there is a decrease in normal lymphocyte count and functionality and, consequently, 

advanced disease may be associated with profound immune deregulation [1,2,9,10]. The etiology of 

CTCL has long puzzled researchers and a wide range of risk factors has been examined in this regard. 

Chromosomal instability and abnormal expression of genes involved in cell cycle control and 

proliferation has been reported several times in CTCL studies [11–13]. However, in contrast to other 

hematological disorders, in CTCL well documented etiological or predisposing genetic factors remain 

elusive. Occupational and environmental factors have been proposed in some studies but with limited 

reproducibility and a lack of any evident biological causality [14–16]. Yet, a recent finding by Duvic 

and colleagues sheds light on a previously suspected link between drugs (thiazide used in the treatment 

of hypertension) and CTCL [17] indicating that environmental factors might indeed play a role in a 

subset of patients with chemical or biological agents acting as inciting agents in the context of this  

T cell lymphoma. Familial aggregation of CTCL incidences has been described [18] and a correlation 

between CTCL disease occurrence and certain human leukocyte antigen (HLA) alleles has also been 

observed [19].  

2. High Prevalence of Infections 

High incidence of infections is a common clinical experience in CTCL [20–22]. Axelrod et al. 

examined and quantified different types of infection in 356 CTCL patients [21]. Among the 478 

documented infections, 396 were of bacterial origin with the remaining identified as viral, fungal or 

parasitic. Their study documented that skin was by far the most prevalent site of infection and that risk 

of infection was intimately associated with the disease stage. Thus, these findings supported the 

clinical experience that major morbidity and mortality stems from infections and also that patients with 
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progressive disease die more frequently from infection rather than from the CTCL per se [21,23]. 

These important findings prompt the question whether the high incidence of infections in CTCL 

patients is a mere consequence of a compromised skin barrier, a suppressed immune system, or a 

combination of both. 

3. Immunopathogenesis 

CTCL progression is typically associated with immune suppression. The malignant cells  

normally exhibit a mature memory CD4 T cell phenotype and express a range of skin-homing 

receptors in the initial disease stages, which contribute to the characteristic epidermotropism of 

malignant T cells [6,10]. 

The immunopathogenesis in CTCL is characterized by a gradual shift of cytokine profile in lesional 

tissue. Early lesions contain a large proportion of non-malignant cells, which primarily consist of 

dendritic cells, macrophages and tumor-infiltrating cytotoxic CD8 and CD4 T cells [6,10,24]. CD4 T 

cells may display several different phenotypes depending on their specific activation as illustrated in 

Figure 1. While the CD4 T cell helper type 1 (TH1) is crucial in promoting an effective cellular 

immune response and as such beneficial in an anti-tumor response, the TH2 phenotype is on the 

contrary promoting a humoral immune response. The more recently recognized TH17 cell is believed 

to be important in certain microbial infection while the T regulatory phenotype is paramount in 

establishing and sustaining peripheral tolerance.  

Figure 1. Schematic illustration of the antigen presenting cells (APC) antigen presentation 

and cytokine release together with the subsequent induction of different lymphocyte helper 

subsets. (1) The APC delivers three signals required for successful lymphocyte activation; 

antigen presentation, co-stimulation and cytokine release with cytokines being the major 

determinant of lymphocyte subset induction; (2) Additionally dendritic cells DC are able to 

induce a regulatory phenotype either by the absence of co-stimulation (immature DC’s lack 

CD80/86) or by activation of lymphocytes in a regulatory cytokine environment 

(tolerogenic DC’s). 
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In CTCL, the early infiltrating CD4 T cells display a TH1 phenotype and in concert, these immune 

cells are seemingly capable of controlling CTCL cell expansion via cytokines and cytotoxicity [25–28]. 

Accordingly, it has been shown that the presence of cytotoxic CD8 T cells within the CTCL  

lesions is a positive prognostic factor, and several case reports have evidenced that use of the 

immunosuppressant cyclosporine in treatment of CTCL accelerates disease progression and large cell 

transformation [10,29,30]. During the disease progression, the concentration of TH1 cytokines 

decreases in contrast to an increased production of TH2 cytokines and angiogenetic and lymphangiogenetic 

factors such as VEGF-A and VEGF-C [10,31–35]. This increasing bias towards a TH2 immune 

response obstructs an effective cellular immune response and can be framed within the immunoediting 

hypothesis as a process in which the malignancy transitions from an equilibrium phase to a tumor 

escape phase. Indeed, as the disease progresses, the malignant T cells display an increased expression 

of B lymphoid tyrosine kinase (BLK), and cyclooxygenase 2 (COX-2) as well as activation of signal 

transducers and activators of transcription-3 (STAT3) and STAT5 [36–39], which in turn drive 

expression of TH2 cytokines, oncomiRs (miR-155), and the suppressor of cytokine signaling 3 

(SOCS3) [37,40]. The enhanced expression of SOCS3 has been shown to protect malignant T cells 

from growth-inhibition by pro-inflammatory cytokines such as interferon-alpha (IFNα) [41]. Because 

IFNα is used for treatment of CTCL, the development of IFNα resistance comprises a pressing clinical 

problem [41]. 

Furthermore, direct diversion of anti-tumor immune response been attributed to the malignant  

T cells in CTCL. Several studies have demonstrated forkhead box P3 (FOXP3) expression in 

malignant T cells in a subset of patients [42–45] and upregulation of cytotoxic T-lymphocyte antigen  

4 (CTLA-4) in a stage-dependent manner [46]. Likewise the interaction of programmed death protein 1 

(PD-1) and its ligand, PD-L1 has been associated with immune evasion in CTCL [47,48] as these cell 

surface molecules are involved in the induction and maintenance of peripheral T cell tolerance. The 

increased expression of PD-L1 on neoplastic T cells has been hypothesized to involve the aberrant and 

constitutive activation of the janus associated kinase 3 (JAK3)-dependent STAT3 cell signaling 

pathway which is also allegedly a key player in sustaining tissue inflammation while antagonizing 

tumor immunity [49]. Furthermore, the constitutively active STAT3 induces the secretion of the two 

potent immunosuppressants; IL-10 and transforming growth factor-beta (TGFβ) [44,45,50]. Collectively, 

the expression and secretion of the above mentioned molecules supports the model originally proposed 

by Berger and colleagues who suggest that CTCL T cells maintain dendritic cell immaturity by the 

release of regulatory cytokines. Further, according to their hypothesis, this results in polarization of the 

DC’s towards a tolerogenic phenotype, rather than an activating phenotype. In turn, this subtype of  

DC should promote malignant T cell proliferation and the acquisition of immunosuppressive 

charactheristics [50,51].  

Finally, the immunodeficiency in late stage CTCL could also caused by a gradual displacement of 

non-malignant T cells by the expanding malignant T cell clones; in other words, that the malignant  

T cells eventually outcompete and substitute the non-malignant T cell population, which results in a 

state reminiscent of advanced AIDS with a lack of functional CD4 T helper cells and severe 

immunosuppression [1,2,10,52].  

Figure 2 shows an illustration of our current view of the dynamic immunological changes during 

disease progression. Thus, the interplay between malignant T cells, dendritic cells and infiltrating 



Toxins 2013, 5 1406 

 

 

and/or skin-resident, non-malignant T cells change dramatically as the disease progress from an 

indolent condition to an aggressive cancer. In early stages and non-progressive disease, dendritic cells 

produce interferon-alpha (IFNa), non-malignant T cells produce TH1 cytokines (such as IL-12 and 

IFNg), and CD8 cytotoxic T cells produce granzymes and mediate direct killing of malignant T cells. 

These events generate a hostile environment inhibiting malignant proliferation—yet without 

eradicating the malignant T cell clone—i.e., the tumor lesion is kept in a “state of equilibrium” without 

expansion and spreading (Figure 2(1)). As malignant T cells change and begin expressing immune 

modulatory molecules and cytokines (which inhibit the immune control), a “tumor immunological 

privilege” is established. This “immune privilege” shelter malignant T cells from inhibitory signals 

allowing for malignant proliferation and induction of immunosuppression and eventually, 

immunodeficiency (Figure 2(2)). 

Figure 2. Schematic illustration of the transition from a state of tumor equilibrium to a 

state of tumor immune privilege. The tumor equilibrium state (1) is characterized by T cell- 

and cytokine-mediated control of tumor progression. Conversely, the state of tumor 

immune privilege (2) is predominated by regulatory signals and cytokines allowing for 

immune evasion and tumor progression and metastasis. (Yellow: DC; blue: nonmalignant 

T cell; red: malignant T cell). 

 

Malignant T cells in CTCL display a considerable degree of phenotypic heterogeneity, which 

amongst other things, is believed to impact disease aggressiveness and response to treatment [6,24,53]. 

Recent studies indicate that this heterogeneity is highly dependent upon crosstalk between malignant  

T cells and the tumor environment, in that malignant T cells have been shown to secrete a wide array 

of cytokines, which collectively may activate keratinocytes and surrounding stromal cells and thus 

sustain tissue inflammation. In return, the activated microenvironment impregnates the malleable 
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malignant T cells with capacities resembling either regulatory T cells or different T helper subsets. 

Two members of the IL-17 family of cytokines: IL-17A and IL-17F, have recently been implicated in 

CTCL pathogenesis [54–56]. Expression of IL-17A and IL-17F is increased in skin lesions and 

comparable to the expression levels in lesional psoriatic skin [55]. Noteworthy, heterogeneity in  

IL-17A and IL-17F expression existed among CTCL patients with some patients having normal or 

near normal expression whereas others had highly increased levels of IL-17 cytokines. Importantly, an 

elevated expression of IL-17F correlated with progressive disease [55]. Given the observations of 

increased IL-17 expression in CTCL patients with bacterial infections [54], we propose a link between 

bacterial infection, expression of IL-17F and the disease progression. However, it remains to be 

determined whether IL-17F and other IL-17 family cytokines are fostering disease progression via 

induction of angiogenesis or other as yet unidentified mechanisms or if an increased expression of 

these cytokines is a sign of a “frustrated” immune response unable to combat the bacterial infection. 

4. Infectious Etiology 

It has previously been hypothesized that infectious agents (such as a retrovirus) were responsible 

for the outgrowth of neoplastic T cells and as such are a primary etiological factor in CTCL. MacKie 

originally launched this hypothesis in 1981 by proposing that CTCL arises from an initial viral 

infection of epidermal antigen presenting cells [57]. Mackie was inspired by observations of distinctive 

aggregates of epidermal dendritic cells and T cells in MF patients called Pautrier’s abscesses and also 

from reports of retrovirus-like particles observed in malignant CTCL T cell cultures [58]. Furthermore, 

viral antigens have the potential to induce loss of T cell receptor (TCR) diversity, which is a 

characteristic feature of CTCL [59,60]. This may occur when cross-reactivity exists between viral and 

auto antigens. According to the hypothesis, autoantigen can sustain proliferation and activation of an 

autoreactive T cell population following virus eradication thereby resulting in a narrowing of the TCR 

repertoire [61].  

The idea of an infectious etiologic agent gained momentum by the earlier discovery of HTLV-1 and 

its association with adult T cell lymphoma (ATL) [62]. The distinction between the two diseases was 

not initially recognized due to the clinical, pathological, and histological similarities—although ATL 

was later established as an unique HTLV-1 induced entity [63]. However, the analogy between  

CTCL and ATL and the—at the time newly discovered—T-lymphotropic retrovirus, HIV-1 seemed 

conspicuous [64] and motivated researchers to search for a retroviral culprit in CTCL. Concordantly, 

retroviral activity and HTLV-like particles in peripheral blood mononuclear cells derived from CTCL 

patients [65], and successful polymerase chain reaction (PCR) amplification of HTLV-1 sequences 

was also reported in CTCL skin biopsy specimens [66]. However, controversies arose and later,  

well-performed, controlled studies failed to associate HTLV-1 with CTCL and the hypothesis of 

HTLV-1 as the etiological factor in CTCL was put to rest [67–69]. Other viruses such as Epstein-Barr, 

herpes virus 6-8, and cytomegalovirus were later suspected to be involved in CTCL but so far, the 

associations have been relatively weak and not (yet) convincingly reproduced [70–74]. 

In addition, bacterial agents have been assigned a direct role in the etiology of CTCL. One 

candidate was Chlamydia pneumonia, which was suggested to foster CTCL through the secretion of a 

Sézary T cell activating factor (SAF) [75]. Chronic infection with Chlamydia was believed to facilitate 
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chronic expansion of Chlamydia-specific T cells and the combination of SAF and chronic T cell 

activation was hypothesized to lead steadily to the development of CTCL [76]. Borrelia burgdorferi 

has also been implicated and in 2006 Bonin and colleagues [77] reported on a minor association 

between Borrelia burgdorferi and CTCL in a population endemic for Borrelia infection. Later they 

suggested that Borrelia in conjunction with HTLV-1 (or other infectious agents) can provide a 

persistent antigenic stimulation, which contributes to the transformation and expansion of T 

lymphocytes [20]. However, subsequent studies failed to detect a significant presence of  

Chlamydia pneumonia and Borrelia burgdorferi in CTCL skin specimens [78,79]. Sporadic case 

reports [80–82] describe other infectious agents of various types but generally they may reflect the 

findings by Axelrod and colleagues, of a very high degree of diversity in infectious agents present in 

CTCL patients [21]. As mentioned above, a multitude of pathogens have been isolated from CTCL 

patients and recurrent infections comprise a large clinical challenge in the care of CTCL patients. The 

pathogens most frequently associated with CTCL are listed in Tables 1 and 2. 

Table 1. Prevalence of the most frequent bacterial and viral pathogens associated with 

cutaneous T-cell lymphoma (CTCL) disease. Patient cohort included 356 CTCL patients. 

Modified from Axelrod et al. 1992 [21].  

Bacteria Number of infections Frequency 

Staphylococcus aureus 117 33%–38% * 
Enterobacteriaceae 38 10.7% 

Beta-hemolytic streptococci 35 9.8% 
Pseudomonas aeruginosa 12 3.4% 

Viruses   
Herpes zoster 34 9.6% 

Herpes simplex 30 8.4% 

* A general study by Axelrod et al. (1992) [21] reports that 33% of infections in CTCL are Staphylococcus 

aureus. Jackow et al. (1997) [83] detects Staphylococcus aureus in 38% of examined CTCL patients. 

Table 2. Complications associated with infections in CTCL. 

Co-morbidity from infections  

Bacterial infections bacteremia, pneumonia, intra-abdominal infections 

Viral infections 
ulcerative skin lesions,  

dissemination (Kaposi varicelliform eruption) 

5. Staphylococcus 

Staphylococcus aureus is a major source of morbidity in CTCL causing chronic or recurrent skin 

infections and life-threatening systemic infections such as sepsis, pneumonia and intra-abdominal 

infections [21–23,84]. S. aureus is renowned for its ability to produce staphylococcal enterotoxins (SE) 

(also known as superantigens) [85,86]. Superantigens are characterized by their ability to activate large 

fractions of T lymphocytes by crosslinking MHC class 2 molecules and T-cell receptors (independently of 

antigen specificity of the TCR and the antigen-peptide-binding groove in the MHC) thereby 

circumventing normal antigen processing and presentation. In 1992, Tokura et al. showed that 
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malignant CTCL cells responded to SE in a TCR variable β chain (TCRVβ) restricted manner 

suggesting a possible involvement in the disease [87]. Later, Duvic and colleagues [83] examined  

42 CTCL patients with advanced disease (SS or advanced MF with erythrodermia) for bacterial 

colonization in skin and blood and found that 76% of the patients harbored staphylococci, of which 

50% were SE-producing strains of S. aureus. Moreover, all patients with toxic shock syndrome toxin-1 

(TSST-1)-producing Staphylococcus aureus infections had an expansion of TSST-1 specific T cells 

expressing the appropriate Vβ2 T cell receptors [83]. This observation suggests that superantigens such 

as SE may be involved in CTCL pathogenesis, as these toxins can facilitate the observed Vβ-restricted 

T cell expansion [88]. It was hypothesized that SE provide a persistent antigen stimulus for  

T lymphocytes driving malignant T cell expansion. This notion has been propelled by multiple reports 

of skewed or diminished T cell receptor repertoire in CTCL patients as discussed below. However, as 

these studies examined only patients with advanced disease, they actually do not provide evidence for 

a key role of SE in the etiology and early stage of CTCL.  

6. TCRVβ Restriction 

By spectratyping the variable regions of the TCR’s β-chain Yawalkar et al. [60] demonstrated that 

half of all early-stage patients and all late-stage patients exhibited a highly diminished complexity of 

the TCR repertoire compared to the diverse repertoire displayed by normal peripheral T cells [60]. The 

shrunken TCR repertoire could not reflect a simple monoclonal expansion, as multiple Vβ-families 

were overrepresented while others were underrepresented or completely absent. In short, Vβ-family 

distribution failed to follow a normal Gaussian distribution pattern. This skewing of the TCR repertoire 

was hypothesized to be the result of superantigens such as SE. Superantigens may skew the TCR Vβ 

repertoire by two mechanisms:  

(1) One involves the previously mentioned direct mechanism by polyclonal activation and 

proliferation of Vβ-specific T cells following TCR ligation [83,85,86]. Such Vβ-specific expansion by 

superantigens was suggested by Linneman [89], based on an early-stage CTCL patient, who displayed 

a dominant Vβ5 T cell population in the skin biopsies. The idea is that superantigen responsive 

malignant T cells receive activation-signals and thus obtain a growth advantage allowing them to  

out-compete non-transformed cells.  

(2) The other mechanism involves polyclonal expansion followed by activation-induced cell death 

of superantigen reactive T cells, which results in a relative expansion of the remaining Vβ-families and 

thus induces a reciprocal superantigen Vβ-signature. This mechanism has been demonstrated by 

McCormack and colleagues in a series of mouse studies [90] and subsequently expanded to humans by 

Vonderheid and colleagues [91] in a cohort of 49 CTCL patients in which a majority of whom 

exhibited increased Vβ5 usage relative to other Vβ families, usually predominant in normal CD4 T 

cells. By investigating the TCRα and TCRβ gene rearrangement in 29 CTCL patients Van der Fits [92] 

concluded that the absence of an unambiguous similarity in the complementarity-determining regions 

argues against the notion of a single ordinary antigen delivering persistent and pathogenic antigen 

stimulation in CTCL. However, the skewed Vβ and Jβ gene usage suggested the possibility that also 

here superantigens may be responsible for the restricted TCR repertoire. It remains to be definitely 

demonstrated by which mechanism superantigens induce polyclonal T cell proliferation in CTCL. 
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However, since Fas receptor expression has been shown to be effectively down-regulated [25,93,94] 

and anti-apoptotic pathways such as B-cell lymphoma 2 (Bcl-2) and programmed cell death protein 10 

(PDCD10) are enhanced in the CTCL clones [95,96], it is tempting to speculate that malignant T cells 

can evade Fas induced apoptosis after superantigen activation whereas non-malignant T cells 

expressing the corresponding Vβ TCR families are deleted. Removal by apoptosis of TH1 T cell 

subsets producing interferon and other inflammatory cytokines, which keep malignant T cells in check, 

might indirectly promote expansion of malignant T cells. 

Although several studies provide circumstantial evidence of superantigen-induced Vβ  

TCR-associated oligo/poly-clonality in CTCL patients, other groups fail to see “Vβ-signatures” 

indicative of superantigen involvement. In contrast, these studies observe a monoclonal expansion of 

malignant T cells [97–100]. This discrepancy might, amongst other factors, depend in part on the 

disease-stage of the examined patients, as studies tend to show increasing monoclonality of T cell 

populations with progression [1,2,4,60]. Indeed, it may also simply rely on the inherent heterogeneity 

of CTCL; i.e., the disease may in some patients manifest itself as an oligoclonal or skewed polyclonal 

expansion of T cells while in others it develops as a monoclonal entity. Collectively the above 

mentioned observations fail to clarify whether infections and infectious superantigens such as SE, 

function as a primary causative factor—or if they are a secondary event resulting from a weakened 

immune system and compromised skin barriers. Therefore, further studies are required in order to 

ascertain whether or not superantigens directly facilitate early expansion of pre-malignant T cells in 

CTCL, and it is justified to conclude that definitive evidence for an etiological role of superantigens in 

CTCL is currently still lacking.  

7. Indirect Mechanism of Action 

The mechanism of oligoclonal expansion of premalignant T cells, should it occur by superantigen 

stimulation, is confounded by the fact that several studies of T cells from CTCL patients (including the 

early patch-plaque stage) show that malignant T cells often display deficient function and/or deficient 

expression of CD3 TCR complex [101–103]. Recently, our group has proposed a novel role of 

bacterial toxins in disease progression [104]. As illustrated in Figure 2, we observed that whereas 

malignant T cells did not respond directly to bacterial superantigens, they proliferated vigorously in 

response to SE in co-cultures with non-malignant T cells indicating an indirect mechanism for growth 

promotion by SE [104]. Noteworthy, malignant T cells often express major histocompatibility complex 

(MHC) class II molecules [104], which are high-affinity ligands for bacterial toxins such as SE [105]. 

Thus, even with defective TCR/CD3 complex, malignant T cells are able to bind SE (Figure 3(2)) and 

stimulate non-malignant T cells to produce growth factors such as interleukin-2 (IL-2), which in turn 

promotes growth of the malignant T cells (Figure 3(3)). In addition, toxin-induced cell-to-cell contact 

between malignant and non-malignant T cells also triggers growth-promoting signals via lymphocyte 

function associated antigen 3 (LFA-3)/CD2- dependent mechanism (Figure 3(3)) [104]. Importantly, 

both growth factor and cell-to-cell contact dependent growth stimulation of malignant T cells require 

MHC class II ligation by the bacterial toxin and expression of a functional TCR/CD3 complex by the 

non-malignant T cells [104]. In this regard, it is worth mentioning that MHC class II ligation by SE 

enhances cell-to-cell adhesion [106,107] and IL-2-induced T cell proliferation through an increased 



Toxins 2013, 5 1411 

 

 

activation of ZAP70/p72syk, PLCg1, and expression of the IL-2RA subunit [108–113]. Combined, 

these findings suggest a novel mechanism of tumor growth promotion by SE involving an indirect 

stimulation of malignant cell proliferation involving LFA-3/CD2-mediated cell-cell contact and 

soluble growth factors such as IL-2 and other as yet unidentified factors provided by the  

toxins-activated non-malignant T cells [104].  

Figure 3. Schematic illustration of SE-mediated cross-talk between malignant and  

non-malignant T cells. Malignant T cells often display deficient expression and function of 

the TCR/CD3 complex and may not respond directly to bacterial superantigens such as 

staphylococcal enterotoxins (SE). Instead, malignant T cells often express MHC class II 

molecules, which are high-affinity receptors for SE (1). Non-malignant T cells with the 

appropriate Vb TCR respond to SE presented by malignant T cells (2, 3) or by antigen 

presenting cells (APC) (not shown). SE-mediated cross-talk between malignant and  

non-malignant T cells triggers cell-to-cell contact and production of growth factors, which 

in turn promote proliferation of malignant T cells (3) [104]. 

 

If this mechanism is operating in patients, it indicates that bacterial infections, and especially 

infections with superantigen-producing bacteria, indirectly activate malignant T cells through help 

from non-malignant T cells. The activation is not restricted by the Vβ-family on the malignant T cells, 

but only by their expression of MHC class II molecules or MHC class II expression by other 

surrounding cells types and their presentation of superantigens to Vβ-specific non-malignant T cells. 

The ability of non-malignant T cells to inadvertently promote tumor expansion is not unique to CTCL 

and has previously been reported in other malignancies. Specifically, in a squamous cell carcinoma 

model, deletion of non-malignant CD4 T cells decreased neoplastic cell progression and tumor 

incidence [114] underscoring the intimate relationship between inflammation and cancer. In CTCL, the 

indirect mechanism by which bacterial superantigens activate otherwise non-specific or TCR-deficient 

malignant T cells predicts that bacterial infections promote expansion of malignant T cells in an 

inflammatory setting with non-malignant T cells. In contrast, this model does not imply (but does not 

exclude) that bacterial superantigens have an etiological role in CTCL but does suggest a critical role 
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of superantigens in the progression of CTCL. In keeping, it substantiates the general assumption that in 

progressive disease, malignant T cells in conjunction with the tumor environment are driven towards 

promoting a diverted inflammatory response, which boosts malignant T cell growth, exacerbates 

disease and likely increases susceptibility to additional infection. 

8. Clinical Improvement after Antibiotic Treatment 

Because many patients are suffering from recurrent bacterial infections, clinicians are often 

reluctant to undertake an aggressive treatment of skin infections with antibiotics due to the risk of 

increasing resistance to antibiotics. However, important clinical findings lend support to the 

hypothesis, that bacterial infections complicate and promote disease progression in CTCL. In several 

small series and case studies, elimination of S. aureus infection with antibiotics was associated with a 

rapid clinical improvement: in some patients treatment resulted in complete clinical response with no 

residual skin involvement by CTCL [83,115,116]. In an early study by Tokura and colleagues, clinical 

improvement in skin disease was observed after treating two CTCL patients with antibacterial  

agents [116]. In addition, Duvic and co-workers reported that in patients infected with SE-producing  

S. aureus, treatment with antibiotics resulted in clear clinical improvement [83]. Another study [115] 

reported on a high degree of S. aureus colonization in CTCL patients with an increased incidence in 

advanced erythrodermic SS patients when compared to non-erythrodermic MF patients. Eradication of 

S. aureus from the nostrils with oral and topical antibiotics was achieved in 85% of cases and similar 

treatment of skin lesions was effective in 91%. Consequently, after 4–8 weeks significant clinical 

improvement was seen in a majority of the treated patients [115]. Collectively, these observations 

speak in favor of an aggressive antibiotic treatment of bacterial infections in CTCL patients. Moreover, 

they are in support of the mechanism proposed above that bacterial toxins promote CTCL disease 

progression in CTCL.  

9. Conclusions 

In conclusion, bacterial infections are a major clinical problem in CTCL and an important driver of 

morbidity and mortality in this disease. Despite much effort, definitive evidence supporting a direct 

etiological role of bacterial toxins is still lacking but other evidence suggests that toxins may also 

promote malignant T-cell expansion through a mechanism involving cross-talk between the malignant 

and non-malignant T cells. Given the proposed model for toxins as drivers of disease progression and 

the promising clinical data showing a beneficial effect of antibiotics on both morbidity and disease 

progression, we propose that an aggressive strategy for anti-bacterial therapy should be considered in 

all patients with clinically relevant and verified infections with S. aureus.  
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