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reconstruction trained by brain and knee
3T MRI to lumbar 1.5T MRI

Nobuo Kashiwagi1 , Hisashi Tanaka2, Yuichi Yamashita3,
Hiroto Takahashi4, Yoshimori Kassai5 , Masahiro Fujiwara6

and Noriyuki Tomiyama6

Abstract

Background: Several deep learning-based methods have been proposed for addressing the long scanning time of

magnetic resonance imaging. Most are trained using brain 3T magnetic resonance images, but is unclear whether

performance is affected when applying these methods to different anatomical sites and at different field strengths.

Purpose: To validate the denoising performance of deep learning-based reconstruction method trained by brain and

knee 3T magnetic resonance images when applied to lumbar 1.5T magnetic resonance images.

Material and Methods: Using a 1.5T scanner, we obtained lumber T2-weighted sequences in 10 volunteers using

three different scanning times: 228 s (standard), 119 s (double-fast), and 68 s (triple-fast). We compared the images

obtained by the standard sequence with those obtained by the deep learning-based reconstruction-applied faster

sequences.

Results: Signal-to-noise ratio values were significantly higher for deep learning-based reconstruction-double-fast than

for standard and did not differ significantly between deep learning-based reconstruction-triple-fast and standard.

Contrast-to-noise ratio values also did not differ significantly between deep learning-based reconstruction-triple-fast

and standard. Qualitative scores for perceived signal-to-noise ratio and overall image quality were significantly higher for

deep learning-based reconstruction-double fast and deep learning-based reconstruction-triple-fast than for standard.

Average scores for sharpness, contrast, and structure visibility were equal to or higher for deep learning-based recon-

struction-double-fast and deep learning-based reconstruction-triple-fast than for standard, but the differences were not

statistically significant. The average scores for artifact were lower for deep learning-based reconstruction-double-fast

and deep learning-based reconstruction-triple-fast than for standard, but the differences were not statistically significant.

Conclusion: The deep learning-based reconstruction method trained by 3T brain and knee images may reduce the

scanning time of 1.5T lumbar magnetic resonance images by one-third without sacrificing image quality.
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Introduction

Magnetic resonance imaging (MRI) is an effective

imaging modality for identifying various disorders

through the body because of the variety of contrast

mechanisms and because it requires no ionizing radia-

tion. However, a major disadvantage of MRI is the

long acquisition time, which is required for optimal

image quality. One of the main approaches to address

this shortcoming of MRI is post-processing denoising,
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which recovers the degradation in image quality asso-
ciated with the reduced acquisition time. Recent advan-
ces in deep learning have improved the computational
cost, training time, and amount of data required, and
have led to its application to medical imaging denois-
ing,1,2 as reported in several publications that have
achieved robust denoising performances in magnetic
resonance (MR) images.3–13 However, most have
been trained using brain images acquired on a 3T
machine and applied to brain images also on a 3T
machine.3–13 However, clinically, the contrast of MR
images can vary because of differences in the scan pro-
tocol, field strength, and anatomical location, and it is
unclear whether this variability affects the performance
of these denoising methods.14 To ensure robustness
against these variations, deep learning-based recon-
struction (DLR) methods have been proposed to per-
form denoising only for high-frequency components
that contain detailed information about structures
and most of the noise, while leaving low-frequency
components containing the image contrast
information.15

The proposed DLR method (Advanced intelligent
Clear-IQ Engine, Canon Medical Systems
Corporation, Tochigi, Japan) has been trained using
brain and knee 3T MR images and has been confirmed
as being able to achieve significant noise reduction for
brain 3T MR images while preserving the image qual-
ity.15,16 However, the applicability of the proposed
DLR method to MR images of other anatomical sites
and at different field strengths has not been investigat-
ed. The purpose of this study was to evaluate the appli-
cability of the proposed DLR method when applied to
lumbar 1.5T MRI.

Material and Methods

Subjects

The study protocol was approved by the Institutional
Review Board and informed consent was obtained
from participants before they entered the study. Ten
healthy male volunteers, with a mean age of 41 years
(range 24–57 years), participated in this study.

MRI data acquisition

We performed lumbar spine studies using a 1.5T MRI
system (Vantage Orian 1.5T, Canon Medical Systems
Corporation) with a 32-element phased-array surface
spine coil. First, we performed standard turbo spin-
echo T2-weighted sequences with an acquisition time
of 228 s, as used for routine clinical examination.
Second, by reducing the number of excitations (NEX)
and the combined application of reduced NEX and

compressed sensing, we performed two accelerated

sequences with scanning times of 119 s (shortened by

about one-half ) and 68 s (shortened by about one-

third). For the compressed sensing, using a commer-

cialized application (compressed SPEEDER, Canon

Medical Systems Corporation), we randomly reduced

sampling data to 55% (reduction factor of 1.8) by

interactive compressed sensing optimization with least

absolute and selection operator regression. The other

parameters were identical, and the details of the

sequencing parameters are described in Table 1.

Subsequently, we applied the DLR to the two acceler-

ated sequences and obtained the following five sets of

images: images obtained by standard sequences (stan-

dard), images obtained with the accelerated sequence

shortened by about one-half (double-fast), DLR-

applied images obtained with the accelerated sequence

shortened by about one-half (DLR-double-fast),

images obtained with the accelerated sequence short-

ened by about one-third (triple-fast), and DLR-applied

images obtained by accelerated sequence shortened by

about one-third (DLR-triple-fast).

DLR method

The noise reduction in this study was performed using

a commercial DLR tool (Advanced Intelligent Clear-

IQ Engine, Canon Medical Systems), the details of

which have been reported.15 The DLR has three

layers, and the architecture is shown in Fig. 1. The

DLR derives 49 components with a fixed 7� 7 discrete

cosine transform (DCT) basis. After the separation of

the zero-frequency component of the DCT and the

other 48 high-frequency components, soft shrinkage

was applied to the later components. In the feature

conversion layer, 3� 3 convolution and soft shrinkage

were applied 22 times to the 48 high-frequency compo-

nents, and the zero-frequency component of the DCT

Table 1. Imaging parameters.

Standard Double-fast Triple-fast

TR/TE (ms) 3400/84

Echo train length 17

Echo space (ms) 10.5

Bandwidth (HZ) 245.1

Slice thickness (mm) 3

FOV phase (mm) 300

FOV read (mm) 270

Matrix (phase� read) 320� 384

NEX 2 1 1

CS factor None None 1.8

Scan time (s) 228 119 68

NEX: number of excitations; CS: compressed sensing, TR: repetition

time, TE: echo time, FOV: field of view.
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went through a separate collateral pathway. In the final

image-generation layer, the high-pass component and

the bypassed zero-frequency component were com-

bined to generate denoised images by deconvolution

using a 7� 7 DCT kernel. The main idea underlying

this DLR method is the selective processing of the

high-frequency component, which is expected to

allow noise removal while preserving the image con-

trast and detailed structure.

Quantitative image analysis

Analysis of the regions of interest (ROIs) was per-

formed by a board-certified neuroradiologist (NK)

with 25 years of experience. In the central slice of the

spine, oval-shaped ROIs of 30 mm2 were placed on the

background air, retroperitoneal fat at the first sacral

vertebral level, cerebrospinal fluid (CSF) at the first

sacral vertebral level, second lumbar vertebra, L1–2

intervertebral disc, and cord at the 12th thoracic verte-

bral level. ROIs were also placed on the paravertebral

muscle in the paramedian slice depicting the right

intervertebral foramina (Fig. 2). For each tissue, we

calculated the signal-to-noise ratio (SNR) and contrast-

to-noise ratio of the muscle (CNR) using the follow-

ing formulas from the literature:17,18 SNR¼ SItissue/

SDbackground air, CNR¼ SItissue – SImuscle/SImuscle. SI was

taken as the average signal intensity of the ROIs, and SD

as the standard deviation of the ROIs.

Qualitative image analysis

Three independent neuroradiologists (MF, HT, and

HT who had 6, 17, and 26 years of experience in

neuroradiology, respectively) evaluated the five sets of

images. After the MR images were presented in

random order, they were evaluated independently with-

out knowledge of the sequence parameter. The readers

assessed the perceived SNR, sharpness, contrast, struc-

ture visibility, artifact, and overall image quality rela-

tive to the control images obtained by the standard

sequence using a five-point scale (1¼obviously inferi-

or; 2¼ slightly inferior; 3¼ equivalent; 4¼ slightly

superior; 5¼obviously superior).

Statistical analysis and comparison between the

groups

All statistical calculations were performed using IBM

SPSS Statistics for Windows (version 24). For quanti-

tative analysis, all numerical values are reported as the

average� SD. For qualitative analysis, median values

of the scores from the three independent neuroradiol-

ogists were assessed. First, we compared DLR-applied

accelerated images to their DLR-nonapplied counter-

parts (double-fast versus DLR-double-fast, triple-fast

versus DLR-triple-fast) to confirm the denoising

performance of the DLR. Second, we compared

DLR-applied accelerated images to standard images

(standard versus DLR-double-fast, standard versus

DLR-triple-fast) to validate the feasibility of the

DLR method for shortening the scanning time.
Intergroup differences were examined using the two-

sided Wilcoxon signed-rank test followed by the

Benjamini–Hochberg procedure to control the false

discovery rate in multiple comparisons. Differences

with q< 0.05 were considered to be significant.19

Fig. 1. Deep learning-based reconstruction (DLR) architecture. Among the 49 components derived in the feature extraction layer,
the 48 high-frequency components undergo soft shrinkage and repeated 3� 3 convolutions and soft shrinkages. By contrast, the zero-
frequency component takes a collateral pathway. In the image generation layer, the denoised high-pass components and bypassed
zero-frequency component are combined.
DCT: discrete cosine transform.
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Results

Quantitative analysis

The results of the quantitative assessments are shown
in Table 2 and Fig. 3. The average SNR values for all
tissues were highest on DLR-double-fast, followed by
DLR-triple-fast or standard, double-fast, and triple-
fast. In the comparison between DLR-applied acceler-
ated images and their DLR-nonapplied counterparts,
the SNR values for all tissues were significantly higher
for DLR-applied accelerated images than for their non-
applied counterparts, indicating the effective denoising
performance of the DLR. The comparison between
DLR-applied accelerated images and standard images
indicated that adequate restoration decreased the SNR
caused by shortened scanning times. The SNR values
for all tissues were significantly higher for DLR-
double-fast than for standard. The SNR values for all
tissues did not differ significantly between DLR-triple-
fast and standard, but the average SNR values for the
vertebra, disc, cord, and muscle were higher for DLR-
triple-fast than for standard.

Analysis of the CNR indicated preservation of tissue
contrast on DLR-applied accelerated images. The
CNR values for all tissues were significantly higher
for DLR-applied accelerated images than for their
DLR-nonapplied counterparts. The CNR values for
fat and CSF were significantly higher for DLR-
double-fast than for standard. Those for vertebra,
disc and cord were higher for DLR-double-fast than

for standard on average, and the differences were not

statistically significant. The CNR values for all tissues

differed only slightly between DLR-triple-fast and

standard.

Qualitative analysis

The qualitative scores are shown in Table 3 and Fig. 4,

and representative images are shown in Figs 5 and 6.

The average scores for perceived SNR, sharpness, con-

trast, structure visibility, and overall image quality

were highest on DLR-double-fast or DLR-triple-fast,

followed by standard, double-fast, and triple-fast. The

average scores for artifact were highest on standard

and double-fast, followed by triple-fast, DLR-double-

fast, and DLR-triple-fast.
In the comparison between DLR-applied accelerat-

ed images and their DLR-nonapplied counterparts, the

scores for perceived SNR, sharpness, contrast, and

overall image quality were significantly higher for

DLR-applied accelerated images than for their DLR-

nonapplied counterparts. The scores for structure visi-

bility were significantly higher for DLR-triple-fast than

for triple-fast. The scores for artifacts did not signifi-

cantly differ between these groups.
In the comparison between DLR-applied accelerat-

ed images and standard images, the scores for per-

ceived SNR and overall image quality were

significantly higher for DLR-double-fast and DLR-

triple-fast than for standard. The scores for sharpness,

Fig. 2. Measurements of regions of interest (ROIs) in a volunteer. ROIs were placed on the retroperitoneal fat, CSF, vertebra, disc,
cord, background air, and paravertebral muscle.
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contrast, structure visibility, and artifacts did not differ

significantly between these groups.

Discussion

In an effort to counter the image degradation cause by

reducing the NEX, we applied the DLR to 1.5T lumbar

T2-weighted images and found that its application

allowed the scanning time to be shortened by one-half.

The observed performance of the DLR in the current

study was almost equal to that when applied to 3T brain

MR images in a preceding study. In that study, the DLR

allowed the scanning time of 3T brain MR images to be

shortened by 60%.15 In addition, the combination of the

DLR with compressed sensing allowed us to shorten the

scanning time by one-third without sacrificing image

quality. These results suggest two clinical impacts.

First, the time saving provided by the DLR increases

the clinical utility of spinal MR imaging and alleviates

the burden on the patient by shortening the scan time.

This is particularly important in patients who are intol-

erant to the examination position or emergent condi-

tion. Second, the applicability of the DLR to different

anatomical site or a different field strength from that

used for the original training suggests that this method

can be generalized to other applications.
When applying the DLR trained using brain and

knee MR images at 3T field strength to lumbar MR

Table 2. Quantitative values for SNR and CNR.

SNR value

(1) Standard (2) Double-fast (3) DLR-double-fast (4) Triple-fast (5) DLR-triple-fast

Fat 111.3� 44.0 73.1� 29.2 123.0� 47.8 64.4� 17.2 109.9� 25.6

CSF 140.8� 51.0 92.7� 36.8 155.8� 60.0 81.6� 18.1 140.2 �26.0

Vertebra 59.7� 20.3 39.7� 14.3 66.2� 23.0 35.8� 9.6 60.5� 14.4

Disc 46.0� 14.1 30.5� 8.7 50.5� 13.8 27.9� 8.1 46.8� 14.6

Cord 48.9� 18.2 32.6� 12.1 54.4� 19.7 28.9� 7.5 49.4� 12.1

Muscle 16.6� 9.8 11.1� 7.0 18.5� 11.4 10.3� 4.1 21.6� 14.0

q Values

(2) vs (3) (4) vs (5) (1) vs (3) (1) vs (5)

Fat <0.01 <0.01 <0.01 0.60

CSF <0.01 <0.01 <0.01 0.32

Vertebra <0.01 <0.01 0.02 0.49

Disc <0.01 <0.01 <0.01 0.70

Cord <0.01 <0.01 0.04 0.10

Muscle <0.01 <0.01 0.02 0.09

CNR value

(1) Standard (2) Double-fast (3) DLR-double-fast (4) Triple-fast (5) DLR-triple-fast

Fat 94.7� 35,6 62.0� 23.3 104.5� 38.3 54.0� 14.7 88.3� 26.1

CSF 124.2� 41.5 81.6� 30.1 137.4� 49.0 71.3� 14.6 118.6� 23.5

Vertebra 43.0� 13.6 28.5� 9.3 47.8� 14.8 25.5� 9.3 38.9� 15.7

Disc 29.30� 12.5 14.9� 8.2 32.0� 14.9 17.6� 8.5 25.2� 17.8

Cord 32.3� 9.9 21.5� 6.5 36.0� 11.0 18.6� 5.8 24.9� 12.5

q Values

(2) vs (3) (4) vs (5) (1) vs (3) (1) vs (5)

Fat <0.01 <0.01 0.03 0.85

CSF <0.01 <0.01 <0.01 1.00

Vertebra <0.01 0.01 0.05 0.92

Disc <0.01 0.04 0.09 0.72

Cord <0.01 <0.01 0.43 0.72

CSF: cerebrospinal fluid; DLR: deep learning-based reconstruction; CNR: contrast-to-noise ratio.

Note: Data are presented as average� standard deviation of 10 volunteers.

Statistically significant values are shown in bold.
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images at 1.5T, the following different conditions may
affect the feasibility of the DLR. First is the inherent
lower noise level in MR images acquired at 1.5T.20,21

Second is the greater inhomogeneity of signal strength
in spinal MR images because spinal MR images using
the phased-array surface coil which has a lower coil
sensitivity toward the deeper portions from the surface
compared with brain MR images obtained using a
phased-array head coil.22,23 Third is the blurring
effect, which reflects loss of information about spatial
resolution and the common concern of denoising meth-
ods of MR images.5,8,14 Uetani et al. reported that, in
contrast to the usual denoising methods such as filter-
ing or transform methods, deep learning-based denois-
ing can overcome the adverse effect of denoising
because it can learn anatomical structure.16 However,

the concern remained in the current study because the
DLR was applied to different anatomical sites from
those used in the original training.

In the current study, we found that the DLR achieved
significant elevation of the SNR without decreasing the
tissue contrast. These results suggest that the specialized
learning process, which involves selecting a high-
frequency domain, worked in accordance with the inten-
tion to preserve the inherent tissue contrast, which exists
mainly in the low-frequency domain.

The further reduction in the scanning time by the
combination of the DLR and compressed sensing is
consistent with the results of a recent report.17 The
image degradation accompanying compressed sensing
is caused mainly by noise amplification, which
increases logarithmically with the reduction factor of

Fig. 3. Quantitative scores for five sets of images. (a) Average SNR values. The average SNR values for all tissues are lower for
double-fast and triple-fast than for standard. After the DLR application, those for all tissues become higher for DLR-double-fast than
for standard. Those for the vertebra, disc, cord, and muscle are slightly higher for DLR-triple-fast than for standard. (b) Average CNR
values. The average CNR values for all tissues are lower for double-fast and triple-fast than for standard. After the DLR application,
those become higher for DLR-double-fast than for standard and are slightly lower for DLR-triple-fast than for standard.
CSF: cerebrospinal fluid; DLR: deep learning-based reconstruction; CNR: contrast-to-noise ratio.
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compressed sensing.24,25 Therefore, the noise amplifica-
tion accompanying the compressed sensing was also
controlled by the DLR and resulted in the synergic
effect of reducing the scanning time.

Although the differences were nonsignificant, the
average scores for artifact were lower for DLR-
applied images than for DLR-nonapplied images. The
artifact related to undersampling of the k-space in com-
pressed sensing could not be removed by the DLR and
was accentuated after the removal of noise (Fig. 5(b)).

This may be explained by the lack of an image domain
from the under-sampled k-space data in the training
data used for the DLR in our study.15 To address
this issue, further learning trained using under-
sampled data may be warranted.7–10 In the current
study, motion artifact played no role because the
study participants were healthy. Therefore, the poten-
tial resistance of DLR-applied accelerated sequence to
motion artifact may result in less artifact overall in the
clinical situations.

Table 3. Qualitative scores for five sets of images.

Qualitative scores

(1) Standard (2) Double-fast (3) DLR-double-fast (4) Triple-fast (5) DLR-triple-fast

Perceived SNR 3.1� 0.3 1.9� 0.3 4.0� 0 1.2� 0.4 4.0� 0

Sharpness 3.0� 0 2.2� 0.6 3.4� 0.5 1.0� 0 3.2� 0.4

Contrast 3.0� 0 2.4� 0.7 3.5� 0.5 1.4� 0.7 3.1� 0.6

Structure visibility 3.0� 0 2.8� 0.6 3.0� 0 2.5� 0.5 3.1� 0.3

Artifact 3.0� 0 3.0� 0 2.7� 0.5 2.8� 0.4 2.5� 0.5

Overall image quality 3.0� 0 2.2� 0.6 3.9� 0.3 1.0� 0 3.7� 0.5

q Values

(2) vs (3) (4) vs (5) (1) vs (3) (1) vs (5)

Perceived SNR <0.01 <0.01 <0.01 <0.01
Sharpness <0.01 <0.01 0.13 0.50

Contrast 0.02 0.02 0.08 1.00

Artifact 0.25 0.25 0.25 0.25

Structure visibility 0.24 <0.01 1.00 0.24

Overall image quality <0.01 <0.01 <0.01 0.02

SNR: signal-to-noise ratiol; DLR: deep learning-based reconstruction; CNR: contrast-to-noise ratio.

Note: Data are presented as average� standard deviation of 10 volunteers.

Fig. 4. Qualitative scores for five sets of images. Except for artifact, the average scores are lower for double-fast and triple-fast than
for standard. After the DLR application, those for DLR-double-fast and DLR-triple-fast become equal to or higher than for standard.
For artifact, the average scores for DLR-applied images are slightly lower than for DLR-nonapplied images.
SNR: signal-to-noise ratio; DLR: deep learning-based reconstruction.
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Our study has several limitations. First, we evaluat-
ed the performance of the DLR when applied only to
T2-weighted MR images because it is key sequence for
the diagnosis of various spinal disorders.26 Although
the preceding study using a 3T machine showed appli-
cability of the DLR to various sequences, including T2-
weighted, fluid-attenuated inversion recovery and

3D-magnetization-prepared rapid acquisition with gra-
dient echo, we could not confirm whether the DLR
maintains the expected performance in sequences with
a lower SNR aimed at providing functional informa-
tion, such as diffusion-weighted images or arterial spin
labeling perfusion images.15 Therefore, further studies
are warranted to evaluate the DLR performance in

Fig. 5. Visual comparison between DLR-nonapplied accelerated images and DLR-applied accelerated images. (a) Visual comparison
between double-fast and DLR-double-fast. Compared with the noisy accelerated image using reduced NEX (double-fast), the image
quality is improved for the DLR-applied accelerated image (DLR-double-fast). (b) Visual comparison between triple-fast and DLR-
triple-fast. DLR application (DLR-triple-fast) recovers the degenerated image quality associated with reduced NEX and compressed
sensing. However, streaky artifacts caused by compressed sensing are maintained (arrows).
DLR: deep learning-based reconstruction.

Fig. 6. Visual comparison between standard image and DLR-applied accelerated images. DLR-applied accelerated images (DLR-
double-fast and DLR-triple fast) show equal or greater visual quality relative to standard image. However, a subtle streaky artifact
appears in DLR-triple-fast (arrow).
DLR: deep learning-based reconstruction.
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these sequences. Second, we did not evaluate any path-

ological lesions in the current study. Therefore, a study

of the diagnostic accuracy of applying the DLR to MR

imaging of various disorders using accelerated sequen-

ces is warranted.
In conclusion, our data suggest that application of

the DLR trained by 3T brain and knee MR images

applied to 1.5T lumbar MR images allow the scanning

time to be shortened by one-half with adequate preser-

vation of image quality. The combination with com-

pressed sensing may allow the scanning time to be

shortened by one-third without sacrificing image

quality.
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