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Abstract

Background: Thrombosis plays an important role in the Coronavrus Disease 2019 (COVID-19) infection-related
complications such as acute respiratory distress syndrome and myocardial infarction. Multiple factors such as
oxygen demand injuries, endothelial cells injury related to infection, and plaque formation.

Main body: Platelets obtained from the patients may have severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) RNA, showing that the increased activation potential recommends platelet can be hyper-activated in
severely ill SARS-CoV-2 cases. Platelets contain multiple receptors that interact with specific ligands. Pathogen'’s
receptors such as Toll-like receptors (TLRs), NOD-like receptor, C-type lectin receptor family, glycoprotein (GP) such
as GPallbB3 and GPlba which allow pathogens to interact with platelets. Platelet TLRs and NOD?2 are involved in
platelet activation and thrombosis. Accordingly, TLRs are critical receptors that could recognize various endogenous
damage-associated molecular patterns and exogenous pathogen-associated molecular patterns (PAMPs). TLRs are
considered as important components in the activation of innate immunity response against pathogenic and non-
pathogenic components like damaged tissues. TLRs-1,-2,-4,-6,-7 expression on or within platelets has been reported
previously. Various PAMPs were indicated to be capable of binding to platelet-TLRs and inducing both the
activation and promotion of downstream proinflammatory signaling cascade.

Conclusion: It is possible that the increased TLRs expression and TLR-mediated platelets activation during COVID-
19 may enhance vascular and coronary thrombosis. It may be hypothesized using TLRs antagonist and monoclonal
antibody against P-selectin, as the marker of leukocyte recruitment and platelet activation, besides viral therapy
provide therapeutic advances in fighting against the thrombosis related complications in COVID-19.
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Introduction

Platelets are key cells in thrombosis, as a physiological
process in which vessel damage consequently results in
clot formation. However, in pathological situation, these
may lead to vessel occlusion, ischemia, and tissue dam-
ages [1]. Moreover, endothelial cells injury leads to sub-
endothelial exposure, platelet aggregation, and clot
formation [2]. Viruses could attach to platelet-plasma or
endosomal membrane surface receptors and then active
platelets via specific, signaling cascades [3]. Engagement
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of surface Fc receptors that bind to immunoglobulin-
coated virions could also activate platelets [4]. Platelets
express pattern recognition receptors (PRRs), including
TLR, Nod-like receptor, and C-type lectin receptors that
has a critical role in recognition of damage-associated
molecular patterns (DAMPs) as well as exogenous
pathogen-associated molecular patterns (PAMPs), which
is referred as virus associated molecular patterns
(VAMPs) in cases of viruses [5-7]. TLRs are critical
molecules in the initiation of innate and adaptive im-
mune responses, and may be expressed either on cell
surfaces (TLRs-1,-2,-4,-5,-6,-10) or in the endosome
compartment (TLRs-3,-7,-8,-9) [8-11]. These receptors
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attachment to DAMP and PAMP can active intracellular
pathways such as production of proinflammatory cyto-
kines [12—15]. Platelets endocytose virions, after attach-
ment of TLRs to their released lysosomal ligands i.e.,
ssRNA, dsRNA, CpG DNA downstream signaling lead
to platelet activation and granule release, expose P-
selectin, and finally form platelet leukocyte aggregates
(PLAs) [16].

It is likely that thrombosis due to the activation of the
innate immune system through TLRs could induce some
subsequent vascular occlusive events [17, 18]. Local re-
lease of DAMPs during acute myocardial infarction
(AMI) is known as an event that triggers proinflamma-
tory TLR activation, which can subsequently aggravate
myocardial injury [19, 20]. Notably, various PAMPs are
capable of inducing platelet activation [21]. Treatment
with pam3CSK4, which is a pharmaceutical agonist of
TLR1/TLR2 ligand, could directly induce platelets acti-
vation; platelet’s adhesion, aggregation, degranulation,
and interaction with leukocytes [12]. Human platelets
express TLRs-1,-2,-4,-6 as well as 7 receptors [22-24].
As well, a recent study showed SARS-CoV-2 spike pro-
tein could interact with TLRs, especially TLR-4 [25]. It
is possible that alternative platelet activation’s pathways
may promote recurrent thrombosis in COVID-19
patients.

By considering the presence of some TLRs and NOD2
in platelets, these molecules may play roles in platelet
activation and thrombosis in the onset of myocardial in-
farctions during SARS-CoV-2 infection.

Platelet activation and P selectin

P-selectin (CD62P) (formerly known as PADGEM and
GMP140), is an integral protein that acts as a cell adhe-
sion molecule on the surfaces of the activated
endothelial cells as well as the activated platelets to bind
to neutrophil and monocytes [26—28]. The soluble form
of P-selectin lacks the transmembrane domain that ap-
pears to be produced from alternative splicing of pre
mRNA [29]. Of note, the primary ligand for P-selectin is
P-selectin glycoprotein ligand-1 (PSGL1), which is
expressed on almost all leukocytes. P-selectin leads to
leukocyte rolling and then acts as the first agent for the
leukocyte recruitment [30]. P-selectin is mostly synthe-
sized in endothelial cells and megakaryocyte and then
stored in weibel-palade bodies and a-granules, respect-
ively [31]. Moreover, it plays an essential role in the ini-
tial recruitment of leukocytes to the site of injury during
inflammation. During this process, inflammatory media-
tors such as interleukin-4 (IL-4), tumor necrosis factor-a
(TNF-«a), and LPS result in the P-selectin secretion from
endothelial cells. Although LPS and TNF-a increase both
mRNA and protein levels in murine models, they cannot
affect mRNA expression in human endothelial cells,
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while IL-4 increases P-selectin mRNA in both of them
[32—34]. It was shown that the P-selectin overexpression
in endothelial cells leads to leukocyte rolling via PSGL-1
and acts as the first agent for the leukocyte recruitment
to inflammatory sites [35]. Additionally, P-selectin acti-
vates monocyte to produce tissue factor (TF), which is
the main activator of extrinsic coagulation cascade [36].
It is noteworthy that the P-selectin-mediated leukocyte
recruitment into the lungs during acute respiratory dis-
tress syndrome (ARDS) and infusion of anti P-selectin
(monoclonal antibody) reduce the severity of ARDS [37].
Soluble P-selectin is parallel to platelet’s activation and
thrombosis elevated in ARDS cases compared to control
and also in non-survivors compared to survivors [38,
39].

Due to the high prevalence rate of thrombotic compli-
cations among COVID-19 patients, a possible role has
been suggested for P-selectin in activating intravascular
coagulation [39, 40].

Platelet receptors activation

Platelets included a cytoskeleton and dense tubular sys-
tem, few mitochondria, storage granules; glycogen, § and
a granules and peroxisomes. The a-granules contain
proteins for the platelets hemostatic functions, such as,
thrombospondin, platelet factor-4, von willebrand factor
(VWE), fibrinogen, P-selectin, CD40 ligand (CD154), -
thromboglobulin, platelet derived growth factor (PDGEF),
FV, GP IIb/Illa, § granules contain nucleotides (ADP
and ATP), serotonin, histamine, pyrophosphate, and cal-
cium. Upon platelet activation, granules contents are
transfer to platelet membrane or release to extracellular
space to further promote platelet adhesion and activa-
tion [41].

A wide variety of mobile transmembrane receptors
covers the platelet membrane. Many of these receptors
are expressed by other cell types, but some are only
expressed on platelets. It is well known that the major
platelet receptors have a prominent role in the
hemostatic function of platelets, allowing platelets have
specific interactions and functional responses with vas-
cular adhesive proteins. The platelet receptors including
thrombin receptors (PAR-1 and PAR-4), ADP receptors
(P2Y; and P2Y;,), Chemokine receptors (CXCR1 and
CXCR4), TxA, receptor, VWF receptor (GPIIb/IIla),
integrins (aupPs, P, asP1, osPi, avPs), Glycoprotein
(GP) Ib/IX/V, Toll-like receptors, proteins belonging to
the immunoglobulin superfamily (GP VI, FcyRIIA), P-
selectin, CD63, CD36, P-selectin ligand 1, TNF receptor
type [3, 6, 9, 42]. (Fig. 1).

Platelet receptors and viral infection
Platelets contain multiple receptors that interact with
specific ligands. Pathogen’s receptors such as TLRs,
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Fig. 1 Different predominant platelet receptors and their physiological role. PAR1/PAR4; Adhesion, spreading, and secretion, GPIb-IX-V
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GPlIb/llla; Platelet aggregation, CD36;Aggregation, stabilization of aggregates, P-selectin; Clot formation with leukocytes, GPVI; Platelet
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NOD like receptors, C-type lectin receptor family,
FcyRIIA, glycoprotein (GP) allbB3, GPIba which allow
pathogens to interact with platelets [3, 23, 42, 43]. Innate
immune receptors participate in platelet-leukocyte inter-
actions. Pathogens or their products directly or indir-
ectly induce platelet activation. The complex of IgG-
pathogen binds to IgG receptor FcyRIIA then leads to
pathogen engulfment and reduction. Platelet CD40L ex-
pression allows them to interact with different immune
cells. In addition, CD40L may be cleaved into a soluble
form (sCD40L) that enhances platelet activation, aggre-
gation, and platelet-leukocyte attachment. Platelets can
carry and eliminate pathogens, and via the expression of
TLRs they can bind bacterial LPS and activate neutro-
phils, inducing NETs formation. Intact platelet MHC
class I molecules are located intracellular but upon acti-
vation are expressed and can activate antigen-specific
CD8+ T cells. In contrast, the MHC class I molecules on
the surface of resting platelets are denatured and lead to
CD8+ T cell inhibition. Platelets contain many proin-
flammatory and anti-inflammatory cytokines and che-
mokines and, upon activation, can release them to the

extracellular space. The culmination of these events
makes platelets a main immunomodulatory host (Fig. 2)
[6].

Moreover, platelet’s activation during the process of
viral exposure by hepatitis virus, adenovirus, Dengue,
and HIV-1 was reviewed in a study by Flaujac et al. [44].
Despite the fact that different viruses could activate
platelets, its occurrence remained less clear so far. Plate-
let’s activation after viral exposure can be summarized in
the following 3 categories: 1:Viruses may directly bind to
surface proteins and then activate platelets via down-
stream  specific  signaling  cascades  [3], 2:
Immunoglobulin-coated virions could activate platelets
via engagement of surface Fc receptors [4], and 3: TLRs
play a role in some viruses (i.e., encephalomyocarditis
virus) [45].

TLRs and platelet activation

Viral ss-RNA of SARS-COV-2 is sensed by TLR-3, TLR-
7, and TLR-8 proteins [46]. Previous studies have shown
the internalization and clearance of ssSRNA viruses such
as influenza and HIV by platelets [13, 22, 47]. TLR7 is
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expressed in platelets at both the protein [48] and
mRNA level [49, 50]. Platelets can also internalize patho-
gens (i.e., bacteria and viruses) when an interaction with
endosomal TLRs (e.g., TLR-7 and TLR-9) occurs [12, 13,
51]. Upon viral infection, platelets are activated through
TLR7 that change their phenotype and induce the for-
mation of platelet-neutrophil aggregates. After the lyso-
somal degradation of the internalized viral particles,
ssRNA genome attaches to endosomal TLR-7. Virus, via
ssRNA may mediate platelets’ activation through TLR-7,
leading to degranulation, change of phenotype and ag-
gregates with neutrophils. This mechanism is likely to
participate in antiviral immunity since TLR-7-depleted
mice had an increase in mortality [16, 45, 52]. The acti-
vation of TLR-7 pathway leads to platelet’s degranula-
tion of DP-selectin, which consequently results in
platelet’s activation as well as overexpression of CD40
ligand CD40L/CD154. These aggregates ultimately lead

to platelet-neutrophil aggregates and inflammation and
thrombocytopenia without promotion of thrombosis
[45]. Platelets stimulate with TLR-3 agonists that lead to
a-granule-stored factors translocation (P-selectin and
CD40L) to cell surface and induce procoagulant re-
sponses to traditional agonists such as thrombin [53,
54]. As TLR-7 recognizes viral ss-RNA, it may be im-
portant in platelet’s activation related to SARS-CoV-2
infection. Platelet express TLR-4 that recognize PAMPs
and DAMPs ligands [55]. DAMPs like histones, high
mobility group box 1 (HMGB1) and heat shock proteins
(HSPs) that released during host tissue injury or viral in-
fection can bound to neutrophil extracellular traps,
(NETs), trigger both prothrombotic and procoagulant
platelet-mediated responses, partly by interacting with
TLR4 [56-59].

It is possible that TLRs-mediated platelets activation
in COVID-19 patients subsequently exaggerates both
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vascular and coronary thrombosis and it may also be re-
lated to myocardial injury [23, 24].

Role of platelets in COVID-19 infection

Platelets maintain the integrity of the alveolar capillaries
in normal situation, but in pathologic situation, they
may contribute into causing lung injury [60]. In addition,
platelet-endothelial interactions and platelet-leukocyte
aggregation contribute into the pathogenesis of acute
lung injury [61-63]. Moreover, in viral infections,
thrombocytopenia, interactions with leukocytes, and
platelet’s secretion may lead to the protective or injuri-
ous immune effects [64].

In patients with COVID-19, thrombocytopenia rate is
estimated at about 5-41.7%, and typically it has a mild
form (100-150 x 10°/L) [65-68]. Additionally, severe
thrombocytopenia, which may have an immune medi-
ated source, is rare [69]. It was found that the severe and
non-survivors patients have a lower platelet count com-
pared to non-severe and the survivors, respectively [70,
71]. Accordingly, low platelet count in these patients
may be due to platelet consumption and associated with
the increased risk of mortality; however, it has not been
determined as a predictor factor for this disease’s mor-
tality [65, 71]. The patients with a temporal tendency to
the decreased platelet count may experience a worsening
thrombotic complication and lower nadir platelet counts
are related to the increased mortality rate [69, 72].

In viral infections, platelet’s activation may occur ei-
ther by viral immune complexes or by host inflamma-
tory responses, and the activated platelets are more
cleared from circulation by the reticuloendothelial sys-
tem macrophages [73]. Expression of ACE2, which is the
direct receptor of SARS-CoV-2 spike protein on plate-
lets, as well as the induction of platelet’s activation by
anti-spike monoclonal antibody were recently reported
[74]. A recent report has been shown that circulating
platelets obtained from COVID-19 patients had a higher
level of surface membranes of P-selectin expression
compared to normal controls. Additionally, platelet’s ag-
gregation was greater in patients responding to lower
concentrations of platelet agonists [75].

Toll-like receptors, structures, functions, as well as
its specific ligand and main role in thrombosis

TLRs are type I transmembrane glycoprotein (GP) re-
ceptors consisting of (i) 20-27 extracellular leucine-rich
repeat (LRR) domains used for the recognition of
PAMP/DAMP or VAMP, (ii) a transmembrane domain,
and (ili) a cytosolic Toll/interleukin (IL)-1 receptor
(TIR) domain used for the activation of downstream cell
signaling pathways [76]. The extracellular domains of
TLR contain glycan moieties serving as binding sites for
ligands. Moreover, TLRs are classified according to their
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ligands and cellular localizations. Immune cells (includ-
ing dendritic cells, macrophages, NK cells, T cells, and B
cells) as well as non-immune cells (including epithelial
and endothelial cells, and fibroblasts) express these re-
ceptors [77]. Notably, TLR-1, -2, -4, -5, - 6, and 10
are primarily located at the cell surface, whereas TLR3,
7, 8, and 9 are present on the membranes of surround-
ing intracellular vesicles, including endosomes, lyso-
somes, and the endoplasmic reticulum that could
recognize pathogenic nucleic acids [8, 78].

Furthermore, TLR can be sub-classified based on se-
quence analysis and three-dimensional structures into
three-domain (TLR-1, -2, -4, -6, —10) and single-
domain (TLR-3, -5, -7, —8, —9) TLRs [76]. In this re-
gard, the single-domain and three-domain TLRs interact
with hydrophilic ligands like nucleic acids, and lipid-
containing molecules such as LPS and lipoproteins re-
spectively [79]. Platelet’s activation can up regulate TLR-
2, TLR-4, and TLR-9 expressions in these cells [23, 80,
81]. As well, in mice, TLR2 ligands can alter megakaryo-
cyte TLRs expression [82]. Platelets express some func-
tional chemokine receptors such as CCRI1, 3, 4, and
CXCR4, which are involved in infection, hemostasis, in-
flammation, and even in the development of atheroscler-
osis (Fig. 3) [42].

A recent study revealed that SARS-CoV-2 mRNAs en-
coding NSP10, E-protein, NSP8, and S2, have strong
binding affinities toward intracellular TLR3, TLR7,
TLRS8, and TLRY, respectively [83]. Additionally, it was
shown that SARS-CoV-2 spike protein could interact
with TLR4, and TLR-4 activation plays a major role in
inflammatory response in COVID-19 infection.

NOD?2 -related platelet activation and thrombosis
Among the main families of pattern recognition recep-
tors, Toll-like receptors and nucleotide-binding
oligomerization domain (NOD)-like receptors are the
critical receptors in innate immunity response. NODs
are cytoplasmic receptors. NOD1 and NOD2 are the
two important NODs, NOD1 and NOD2 contains 1 and
2 caspase recruitment domain respectively [86]. NOD2
is mainly expressed in monocytes, macrophages, den-
dritic cells, intestinal epithelial cells, and paneth cells
whereas NOD1 has a wide distribution. NODs have a
major role in innate immune response against infections.
In bacterial and viral infections NOD2 through the acti-
vation of NF-kB, MAPK and caspase-1 pathways, lead to
increase expression of proinflammatory cytokines, in-
cluding IL-1f, tumor necrosis factor-alpha (TNFa), IL-6,
IL-12p40, CC-chemokine ligand 2, IL-8, CXC-
chemokine ligand 2 and various antimicrobial agents
such as defensins. The NOD2 sensor promotes intestinal
pathogen eradication via the chemokine CCL2-
dependent recruitment of inflammatory monocytes [87].
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NOD2 receptor activation induces platelet production of
IL-1B as proinflammatory cytokines [5]. NOD2 as a
cytoplasmic viral PRR trigger the activation of
interferon-regulatory factor 3 (IRF3) and production of
interferon-p (IEN-B). After recognition of a viral ssRNA
genome, NOD2 used the adaptor protein mitochondrial
antiviral signaling (MAVS) to activate IRF3 and innate
immune antiviral response [91]. Similar functions of
NOD2 are observed in response to influenza A and
parainfluenza viruses [88, 89]. Platelets express NOD2
that potentiates platelet activation and enhances in vivo
thrombosis [90]. The crucial role of platelets in throm-
bosis, hemostasis, and immune response, studies in acti-
vation of NOD2 in SARS-CoV-2 infection could showed
new insight into the pathogenesis and treatment of

inflammation and thrombotic complications in COVID-
19 disease.

Platelets immunomodulatory functions

Platelet indicates cellular immunomodulatory functions
via having interactions with endothelial cells and leuko-
cytes and responses to infection. Accordingly, these re-
sponses may  consequently  enhance  vascular
inflammation and induce thrombosis [92, 93]. Previous
studies have shown that by considering the presence of
TLR-1, -2, -4, -6, and TLR-7 at the membrane and
intracellular of platelet, their expressions depend on the
status of platelet’s activation [22—24]. TLR-1,-6 in infec-
tion situation is responsible for generating pro-
inflammatory platelets’ interaction with leukocytes,
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including neutrophils, monocytes, eosinophils, and den-
dritic cells that, as innate immune mediated cells, can
accelerate platelet’s aggregation [47]. Circulating plate-
lets contain a functional spliceosome, particularly en-
dogenous pre-mRNAs as well as small nuclear
ribonucleoproteins [94—96]. During platelet’s activation,
splices introns from interleukin 1-f or tissue factor (TF)
pre-mRNAs in platelet cytoplasm can be translated into
proteins [97, 98]. In this regard, TF overexpression in
platelet and monocyte may be related to thrombosis in
COVID-19 [99]. During the platelet activation, growth
factor cytokines, chemokines, and molecules such as
sCD40L, are released. Platelet is the primary source of
sCD40L in circulation that plays a critical role in throm-
bosis and initiating both innate and adaptive immunities
[23, 100]. Additionally, platelets express some functional
chemokine receptors such as CCR1, 3, 4, and CXCR4,
which are involved in infection, hemostasis, inflamma-
tion, and even in the development of atherosclerosis. A
previously performed study has shown that sCD62P is
increases in ARDS patients and in severe and non-
survivors compared with non-severe cases and survivors,
respectively [37-39]. Therefore, future discoveries re-
lated to the immune-mediated activation platelet are ne-
cessary to guide the type of therapies needed to control
both thrombosis and coagulopathies, particularly in se-
verely ill COVID-19 patients.

Inhibitors of TLRs and P-selectin

TLRs antagonists include monoclonal antibodies,
bacterial-derived proteins, natural or synthetic small
molecules. TLR3, TLR7, and TLR8 antagonists can be
used against viral infections. Among TLRs, TLR4 is a re-
markable pattern recognition receptor recognizes mul-
tiple PAMPs of bacteria, viruses, and other pathogens
and DAMPs from host lytic cells. Several drugs have
been demonstrated to have inhibitory effects on the
TLR4 pathways. TLR4 antagonist FP7 significantly de-
creased the cytokine production in response to lethal
lipopolysaccharide (LPS) used in the influenza infection
[101]. Eritoran and Tak242 as TLR4 antagonists were
developed for the treatment of severe sepsis. TAK-242
(Resatorvid) reduce signaling and inflammation by
blocks the interaction between TLR4 and the adaptor
proteins TIRAP and TRAM [102]. TAK-242 has pre-
clinical success but in clinical investigations the results
are not promising. In a phase III trial in managing of se-
vere sepsis, serum cytokine levels suppression of IL-6,
IL-8, and TNF-  compared to the placebo group have
not been shown [103]. Recently, a novel inhibitory activ-
ity of angiotensin II receptor blockers (ARBs), and sta-
tins on TLR2 and TLR4 signaling was discovered.
Valsartan (from the ARB family) has been demonstrated
to decrease proinflammatory cytokine release and infarct
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size by inhibiting TLR4 signaling. Among statins family,
Atorvastatin, Fluvastatin, Simvastatin has all shown an
inhibitory effect on the reduction in vascular inflamma-
tion and the TLR4 signaling and pathway [104—106].
Eritoran (E5564) and TAK-242 are currently undergoing
phase III clinical trials, especially for severe sepsis. In
septic cases with in the high-dose treatment of eritoran
a 12% reduction in the mortality rate compared to pla-
cebo was demonstrated [107]. Eritoran blocked DAMP
accumulation and attenuated influenza virus-induced
acute lung injury [108].

Anti P-selectin monoclonal antibodies or P-selectin
antagonist reduces the risk of inflammation and throm-
bosis [109]. Inclacumab a novel and recombinant mono-
clonal antibody against P-selectin, block the P-selectin-
PSGL-1 mediated cell adhesion. Inclacumab is a human
IgG4 monoclonal antibody has anti-cell adhesion effects
and the potential of anti-inflammatory, antithrombotic,
and antiatherogenic properties [110-112]. Recently cri-
zanlizumab, a human IgG2 anti-P-selectin antibody, ap-
proved by FDA. Crizanlizumab reduce vaso-occlusive
crises (VOCs) in sickle cell disease patients [113]. These
P-selectin antagonists may have benefits to inhibit of
platelet-leukocyte-endothelial interactions in COVID-19
patients and reduce the thrombosis complications in-
duced by SARS-COV2 infection.

Conclusion

Severe SARS-CoV-2 infection mostly presents with co-
agulation abnormalities, pulmonary microvascular
thrombosis, and severe inflammatory response [114].
Thrombosis complications are common among critically
ill COVID-19 patients, and these also increase the risk
of some life-threatening complications such as myocar-
dial infarction and ARDS [40, 41]. Although the mecha-
nisms of thrombosis in SARS-CoV-2 infection are still
unclear, platelet’s activation and inflammatory responses
may contribute in this process [42]. TLRs could bind to
the specific ligands and then result in the activation of
the inflammatory cascades. As well, platelet can be acti-
vated by TLRs, and in addition, inflammatory mediators
such as LPS and TNF-a may induce P-selectin expres-
sion [16, 84]. P-selectin, as a platelet’s activation marker,
plays central roles in leukocyte recruitment and expres-
sion of TF by monocyte, which is the activator of extrin-
sic coagulation cascade [43]. Both platelet’s activation
and aggregation play critical roles in the pathogenesis of
tissue damages such as acute myocardial infarction
(AMI) and myocardial ischemia injury [115, 116]. Add-
itionally, local release of DAMPs during the process of
AMI is known to trigger proinflammatory TLRs activa-
tion, which consequently leads to the aggravation of
myocardial injury [19, 20]. It is possible that the alterna-
tive platelet activation pathways, which are not targeted
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by currently available anti-platelet agents, may promote
recurrent thrombosis in these settings [117].

SARS-CoV-2 -spike protein attachment to ACE2 on
endothelial cells, platelets, and other target cells, triggers
the pathogenesis of COVID-19 infection [25, 83]. Previ-
ous studies have found that the spike protein could bind
to extracellular domains of TLRs, including TLR-1,-4,-6
[25]. Moreover, it has been proposed that the spike pro-
tein have a strong affinity with TLR4. Accordingly, TLR4
is mainly present at the surface cell membrane and it
recognizes viral proteins before their entrance into the
cell and also into the endosomal membrane [118]. TLR4
signaling is important in initiating inflammatory re-
sponses, and its overexpression can also lead to hyper
inflammation reactions [119-121]. Regarding the fact
that platelet could express TLR-4, it may play significant
roles in both platelet’s activation and thrombosis. As
well, Platelet overexpression of P-selectin in severe
SARS-CoV-2 patients suggests a central role of platelet’s
activation as a part of the pathogenic mechanism of
COVID-19 leading to the production of pulmonary
thrombi. So, the administration of anti P-selectin anti-
body like Crizanlizumab or inclacumab may be helpful
for the severe cases. In this regard, a rapid investigation
is required to determine the pathways that mostly con-
tribute to platelet’s activation, because these may be im-
portant in reducing the rates of morbidity and mortality
caused by COVID-19 infection. Among the alternative
pathways, TLRs related thrombosis may play a more
critical role in COVID-19 complex pathophysiology. In
this regard, further studies are required to determine the
role of TLRs in the mechanisms of thrombosis and coag-
ulopathies associated with COVID-19 infection. In
addition, the administrations of anti-P selectin monoclo-
nal antibody and TLRs antagonist may reduce the cyto-
kine storm, thrombosis, and mortality in COVID-19
patients. More studies are needed to investigate the clin-
ical significance of both TLRs upregulation and antagon-
ist in COVID-19-related thrombosis.
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