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African elephants (Loxodonta africana) are sentient and intelligent animals
that use a variety of vocalizations to greet, warn or communicate with
each other. Their low-frequency rumbles propagate through the air as well
as through the ground and the physical properties of both media cause
differences in frequency filtering and propagation distances of the respective
wave. However, it is not well understood how each mode contributes to the
animals’ abilities to detect these rumbles and extract behavioural or spatial
information. In this study, we recorded seismic and co-generated acoustic
rumbles in Kenya and compared their potential use to localize the vocalizing
animal using the same multi-lateration algorithms. For our experimental set-
up, seismic localization has higher accuracy than acoustic, and bimodal
localization does not improve results. We conclude that seismic rumbles
can be used to remotely monitor and even decipher elephant social inter-
actions, presenting us with a tool for far-reaching, non-intrusive and
surprisingly informative wildlife monitoring.

1. Background

African elephants (Loxodonta africana) use a wide variety of vocalizations to
communicate with other elephants, from trumpets and snorts to infrasonic rum-
bles [1]. These vocalizations, or calls, convey a variety of meanings to aid in
their social organization, including greetings, warnings about imminent threats,
communicating movement or advertising reproductive state to the other sex [2].

The low-frequency rumbles are especially interesting as the vocalization
generates both an acoustic and a seismic component simultaneously [3,4]. An
elephant’s inner ear is particularly well suited to detect these low-frequency
sounds as they have an enlarged malleus [5]. Behavioural responses of ele-
phants to seismic playback of rumbles have shown that the seismic
component alone is sufficient to elicit a behavioural response [6]. Elephants
are thought to detect seismic vibrations either through sensors embedded in
the skin on their feet and/or through bone conduction of vibrations to the
inner ear [7]. The possession of a sphincter-like muscle in the outer ear of ele-
phants, as well as behavioural adaptations such as freezing and leaning
behaviour, is thought to aid in the detection of the seismic component of ele-
phant rumbles [8]. It is an open question whether the information contained
in acoustic and seismic components of rumbles is redundant or whether it pro-
vides different or complementary information, which is likely to be dependent
on changing environmental factors [9,10].

In order to gain useful information, elephants show remarkable sophisti-
cation in signal processing of detected rumbles [8,11], as shown by their
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behavioural responses, including the ability to accurately cat-
egorize and localize calls. Elephants often need to determine
where a rumble is coming from, in terms of its direction and
sometimes distance, to respond appropriately. For example,
walking towards female elephant oestrus calls is particularly
important for male elephants, as shown with acoustic play-
back experiments [12]. The mechanism of localizing seismic
vibrations is unknown, where differences in seismic waves
would need to be detected by sensors in different feet or
ears, which could be maximized by turning perpendicular
to the source [6]. To estimate the azimuth (i.e. horizontal
direction) of an acoustic sound source, elephants probably
use the time shift between a sound arriving at the two ears,
called the interaural phase difference (IPD) [13,14]. For dis-
tance estimation, there are multiple acoustic cues available
(intensity, direct-to-reverberant energy ratio or spectral cues)
and their reliability can vary according to the properties of
the environment, the direction of the sound source and the
stimulus [15]. Difference in intensity is not thought to be
used for acoustic localization because the dimensions of the
animal’s head (diameter of ~1 m) are mostly smaller than
half the wavelength of the propagating wave for frequencies
smaller than 170Hz (assuming a wavespeed of approx.
340 ms7Y), thus it is unlikely that there will be a detectable
intensity difference across ears [16]. Instead, the auditory
system can determine phase delays without confusion and
ambiguity [17,18]. It has also been suggested that differences
in time of arrival between acoustic and seismic waves could
be used to estimate distance to the sender of a rumble
[6,11,19]; since the acoustic and seismic wavespeeds differ,
in theory distance to the source could be determined if the
two wave types can be detected separately [20].

Humans too can record the seismic and acoustic waves
generated by elephants in order to determine their location.
Sensor systems have been suggested for this purpose, using
single or multi-modal systems with the potential to give
real-time information to respond to poaching threats or pre-
vent human-elephant conflict [21-26]. Techniques that can
accurately monitor elephants in this way will be crucial
tools for fundamental and applied research alike.

Here, we use seismic signals generated by vocalizing wild
elephants to constrain their positions, which is compared with
localization using the co-generated acoustic component. We cal-
culate localization errors and infer the spatial information
content of the respective signals using the same methods for
seismic and acoustic signals. Typically, localization routines
(in an artificial sense) involve signal processing, such as time/
frequency filtering, noise reduction or signal enhancement,
detection of the desired signal and position estimation [27].

Raw signals collected during deployment usually contain
a cacophony of biological, geological and anthropogenic
vibrations and noise [26]. Noise reduction can be used to
filtler out unwanted signals and emphasize the desired
signal. In addition, frequency filtering [28,29] cancels out sig-
nals above or below a certain frequency, or in a certain
frequency range, which is helpful if the frequency content
of the source signals is well known. Other methods of
signal enhancement are spectrogram filtering using a time/
frequency structure tensor [21] and edge detection of the
target signal [30].

Detecting the target signal in a (pre-)processed recording
often requires manual identification of relevant events.
Rhinehart et al. [27] reviewed recent studies on acoustic

localization of terrestrial wildlife and highlighted that greater
than 50% of studies used manual sound detection routines
and less than 10% had fully automated routines. The main
reason for this is that the accuracy of manual detection rou-
tines is considered high compared with automated methods
[31]; however, it is very time consuming and practically
unfeasible for very large datasets. Importantly, only fully
automated techniques could possibly be used for the purpose
of operational monitoring, ideally in near real time. New
deep-learning-based detection and classification techniques
promise high accuracy with much faster processing than
the human eye [32,33].

Signals recorded in multiple spatial locations can be used to
localize an event/source. One of the most common position esti-
mation algorithms is the time-difference-of-arrival (TDOA)
technique, in which it is assumed that the wave radiates out
spherically from the source. It uses the different arrival times
of the source signal, e.g. a vocalizing animal, measured at all
receivers, to calculate possible locations of the source [27],
much like mammals use IPD at two ears to estimate source azi-
muth. Differences in arrival times are usually calculated using
cross-correlation [34,35] of the signals in either time-amplitude
or time-frequency representation. These two representations
are prone to the same errors, such as synchronization lags
between the devices [36,37] and wrong position information of
the devices, as well as fluctuations in the wavespeed [38,39],
errors in the calculations of the arrival times/angles [40-42] or
distances that are too large between source and receiver [43]. It
is assumed that the neural mechanisms used by animals to calcu-
late IPDs are similar to cross-correlation of the two signals [44].

In this study, we developed deterministic and Bayesian
(probabilistic) TDOA algorithms to localize African elephants
using seismic and acoustic recordings of their rumbles. We
compare the efficacy of localization with seismic or acoustic
data, providing a novel means of monitoring vocalizing ele-
phants. Given the complexity and frequency differences of
the heterogeneous terrain through which seismic waves pro-
pagate, along with the frequency filtering differences
between seismic and acoustic propagation, it could be
argued that acoustic waves might have advantages in terms
of accuracy of localization of rumbles and potential appli-
cations, yet here we aimed to explicitly test that hypothesis.
We therefore tested if seismic waves alone are sufficient to
localize elephant rumbles within a practical degree of accu-
racy and compared localization accuracy with the same
framework using the co-generated acoustic signals, as well
as a bi-modal framework, i.e. using both. Furthermore, we
aimed to determine the suitability of localization using seis-
mic recording as a tool to monitor elephants and study
their communication, specifically their low-frequency rum-
bles. Overall, this study provided us with crucial insight
into the suitability and accuracy of seismic signals for localiz-
ing elephants with high precision to monitor their behaviour
in complex or unknown terrains, representing an important
step in better understanding their multi-modal means
of communication.

2. Methods

2.1. Data collection
Data were collected in February and March 2019 at Mpala
Ranch on the Laikipia Plateau in central Kenya (0°27'19.26"N,
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Figure 1. Overview of the study area: the study was carried out using four seismic/acoustic stations (coded ETA,NTA,WTA,STA) surrounding a watering hole at Mpala
Ranch, located on the Laikipia Plateau in central Kenya. Satellite image data taken from Google Maps.

36°50'33.02"E) for a continuous duration of three weeks. This
region around the Ewaso Ng'iro River and its tributaries is
characterized by arid and semi-arid climate, consisting mostly
of savannahs and woodlands. Mpala Ranch covers an area of
approximately 48000 acres and is estimated to have over 500
avian and around 100 mammalian species, including large
populations of resident and migrant elephants.

For this particular study, we used data from four broadband
seismometers (Guralp 6TD) and four acoustic sensors (custom-
made) [35], co-located at four locations, and data from 13
motion-triggered camera traps (Reconyx, USA) at separate
locations for partial visual coverage of the area. All devices sur-
rounded a watering hole and were located within about 2m
elevation above the waterhole, which was obstructed by a dam
(about 6-8 m height) at its northern edge (figure 1).

All seismic field sensors were buried about 70 cm deep in
mostly dry-sand soil and were protected by a cage, recording
ground motion in three orthogonal components with a sampling
frequency of 200 Hz. All acoustic sensors were installed inside
the cages, and recorded audio data on four channels, with a
sampling frequency of 44.1kHz and 16bit digitization. For
the purpose of this study, all four channels were stacked to
increase signal strength. All instruments used GPS synchroniza-
tion for accurate timing of signals. The seismic sensors have a flat
frequency response between 0.03Hz and 100Hz in all com-
ponents [45]. The microphones” sensors (ICS 41350) have a flat
frequency response between 100 Hz and 4 kHz with a roll-off
in amplitude for lower frequencies, i.e. =2 dB for 50 Hz, —4 dB
for 40Hz, —10dB for 20 Hz [46]. All sensor and camera data
were locally stored onto hard drives. Seismic and acoustic data
were stored in MSEED format (a simplified version of SEED—
Standard for the Exchange of Earthquake Data [47]), and
images were saved as JPG raster formats.

We applied a sequence of data-processing steps to turn raw
seismic and acoustic signals into a measurement that was

robust for localization algorithms (figure 2). Details of the tech-
niques are given in the following sections and electronic
supplementary material.

2.2. Pre-processing of data

To detect time—frequency-dependent signals, such as rumble
vocalizations, we applied a short-time Fourier transformation
to the signals, to create two-dimensional spectrograms of the
data (figure 24,b). In such an image, the x-axis represents time,
the y-axis represents frequency and the colour represents magni-
tude, or amplitude, of a frequency at a particular time. This
calculation is typically done over certain windows of the
signal, with overlapping windows ensuring sufficient resolution
in time. Furthermore, we truncated high frequencies that did not
include any signals.

Important factors that constitute the spectro-temporal
structure of a sound are frequency contours and spectral peaks.
To further enhance the contours of vocalizations in the
spectrograms, we applied an automated image enhancement
algorithm on all data. The idea, here, is to enhance vocalizations
with sharp contours and spectral peaks along the frequency
axis in the spectrogram, whereas homogeneous and isotropic
signals, such as noise or other broadband signals, are
attenuated. The detection of contours and peaks in spectrograms
is similar to detecting edges and corners in images. A powerful
method for the detection of such structures is the structure
tensor of an image [48], which describes image gradients
and which we applied to the spectrograms (see electronic
supplementary material).

2.3. Event selection
The event selection process of our method also relied on manual
detection of rumbles in all spectrograms. For this comparative
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Figure 2. lllustration of data processing which applies to acoustic and seismic data: spectrograms (b) of the four recorded rumble signals (a) are used to calculate
the TDOA between the station pairs, by correlating the spectrograms along the time axis (c). Calculated TDOAs are then used in the various localization frameworks

to estimate the position of the elephant source (d).

study, we set the following requirements for signals to be
considered:

— All four acoustic and all four seismic sensors recorded the
event.

— All eight recordings showed a rumble (manual visual assess-
ment of the spectrograms, looking for signals of 3-5s
duration with characteristic frequency modulation—first
increasing then decreasing peak frequency between 20 Hz
and 40 Hz).

— For all station pairs, there was good enough correlation
between the signals, measured by the peak prominence of
the correlation, i.e. the vertical distance between one single
peak and its lowest contour line.

Regarding the first criterion, because of battery issues at one
seismic station, the amount of time that all four stations could
record was halved. Regarding the second criterion, we discov-
ered an abundance of seismic rumbles in the data; however,
most of them were not visible at all stations. This could be due
to multiple sources of seismic vibration obfuscating the signals,
as our chosen location was crowded with wildlife. For the
third criterion, by setting a minimum value of all peak promi-
nences in the correlation step, we minimized the chances of
selecting an event that was not suitable for localization; however,
it is possible that some events were missed. We used a peak-
finding algorithm in the correlation curves and chose events
based on the prominence of the detected peak, but not the
actual correlation value due to the high noise in some of the data.

Following the above protocol, we isolated nine events for
processing and subsequent deterministic and probabilistic local-
ization (electronic supplementary material). Since camera traps
were not recording continuously, nor were they covering all
locations by the dam, they only provided images for visual
ground truthing for one of the nine events. To further validate
the accuracy of the seismic localization, we also include two
additional events in electronic supplementary material, Events
Al and A2, figures S10-513 and table S1 that did not explicitly
meet the selection criteria; there was no clearly visible rumble
on all four acoustic stations for both of them. However, owing
to camera ground truthing in both cases, we can show successful
localization of the rumbling elephants. We suggest that our event
selection criteria are conservative and the presented method
could work on data with lower signal-to-noise ratios across
all signals.

2.4. Localization methods

We considered all four stations to be in a two-dimensional hori-
zontal plane. The signal (in our case a rumble vocalization)
generated by the elephant at location x at time t was received
by stations p; (i=0,1,2,3) at time t; respectively, depending

on the speed of propagation v of the signal and the distance
llx—p;ll, where the station that received the signal first was
defined as py. We then know that the signal has travelled for
(tp—1t) time and a distance of v-(ty—t)= llx —pll, where ¢
and x may not be known. The TDOA between py and p; (i #0)
can then be used with an estimate of the wavespeed v to calculate
the difference in distance v-(t;—1ty) travelled by the signal
between the time f, (when station py registered the signal) and
time t; (when station p; registered the same signal). Figure 3a
shows the relationship between the location of the event (i.e.
animal), the position of the stations and the relative TDOAs
(t; — to) (for an arbitrary wavespeed v).

For each station pair py/p;, the calculated TDOA represents a
two-dimensional hyperbola containing possible locations of x
(for an illustrative example, see figure 3b). In theory, two
equations (or three stations in total) are enough to narrow x
down to at least two points, and with three equations (or four
stations) to exactly one position, by either plotting the hyperbolas
onto a map or, as in our case, solving the problem numerically
(see electronic supplementary material).

We used and compared two distinct methods of localization:
deterministic and probabilistic, calculating TDOAs between
station pairs using cross-correlation of the spectrograms (time/
frequency representations) of the respective signals (see elec-
tronic supplementary material). While amplitude-based
cross-correlation could be more beneficial for real-time appli-
cations we are using spectrogram-based cross-correlation as it
has given better results in our framework/analysis. In summary,
both methods estimated the vocalizing animal’s positions and a
corresponding wavespeed that best fits all of the calculated
TDOA values. The deterministic method used the calculated
TDOA values and a range of wavespeed guesses, whereas the
probabilistic method incorporated uncertainties in the TDOA cal-
culations and wavespeeds.

2.5. Localization accuracy/residual

We calculated the estimated error of the model (i.e. residual, unit:
metres) in both methods by comparing the calculated TDOAs,
ie. calculated time delays from correlating the spectrogram
pairs (see §2.4), with the estimated TDOAs (using the estimated
location, its distance to the respective stations and the estimated
wavespeed, we can estimate the time it takes the signal to travel
to each station and, hence, estimate the corresponding TDOAs).
In an ideal case, the localization output should give the same
TDOA values for calculated and estimated outputs. The differ-
ence between the calculated TDOA and the estimated TDOA
was averaged across station pairs and divided by the wavespeed
estimate to give a measure of error, or conversely accuracy of the
localization in metres. For each localization event we calculated
the smallest location error over the solution samples proposed
by each localization method.
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Figure 3. lllustration of the relationship between animal, receiver location, TDOAs and corresponding hyperbolas. (a) Position x is the animal’s location, each point p
is a station, v is the estimated wavespeed and ¢; is the time at which the signal was recorded at p. The circles represent the times taken for the sound to travel from
the centre along the length of the radius. (b) Each station pair and its respective hyperbola is highlighted in a different colour. The estimated location of the

vocalizing animal is at the intersection of all hyperbolas, i.e. here position x.

3. Results

We applied our data-processing steps and localization algor-
ithms for both seismic and acoustic data from a selection of
nine elephant rumbles that met our inclusion criteria, ensur-
ing sufficient seismic and acoustic signal strength and
correlation at all four stations. For each rumble, we calculated
the ‘best’ location estimate and its corresponding residual, i.e.
its associated error estimate, using the deterministic approach
(on seismic and acoustic data) and the probabilistic approach
(on seismic, acoustic and combined data) separately. Figure 4
plots the location estimates of each rumble on a map for all
five data/approach combinations and table 1 gives the day,
time and location residuals of each rumble event.

3.1. Method validation

Our two independent methods show considerably precise
localization of all elephant rumbles, as can be seen by an
overlap of location and residual estimates of less than 25 m
(figure 4 and table 1) with stations being up to 360 m apart.
The independent methods also showed good agreement in
the location of the elephant; locations (figure 4) and corre-
sponding errors (table 1) were highly correlated between
the two independent methods using either acoustic or seismic
data (unimodal), with a Pearson correlation coefficient of
0.9898 and 0.9990 calculated between the residuals of the
two methods for all rumbles for only acoustic and only seis-
mic data, respectively. We verified the position of the
rumbling elephant for one out of nine rumbles for which
we had a camera trap image (electronic supplementary
material, figure S1), further supporting the validity of the
localization outcomes in this field case where no other
ground truth reference was available.

3.2. Seismic versus acoustic localization

Both seismic and acoustic data alone were sufficient to loca-
lize the elephant that generated the rumble, with generally
overlapping location estimates (figure 4). The average
residual error for acoustic localization was 6.77 m (determi-
nistic method) and 5.18m (probabilistic method). By
comparison, the average error for seismic localization was
514m (deterministic method) and 4.45m (probabilistic

method). Seismic localization therefore caused a reduction
in error of around 20% compared with acoustic localiza-
tion (table 1). Six out of all nine rumbles showed smaller
residual values for seismic localization in both localization
frameworks (deterministic, probabilistic). Using both
seismic and acoustic data bimodally caused a reduction in
accuracy compared with using seismic or acoustic data
alone; residual estimates of the joint method (i.e. using both
seismic and acoustic data using the probabilistic method)
were larger than the unimodal methods (mean: 11.59 m)
and showed correlation values of 0.7540 and 0.5067 (com-
pared with probabilistic seismic and acoustic residuals,
respectively).

3.3. Example localization of one rumble
Going into more detail for one rumble allows us to demon-
strate the processing steps and localization framework in
more detail, highlighting the advantages, limitations and
potential of this method to localize elephants. Here, we will
demonstrate all steps for one selected rumble (event 8 in
table 1), the event where location was verified using camera
trap footage. Full outputs from the other selected rumbles
can be found in the electronic supplementary material.
Spectrograms for all four seismic and all four acoustic
stations for event 8 are shown in figures 5a and 6a. By inspec-
tion of maximum intensity, the rumble was most pronounced
at station ETA; hence, this station was chosen to be py, while
the other three stations were py /5,3 in arbitrary order. The fol-
lowing analysis was done separately for acoustic and seismic
signals: spectrograms were enhanced and correlated, respect-
ively (for more details, including equations, see electronic
supplementary material), resulting in three TDOA values
(ETA/WTA, ETA/NTA, ETA/STA) and their respective pro-
minences, a measure for correlation quality. An example of
the three relative correlations, and the resulting time lags
(TDOAs) and prominences, is shown in figures 5b and 6b.
Localization results are shown in figure 7a (deterministic)
and figure 7b (probabilistic). For both methods, the location
and corresponding constant wavespeed were chosen out of
all localization estimates (coloured dots in figure 7) that mini-
mized the residual estimate. Both methods, deterministic and
probabilistic, localized the rumble with a minimum residual
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Figure 4. Summary of all estimated locations for the nine events that met our inclusion criteria: each event is shown in a different colour, with different icons for
the various localization methods (i.e. deterministic, probabilistic) and data types (i.e. acoustic, seismic, multi-modal). Locations represent the position estimated by
each method with the smallest residual error. Satellite image data taken from Google Maps.

error smaller than 2m (table 1). The rumble event was cap-
tured by one of the camera traps, with the photo taken 10s
past the event (see electronic supplementary material,
figure S1). This confirmed that elephants were present at
the estimated time and position.

4. Discussion

In this study, we aimed to determine if seismic recordings of
elephant rumbles could be used to locate African elephants
and determine whether these recordings could be used as a
tool to localize elephants in order to monitor them and
study the use of seismic waves in elephant communication.
We focused our efforts on a quantitative comparison of two
independent localization methods and their accuracy, based
on a residual error of each location estimate, to provide vali-
dation of the outputs of the approach. Furthermore, we
compared the use of seismic and acoustic recordings to loca-
lize elephant rumbles, including the use of uni- and bimodal
data. Our results highlight the advantages of using seismic
data to monitor and study African elephants.

For our selected rumbles, seismic signals alone were suf-
ficient to localize, but the combination of acoustic and seismic
data did not provide additional information using our

probabilistic framework. This suggests that deploying seismic
sensors can be sufficient to localize elephant rumbles using
either approach set out here, with no added advantage for
localization in having multi-modal systems. The underlying
reasons for the less accurate combination approach may
stem from the fact that each unimodal method inherits
errors by: (i) timing measurement errors by all receivers
and their synchronizing clocks, with corresponding impli-
cations for the cross-correlation step; (ii) numerical errors in
the calculation of TDOAs; and (iii) estimating a constant
wavespeed. The proposed joint method independently esti-
mates wavespeeds for both types of wave, uses data from
all four acoustic and all four seismic stations and calculates
TDOAs for each method separately. This method is conse-
quently prone to more sources of error, which ultimately
could contribute to the larger residual estimates.

Our results also suggest that, on average, seismic methods
outperform purely acoustic and joint methods, at least given
our data selection and processing. This may suggest an
advantage to deploying seismic over acoustic or multi-
modal sensors for the purpose of localizing elephants from
their rumbles. Given our inclusion criteria for rumble data,
this was specifically in the cases where signals show a clearly
visible spectrogram pattern upon manual assessment on both
instrument types. This can be explained by the differences in
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Table 1. Summary of estimated residuals: time and day of each event and minimum residual estimates. Residuals are shown in metres and the most reliable

localizations (lowest residual error) for each rumble and localization method are shown in italics.

smallest residual error (m)

deterministic

acoustic
1 23 February 2019 20:43:32 3.98
2 BRebnay2019 210147 419
o e Februn y o e im
4 BRebay 2019 214412 24
5 24 February 2019 002122 1304
6 4Febray 2019 174230 045
average ST R

the spectrograms between seismic and acoustic recordings.
Our data show single fundamental vocalization frequencies
(no harmonics) in the seismic spectrum, and multiple harmo-
nics for co-generated acoustic vocalizations. This introduces
ambiguity in the correlation of spectrograms in the acoustic
data as different frequency content propagates at different
speeds (dispersion), which possibly leads to the larger
errors in the localization framework for the acoustic data.
The spectrogram differences arise from differences in wave
propagation between the air and ground, where the seismic
wave attenuates higher frequencies faster (i.e. the ground
acts as a low pass filter) [49]. This is a general effect and so
we would expect the advantage in accuracy from seismic
compared with acoustic recording to generally apply to
other locations as well.

The relative performance of seismic data compared with
acoustic data may, at first glimpse, appear surprising, given
that the methods rely on an assumption of a single average
wavespeed in the propagating medium. This is often contra-
vened with seismic waves since the terrain is so variable [50].
Despite a complex terrain around the four stations, the local-
ization performance of seismic recordings suggests that the
heterogeneity of the seismic wavespeed might not be such
a limiting factor over these spatial scales (for our data
inclusion criteria).

Our data inclusion criteria meant that only nine events
were selected for analysis, as they required discernible signals
on all four instrument locations and both types. So, how
could the number of rumbles successfully localized be
increased and the method be made more robust to changing
conditions? For the three-week duration of this work, we
have found 38 events that were detected by the four acoustic
sensors (but not by all four seismic sensors) and 29 that were
detected by the four seismic sensors (but not by all four
acoustic sensors). Many more rumbles were recorded on indi-
vidual stations, but the complexity of the site used for
recording may have constrained this because of its influence
on wave amplitude and propagation distance; the site chosen
for our recordings was a complex propagation terrain,

deterministic probabilistic probabilistic probabilistic
seismic acoustic seismic joint
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crowded with continuous seismic and acoustic sources,
meaning that many of them were overlapping, i.e. multiple
rumbles from different animals arriving at one station at
the same time, or they were not visible at one station or
more. Therefore, only a subset of the recordings met our
strict criteria. The terrain included unconsolidated sand,
water, wet mud and a dam with significant local topography,
which could limit the propagation distances of other calls so
that they were not discernible at all four stations. Being the
sole source of water over a large terrain, it attracted many
species, and upwards of hundreds of elephants simul-
taneously. Indeed, seismic and acoustic noise levels are
higher during the day than at night at the dam, and some
of our equipment was not recording for some nights. It was
also a partially windy location, introducing other forms of
acoustic and seismic noise. All these factors contributed to
this being a challenging locality in terms of signal versus
noise. In other terrains, seismic or acoustic signals may well
be a lot cleaner, and amplitudes clearly discernible over
much greater distances [9], but indeed the reverse could
also be true. For this method to have useful field applications,
the method will need to locate more instances of rumbles in
these complex locations. Given the promising results we
have presented here, localization algorithms working with a
mixture of acoustic and seismic recordings or with a smaller
number of signals, rather than requiring all four acoustic or
all four seismic signals to be present, could be developed.
Furthermore, chosen instruments generally play a role in
the hit count for signal-to-noise ratios: in this study, we com-
pared an off-the-shelf broadband seismic sensor with three
components with an off-the-shelf acoustic sensor for listening
to low-frequency (infrasound) vocalizations. The acoustic
sensors used in this study show low sensitivity for frequen-
cies between 20 and 40Hz. Acoustic localization is,
therefore, mostly based on harmonics, i.e. f;,, whereas seis-
mic correlation/localization is almost exclusively based on
the fundamental frequency, fo. Specifically designed acous-
tic sensors can possibly beat seismic sensors in terms of
localization accuracy, if they could record the fundamental
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frequency and its harmonics of the rumble vocalization
with a larger sensitivity and thus, once corrected for
phase/group dispersal through pulse compression, obtain a
sharper correlation peak. As such, one cannot extrapolate
our findings to arbitrary settings or instrumentation, but
being located in a challenging noise environment using
typical instrumentation it is likely to apply to other scenarios
as well. We suggest that future work should investigate
the localization capabilities of infrasonic acoustic sensors
and assess how sensor types and sensitivity ranges influence
the localization accuracy. We believe that other environ-
mental factors such as wind and other weather effects,
topography and biotic or anthropogenic acoustic noise
could also hamper infrasonic propagation and seismic equip-
ment could still stand the test as a complementary tool for
(infrasonic) wildlife monitoring,.

The use of multiple sensors with a denser array covering
the same overall area would also increase the number of ele-
phant rumbles successfully localized as it would increase the
signal-to-noise ratio, decrease propagation distances and
make the method more robust to different locations and
changing abiotic and biotic conditions. Furthermore, localiz-
ation algorithms could benefit from varying wavespeeds,
depending on the type of ground and direction of propagation,

or full three-dimensional wave propagation models, taking
into account variations structure and
topography [51].

Our results have implications for understanding how ele-
phants may be using the seismic and acoustic components of
their rumbles to transfer information. Firstly, detection of
either acoustic or seismic TDOAs, in theory, would allow
the elephant to localize an elephant rumble. For acoustic
and seismic estimated wavespeeds of 350ms”!

in geological

and
400 m s~! and an interaural distance of 1 m, differences in
arrival times would be 2.86ms and 2.50ms, respectively.
Note that, for these wavespeeds on this terrain, it is unlikely
that elephants can use the TDOAs between seismic and
acoustic waves to orientate, as previously proposed [11],
since the wavespeeds are very similar (but it may be more
likely on geological structures with slower wavespeeds such
as unconsolidated sand) [9]. Yet, localization may be easier
for elephants using seismic waves in cases when both signals
are discernible because of the increased frequency filtering,
decreased dispersion and less ambiguity in correlating sig-
nals between ears. This suggests that using IPD (TDOAs)
for localization will be easier using the seismic component
of a rumble. Although it has been shown that elephants
respond to seismic vocalizations [6], with detection using
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Figure 7. Localization results for event 8. (a) Deterministic location results with circle markers showing the estimated locations for different acoustic (cyan) and
seismic (yellow) wavespeeds. (b) Probabilistic location results with circle markers showing the estimated location for each sample from the posterior distribution
using acoustic data (cyan), seismic data (yellow) or both (multi-modal, orange). Satellite image data taken from Google Maps.

the feet or ears, the underlying psycho-acoustic process is yet
to be confirmed. The differences in filtering during propa-
gation between seismic and acoustic components will have
important implications for long-distance communication in
elephants [52,53]. This is an exciting avenue for future
research, which will rely on methods to accurately locate
the source of the rumble, as we have outlined here.

To successfully localize rumbles in the natural context,
the elephants will need to cope with changing signal-to-
noise ratios as physical (propagation distances, wind,
geology, topology, vegetation) and biological (properties
of rumble, other animals) factors vary. One way to cope
with this would be to use either or both modes for locational
information as external conditions change that favour the
detection of one mode over another. Equally, elephants may
repeat calls or choose to call under lower noise conditions in
order to maximize the likelihood of localization by receivers,
and receivers could use behavioural adaptations such as
head scanning, turning, freezing and/or leaning to aid in
signal detection and localization [8]. Further research shall
give detailed insights into how elephants cope with the phys-
ical variability of their large and harsh terrains to promote
information transfer, including the relative importance of the
acoustic and seismic components of rumbles.

We propose that localizing elephant rumbles using seis-
mic recordings has promising potential as a practical tool
for research and conservation. The current system acts as
a datalogger for passive acoustic monitoring, taking less
than 20s on a single CPU (Intel i5-9400F). Expanding our
framework to real-time capabilities would require local
event detection (e.g. to classify rumbles) and wirelessly

communicating onset times to a central server. We plan to
investigate this promising avenue in future research.
Beyond localization, this near real-time monitoring
approach could be expanded to categorizing sources, thus
locating particular animals or behaviours of interest, such
as detecting alarm rumbles in elephants. It has been
suggested that rumbles contain information on the individual
animal and its emotional state [1,2,54]. Localization and
classification approaches could, therefore, be used to monitor
individual elephants, or entire herds, and their welfare across
a spatially constrained area using dense arrays. Reliable
detection of alarm behaviour in elephants in near real time
could help in detecting poaching threats or mitigate
human-elephant conflict by warning settlements that ele-
phants are in their proximity [55-57]. In addition to the
warning, tools could be developed to deter elephants when
coming too close to human settlements, such as playing
back sounds that represent threats to the animals (acousti-
cally and/or seismically); however, negative stimulus
reinforcement would be required to avoid habituation.
Beyond elephants, recent developments in passive acous-
tic monitoring, the method of studying wildlife using
acoustic recordings, show promising results in the detection
and classification of animal vocalizations using deep learning
and supervised training on labelled data [58], an approach
which also lends itself to seismic recordings [59]. Our data
showed a cacophony of biological (and anthropogenic)
sounds, including the steps of hoofed animals such as the
Nubian giraffe (Giraffa camelopardalis camelopardalis), which
is critically endangered, and the Grévy’s zebra (Equus
grevyi), which is endangered. Remote localization and
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monitoring using their seismic ‘footprints’ could contribute
to conservation of those species, a better understanding of
group behaviour and ecological interactions without the
need for invasive tagging of wildlife.

In conclusion, we have revealed the locational infor-
mation present in the seismic components of elephant
rumbles, where the localization quality of the signal renders
it likely that this plays a role in elephant social behaviour,
despite the possible limitations that the terrain poses as the
propagation medium. We showed that seismic localization
has better accuracy than acoustic localization using data
from the same event for most of our chosen dataset (six/
seven out of nine events, depending on the algorithm).
This also brings to light the possibility of seismic wildlife
monitoring, which has several advantages over other
methods such as GPS tracking or camera trap surveillance:
seismic sensors are easy to bury whereas acoustic micro-
phones have to be placed above ground and are possibly
exposed to strong winds, rain and solar radiation and
damage by wildlife. Furthermore, they are omnidirectional
and immune to thick vegetation, both of which impact
camera traps. Practical approaches that allow non-invasive
remote monitoring of animals will become increasingly
important in the context of ongoing climate change, habitat
loss and human-wildlife conflict, to better understand and
protect biodiversity.
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