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Growth-associated protein-43 (GAP-43) and brain acid-soluble protein 1 (BASP1)
regulate actin dynamics and presynaptic vesicle cycling at axon terminals, thereby
facilitating axonal growth, regeneration, and plasticity. These functions highly depend on
changes in GAP-43 and BASP1 expression levels and post-translational modifications
such as phosphorylation. Interestingly, examinations of GAP-43 and BASP1 in
neurodegenerative diseases reveal alterations in their expression and phosphorylation
profiles. This review provides an overview of the structural properties, regulations,
and functions of GAP-43 and BASP1, highlighting their involvement in neural injury
response and regeneration. By discussing GAP-43 and BASP1 in the context of
neurodegenerative diseases, we also explore the therapeutic potential of modulating
their activities to compensate for neuron loss in neurodegenerative diseases.

Keywords: GAP-43, BASP1, phosphorylation, neural injury response, axon regeneration, neurodegenerative
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INTRODUCTION

Axons integrate external cues to grow toward and arborize their terminals onto their correct targets.
Such axonal behavior is critical for establishing proper connections, regenerating injured nerves,
and retaining anatomical plasticity in adult brains (Skene, 1989). A group of growth-associated
proteins (>100) (Costigan et al., 2002; Xiao et al., 2002), whose expression is upregulated during
neuronal development and regeneration, mediates these functions (Jacobson et al., 1986; Widmer
and Caroni, 1990; Mason, 2002). Growth-associated protein-43 (GAP-43) and brain acid-soluble
protein 1 (BASP1) are two members of this group with many shared structural properties and
functions (Mosevitsky, 2005). GAP-43 is solely expressed in the nervous system (Karns et al.,
1987), whereas BASP1 is highly expressed in the nervous system and some non-neural tissues
including the kidney and testis (Mosevitsky et al., 1997; Mosevitsky and Silicheva, 2011). Within
neurons, GAP-43, and BASP1 are enriched in axon terminals (Meiri et al., 1986; Widmer and
Caroni, 1990), where they regulate the actin cytoskeleton (Wiederkehr et al., 1997; Laux et al.,
2000). By modulating actin dynamics, GAP-43, and BASP1 achieve their physiological functions
in neurodevelopment, synaptic function, and nerve regeneration.
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PHYSIOLOGICAL FUNCTIONS IN THE
NERVOUS SYSTEM

Neurodevelopment
Growth-associated protein-43 and BASP1 are highly expressed
during periods of active axon growth and synaptogenesis
(McGuire et al., 1988; De La Monte et al., 1989; Widmer and
Caroni, 1990). Their critical involvement in neurodevelopment
has been demonstrated by gene knockout studies. Homozygous
knockout of GAP-43 (GAP-43−/−) or BASP1 (BASP1−/−)
leads to high neonatal lethality, resulting in 5–10% survival to
adulthood (Strittmatter et al., 1995; Frey et al., 2000; Metz and
Schwab, 2004). Surviving GAP-43−/− animals exhibit defective
pathfinding of retinal and commissural axons (Strittmatter et al.,
1995; Shen et al., 2002), as well as an abnormal somatotopic
map in the barrel cortex (Maier et al., 1999). In reflection
of these anatomical defects, GAP-43−/− animals demonstrate
motor, sensory, and behavioral impairments (Metz and Schwab,
2004). Surviving BASP1−/− animals also present evidence of
impaired neurodevelopment including enlarged ventricles in the
brain, axonal and synaptic abnormalities in the neocortex and
hippocampus, and hyperactive behavior (Frey et al., 2000).

Synaptic Function
As axons complete the innervation of their target areas, GAP-
43 and BASP1 are downregulated in most brain regions.
Interestingly, they remain highly expressed in areas of the
adult brain implicated in learning and memory, including the
neocortex and hippocampus (Benowitz et al., 1988; McGuire
et al., 1988; Neve et al., 1988; Frey et al., 2000). In support of
their importance in information storage, heterozygous GAP-43
knockout mice (GAP-43+/−) exhibit a selective impairment in
contextual memory (Rekart et al., 2005). This phenotype can be
explained by various synaptic functions of GAP-43. GAP-43 was
shown to regulate endocytosis via its interaction with rabaptin-
5, which functions in endocytic membrane fusion (Neve et al.,
1998), and as a substrate of caspase-3, which mediates AMPA
receptor endocytosis (Han et al., 2013). Also, antibodies against
GAP-43 decreased the release of glutamate and noradrenaline
(Dekker et al., 1989a; Hens et al., 1998), indicating its importance
in neurotransmitter release. This function is thought to be
mediated, at least in part, by its interaction with the presynaptic
vesicle fusion complex (Syntaxin, SNAP-25, and VAMP) (Haruta
et al., 1997). Moreover, GAP-43 was shown to enhance long-
term potentiation (Routtenberg and Lovinger, 1985; Lovinger
et al., 1986; Hulo et al., 2002). The presence of BASP1 on
synaptic vesicles (Yamamoto et al., 1997) and its identification
as a caspase-3 substrate (Han et al., 2013) suggest its potential
role in synaptic vesicle cycling, which may have implications for
neurotransmission, synaptic plasticity, and information storage.

Nerve Regeneration
Another circumstance under which GAP-43 and BASP1 are
upregulated is nerve regeneration following injury (Skene
and Willard, 1981; Caroni et al., 1997). An increase in
GAP-43 and BASP1 mRNA levels strongly correlates with

enhanced regenerative capacity. This is evidenced by their
robust upregulation in the regenerating dorsal root ganglion
(DRG) axons following sciatic nerve injury but not in the non-
regenerating DRG axons following dorsal rhizotomy (Mason,
2002). The upregulation of GAP-43 and BASP1 also correlated
with axonal sprouting after stroke in the barrel cortex
(Carmichael et al., 2005). Additionally, an increase in GAP-
43 was associated with optogenetic-induced functional recovery
from stroke in the primary motor cortex (Cheng et al., 2014).
In a different rodent model of stroke, antisense oligonucleotides
to GAP-43 abolished the enhancement of functional recovery
induced by the basic fibroblast growth factor (Kawamata et al.,
1999). These observations from rodent stroke models hint
at the importance of GAP-43 in neuronal recovery following
injury. More importantly, GAP-43 was shown to be essential
for the regenerative response through knockdown studies. In
adult rodents, climbing fibers retain high levels of GAP-43
and demonstrate structural plasticity after injury (Grasselli
and Strata, 2013). Knockdown of GAP-43 in climbing fibers
inhibited the sprouting of their axonal branches following
laser-axotomy (Allegra Mascaro et al., 2013) and lesion of
the inferior olive, where these fibers originate (Grasselli et al.,
2011). Overexpression studies involving GAP-43 and BASP1
show these proteins are sufficient for f-actin accumulation
and subsequent neurite formation in primary sensory neurons
(Aigner and Caroni, 1995) and in Purkinje neurons (Buffo et al.,
1997). Moreover, co-overexpression of GAP-43 and BASP1 was
sufficient to drive the regeneration of DRG axons following
spinal cord lesion in adult mice when peripheral nerve graft was
provided (Bomze et al., 2001).

INVOLVEMENT IN NEURAL INJURY
RESPONSE

In the central (CNS) and peripheral nervous systems (PNS),
different external and internal factors lead to disparate
outcomes of injury response. In the CNS, glial scar (Silver
and Miller, 2004) and inhibitory glial factors such as myelin-
associated glycoproteins and Nogo (Filbin, 2003) impede
neuronal regeneration. Additionally, the inherent lack of
axonal integrins and growth factor receptors limit the
regrowth of neurons in the CNS (Koseki et al., 2017). As a
result, positive outcomes of CNS injury remain limited to
neuroprotection and marginal regenerative response. Neural
injury stimulates neurons and glia to release cytokines and
neurotrophic factors, which can activate growth-associated
proteins such as GAP-43 and BASP1 to promote neuroprotection
and regeneration.

Cytokine Signaling
Upon injury, leakage from damaged or dying cells leads to an
excess of glutamate in the extracellular space (Bullock et al.,
1998). This stimulates astrocytes, microglia, and neurons to
secrete cytokines such as interleukin-6 (IL-6) and -10 (IL-
10) (Morganti-Kossman et al., 1997; Acarin et al., 2000).
Accordingly, IL-6 and -10 were found to be elevated in
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the cerebrospinal fluid and serum of patients with severe
traumatic brain injury (TBI) (Kossmann et al., 1995; Csuka
et al., 1999). After spinal cord injury, IL-6 treatment was
shown to activate the JAK/STAT3 and PI3K/Akt pathways,
upregulate GAP-43 and BASP1, and promote neurite outgrowth
in vitro and synaptogenesis in vivo (Yang et al., 2012, 2015;
Figure 1). The upregulation of GAP-43 and BASP1 was
sensitive to the JAK2 inhibitor AG490 (Yang et al., 2015)
but was not examined with a PI3K inhibitor. After oxygen-
glucose deprivation, IL-10 treatment was shown to activate the
JAK/STAT3 and PI3K/Akt pathways, upregulate GAP-43, and
facilitate neuroprotection, neurite outgrowth, and synaptogenesis
in vitro (Lin et al., 2015; Chen et al., 2016; Figure 1).
The upregulation of GAP-43 was shown to be sensitive to
the PI3K inhibitor LY294002 (Lin et al., 2015) but was not
examined with a JAK2 inhibitor. The extent to which the neurite

outgrowth observed in vitro translates into in vivo regeneration
remains unclear.

Neurotrophic Factor Signaling
Following injury, neurotrophic factors such as the nerve growth
factor (NGF) (DeKosky et al., 1994; Chiaretti et al., 2009)
and brain-derived neurotrophic factor (BDNF) (Miyake et al.,
2002; Rostami et al., 2014) are upregulated in response to
glutamate (Wetmore et al., 1994; Gwag et al., 1997) and
cytokines (Kossmann et al., 1996). NGF and BDNF bind
tropomyosin receptor kinase A and B, respectively, to initiate
cell survival signaling via the PI3K/Akt pathway (Nguyen et al.,
2010; Figure 1). In rodent models of stroke and TBI, the
activation of NGF and BDNF signaling was shown to promote
neuroprotection, synaptogenesis, and neurogenesis (Wu et al.,
2008; Qi et al., 2014; Gudasheva et al., 2019). Such beneficial

FIGURE 1 | Injury-induced signaling pathways that regulate GAP-43 and BASP1. Injuries in the central nervous system leads to the release of cytokines and
neurotrophins from damaged neurons and activated glia. Cytokines and neurotrophins bind their receptors on surviving neurons to activate various signaling
cascades that regulate the expression level and phosphorylation of GAP-43 and BASP1. Alterations in GAP-43 and BASP1 levels and phosphorylation are
associated with neuroprotection, synaptogenesis, neurite outgrowth, and neurogenesis.
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upregulation of NGF and BDNF was accompanied by an increase
in GAP-43 levels when optogenetic stimulations were provided
after stroke (Cheng et al., 2014). Given that BASP1 is similarly
upregulated after stroke (Carmichael et al., 2005), its increase
may also be mediated by NGF and BDNF. Moreover, GAP-
43 was shown to be an essential effector of BDNF-driven
neuroprotection (Gupta et al., 2009).

STRUCTURAL PROPERTIES AND
DOMAINS

Intrinsic Disorder and Phase Separation
Growth-associated protein-43 and BASP1 are acidic proteins
with isoelectric points of 4.4–4.6 (Mosevitsky et al., 1994).
Their molecular weights are 23–25 kDa, but they appear at
higher molecular weights on SDS-PAGE (Mosevitsky et al.,
1994). These proteins are enriched in alanine (22% in GAP-
43, 21% in BASP1) and proline (8% in GAP-43, 12% in
BASP1), which gives rise to a high content of type II
polyproline helix (32 ± 5% in GAP-43, 37 ± 2% in BASP1)
characteristic of intrinsically disordered proteins (Forsova and
Zakharov, 2016). Nuclear magnetic resonance spectroscopy also
indicates that GAP-43 and BASP1 have unordered structures
(Zhang et al., 1994; Geist et al., 2013). Intrinsically disordered
proteins lack a stable three-dimensional structure and have
the ability to engage in multivalent interactions (Haynes et al.,
2006). Through multivalent interactions, intrinsically disordered
proteins undergo liquid-liquid phase separation and form
membraneless compartments that facilitate their functions (Li
et al., 2012). Many proteins involved in actin assembly have
intrinsically disordered regions, and phase separation mediated
by these regions underlies their regulation of actin dynamics
(Sun et al., 2017; Miao et al., 2018). Moreover, phosphorylation
of intrinsically disordered proteins affects phase separation by
modulating their charge and electrostatic interactions (Aumiller
and Keating, 2016; Miao et al., 2018). Given that GAP-43
and BASP1 are phosphoproteins, they may transmit signals
from kinases and phosphatases to the actin cytoskeleton via
phase separation.

PEST Sequence and High Turnover Rate
Growth-associated protein-43 and BASP1 have peptide
sequences rich in proline, glutamate, serine, and threonine
(PEST) (Barnes and Gomes, 1995; Mosevitsky et al., 1997).
While PEST regions vary in their sequences and lengths, they all
serve as signals for rapid proteolysis (Rechsteiner and Rogers,
1996). The presence of PEST sequences indicates that GAP-43
and BASP1 are short-lived proteins, however, this has yet to be
experimentally verified.

Effector Domain and CaM Binding
Growth-associated protein-43 and BASP1 have regions termed
the effector domain (ED) that are enriched in basic and
hydrophobic residues, bind calmodulin (CaM), and are
phosphorylated by protein kinase C (PKC) (Cimler et al., 1985;

Apel et al., 1990; Maekawa et al., 1993). The basic and
hydrophobic residues in the ED also contribute to membrane
association of these proteins (O’Neil and DeGrado, 1990;
Mosevitsky et al., 1997; Mosevitsky, 2005). GAP-43 ED consists
of residues 37–52 (KIQASFRGHITRKKLK) (Mosevitsky, 2005;
Figure 2), which includes a canonical CaM-binding site termed
the IQ motif (IQxxxRGxxxR) (Bähler and Rhoads, 2002).
GAP-43 was shown to bind CaM with higher affinity in the
absence of or at low Ca2+ and to dissociate at high Ca2+

(Andreasen et al., 1983; Alexander et al., 1987; Gamby et al.,
1996). Hence, GAP-43 has been proposed to accumulate CaM
at specific sites and release them upon local Ca2+ elevation
to sharpen the downstream response (Alexander et al., 1987;
Mosevitsky, 2005). Unlike GAP-43, BASP1 ED is located at the
N-terminal end (Myristoylation-GGKLSKKKKGY) (Mosevitsky,
2005; Figure 2). BASP1 lacks an IQ motif and instead binds CaM
through alternating basic and hydrophobic residues (Takasaki
et al., 1999). These alternating parts include the myristoyl moiety,
which passes through a tunnel formed by hydrophobic pockets
in the N- and C-terminal domains of CaM (Takasaki et al., 1999;
Matsubara et al., 2004). BASP1 was shown to bind CaM with
stronger affinity than GAP-43 (Maekawa et al., 1994) and in the
presence of Ca2+ (Maekawa et al., 1993), suggesting a different
mode of action than GAP-43.

Formation of Oligomers
Growth-associated protein-43 and BASP1 form oligomers
in the presence of anionic phospholipids or sodium dodecyl
sulfate (SDS) (Zakharov and Mosevitsky, 2010). Among
anionic phospholipids, phosphatidylinositol 4,5-bisphosphate
(PI(4,5)P2) was the most potent driver of oligomerization
(Zakharov and Mosevitsky, 2010). Interestingly, GAP-43 and
BASP1 accumulate PI(4,5)P2 on the inner surface of the plasma
membrane, and this clustering is important for initiating
signaling cascades that regulate the actin cytoskeleton (Laux
et al., 2000). The role of PI(4,5)P2 in driving oligomerization
suggests that PI(4,5)P2-induced oligomers may be important for
this process. Oligomerization of GAP-43 and BASP1 results in
α-helix formation within their EDs while preserving the overall
structural disorder (Forsova and Zakharov, 2016). A significant
level of disorder in oligomers has been proposed to enhance
the flexibility of interactions and to enable the reversion to
monomers (Tompa and Fuxreiter, 2008). In support of the
flexibility in binding, GAP-43 and BASP1 were observed to
form heterooligomers of different stoichiometries in vitro and
in presynaptic membranes (Forsova and Zakharov, 2016). In
agreement with the reversibility, GAP-43 and BASP1 oligomers
were shown to dissociate into monomers upon removal of SDS
or binding of CaM (Zakharov and Mosevitsky, 2010).

TRANSCRIPTIONAL AND
POST-TRANSCRIPTIONAL REGULATION

In developing and regenerating neurons, the levels of GAP-
43 and BASP1 mRNAs and proteins are upregulated (Widmer
and Caroni, 1990; Perrone-Bizzozero et al., 1991; Mason, 2002).
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FIGURE 2 | Schematic of rat GAP-43 and BASP1 structure and post-translational modifications. GAP-43 and BASP1 are characterized by N-terminal fatty acylation,
effector domains, and multiple phosphosites. GAP-43 is palmitoylated at Cysteine-3 and -4, and BASP1 is myristoylated at the N-terminal end. Their effector
domains enable calmodulin binding and are subjected to phosphorylation by PKC. Phosphorylation of GAP-43 by PKC regulates various functions including actin
cytoskeleton dynamics. GAP-43 and BASP1 are also regulated by other kinases and phosphatases, and such post-translational modifications are implicated in
Alzheimer’s and Parkinson’s Diseases.

Studies present conflicting findings regarding the contributions
of transcriptional activation to increased GAP-43 levels. The
GAP-43 gene has two promoters, distal (P1) and proximal
(P2), that are highly conserved between the rat and human
genes (Eggen et al., 1994; de Groen et al., 1995). P1 contains
classical promoter elements including TATA and CCAAT boxes
(Nedivi et al., 1992), as well as a repressive element shown to
inhibit GAP-43 expression in non-neuronal cells (Weber and
Skene, 1997). P2 lacks classical promoter elements but contains
a conserved enhancer box (E1) that can bind basic helix-loop-
helix transcription factors (Chiaramello et al., 1996), which have
critical roles in neural cell fate specification and differentiation
(Dennis et al., 2019). In zebrafish, a 1 kb fragment spanning P1
and P2 of the rat GAP-43 gene was shown to developmentally
regulate the expression of a downstream transgene in neurons

(Udvadia et al., 2001). In contrast to this finding, developing
rat cortical neurons and nerve growth factor-induced PC12
cells showed no change in GAP-43 pre-mRNA levels despite an
increase in GAP-43 mRNA levels (Perrone-Bizzozero et al., 1991).
This finding indicates that mRNA stability mainly contributes to
the observed upregulation of GAP-43. The stabilization of GAP-
43 mRNA is dependent on the highly conserved 3′ untranslated
region (Kohn et al., 1996; Tsai et al., 1997), where the neural-
specific RNA-binding protein HuD binds (Chung et al., 1997).
The expression of HuD and GAP-43 are concomitantly increased
during neuritogenesis (Anderson et al., 2001), in regenerating
nerves (Anderson et al., 2003), and following spatial learning
in rodent hippocampi (Quattrone et al., 2001; Pascale et al.,
2004). Based on these observations, HuD was hypothesized
to stabilize GAP-43 mRNA under physiological conditions. In
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support of this hypothesis, transgenic mice overexpressing HuD
exhibited an increase in GAP-43 mRNA but not pre-mRNA
(Bolognani et al., 2006). Also, the half-life of GAP-43 mRNA
from these transgenic mice was significantly longer than those
from non-transgenic controls (Bolognani et al., 2006). The HuD-
dependent stabilization of GAP-43 mRNA is positively regulated
by PKC (Perrone-Bizzozero et al., 1993; Sanna et al., 2014) and
is inhibited by the KH-type splicing regulatory protein, which
competes with HuD to bind and promote the degradation of
GAP-43 mRNA (Bird et al., 2013). Compared to GAP-43, little is
known about the transcriptional and post-transcriptional control
of BASP1. In the chicken BASP1 gene, a 135 bp region in the 5′
end of exon 1 was shown to bind the transcription factors Sp1 and
Myc (Hartl et al., 2009). This regulatory region was sufficient to
activate transcription and to mediate Myc-induced suppression
of BASP1 (Hartl et al., 2009). Additionally, post-transcriptional
regulation of BASP1 by its processed pseudogene has been
proposed but not experimentally verified (Uzumcu et al., 2009).

POST-TRANSLATIONAL
MODIFICATIONS

Fatty Acylation
Growth-associated protein-43 and BASP1 mainly localize to
membranes (Skene et al., 1986; Maekawa et al., 1993), and their
membrane associations are partially mediated by fatty acylation.
GAP-43 is post-translationally palmitoylated at Cysteine-3 and -
4 (Skene and Virág, 1989; Figure 2). Its palmitoylation can occur
in the endoplasmic reticulum-Golgi intermediate compartment
(ERGIC), Golgi apparatus, and plasma membrane (McLaughlin
and Denny, 1999). Upon palmitoylation, GAP-43 can be sorted
to the tips of growing neurites (Gauthier-Kemper et al., 2014).
Palmitoylation of GAP-43 is dynamically regulated, as suggested
by the low percentage (∼35%) of fatty acylated GAP-43 at
steady state in PC12 and COS-1 cells (Liang et al., 2002). The
dynamic regulation of palmitoylation affects GAP-43 functions.
Changes in palmitoylation enable GAP-43 to cycle between
pathways independent of and involving Go, a heterotrimeric
GTP-binding protein enriched in growth cones (Edmonds et al.,
1990). N-terminal peptides of GAP-43 produced by the Ca2+-
dependent protease m-calpain interact with and activate Go
signaling cascade that leads to growth cone collapse (Strittmatter
et al., 1994; Zakharov and Mosevitsky, 2007; Figure 3).
Palmitoylation reduces the ability of the N-terminal peptides
to stimulate Go, thereby blocking Go signaling-induced growth
cone collapse (Sudo et al., 1992). Additionally, palmitoylation
appears to be important for the switch from promoting axon
growth to stabilizing synapses upon successful target innervation
(Patterson and Skene, 1999). Experimental evidence shows
that palmitoylation of GAP-43, when inhibited, reversibly stalls
neurite outgrowth (Hess et al., 1993) and is significantly
reduced at the early phase of synapse maturation (Patterson
and Skene, 1999). Unlike GAP-43, BASP1 is co-translationally
myristoylated at the N-terminal end (Mosevitsky et al., 1997;
Takasaki et al., 1999; Figure 2). In the rat brain, BASP1
molecules and N-terminal fragments appear predominantly in

the myristoylated form (Mosevitsky et al., 1997; Zakharov
et al., 2003). Myristoylation of BASP1 was shown to promote
membrane association and to enable CaM binding (Takasaki
et al., 1999; Matsubara et al., 2004).

Phosphorylation
Growth-associated protein-43 and BASP1 EDs undergo Ca2+-
dependent phosphorylation by PKC. PKC phosphosites in
GAP-43 and BASP1 are Serine-41 and Serine-6, respectively
(Apel et al., 1990; Maekawa et al., 1994; Figure 2). GAP-43
Serine-41 can also be dephosphorylated by the Ca2+/CaM-
dependent phosphatase calcineurin (CaN) (Liu and Storm,
1989). Phosphorylation by PKC abolishes CaM binding to
both GAP-43 and BASP1 (Apel et al., 1990; Takasaki et al.,
1999). More importantly, PKC-mediated phosphorylation has
significant functional consequences. Phosphorylated GAP-43
not only promotes actin polymerization and stabilization (He
et al., 1997; Korshunova et al., 2007) but also interacts with
presynaptic vesicle fusion complex (Syntaxin, SNAP-25, and
VAMP) (Haruta et al., 1997). Through these molecular pathways,
phosphorylated GAP-43 facilitates axon guidance (Dent and
Meiri, 1998), axon outgrowth (Aigner et al., 1995; Korshunova
et al., 2007), neurotransmission (Dekker et al., 1989b; Heemskerk
et al., 1990), and synaptic plasticity (Routtenberg and Lovinger,
1985; Lovinger et al., 1986; Hulo et al., 2002). The modulation
of BASP1 functions by PKC remains to be studied. In addition
to PKC phosphosites, many residues of GAP-43 and BASP1
were found to be phosphorylated. To name a few, GAP-
43 was phosphorylated at Serine-96 and Threonine-172 by
unknown kinase(s) (Spencer et al., 1992), Serine-191 and -
192 by Casein Kinase II (Apel et al., 1991), and Serine-96 by
c-Jun N-terminal kinase (JNK) (Kawasaki et al., 2018; Figure 2).
Additional phosphosites on GAP-43 (Serine-86, Threonine-
95, and Threonine-172) and BASP1 (Threonine-31, Serine-
40, Serine-170) were found to be sensitive to CaN (Caraveo
et al., 2017; Figure 2). The phosphorylation of GAP-43 and
BASP1 at these other residues may be of functional significance.
For example, JNK phosphorylates GAP-43 in growth cone
membranes, and this modification is associated with axon growth
and regeneration (Kawasaki et al., 2018).

MECHANISMS OF ACTIN
CYTOSKELETON REGULATION

Regulation of the actin cytoskeleton is important for axon
guidance and growth (Gomez and Letourneau, 2014; Blanquie
and Bradke, 2018), endocytosis (Smythe and Ayscough, 2006),
and exocytosis (Eitzen, 2003). Therefore, understanding
how GAP-43 and BASP1 modulate actin dynamics provides
insight into the mechanisms through which they achieve their
physiological functions. To test if GAP-43 and BASP1 perform
their functions through identical pathways, knockin mice
expressing GAP-43 in place of BASP1 was generated (Frey
et al., 2000). While these mice exhibited no gross abnormality
in the brain, they showed small morphological differences in
axon sprouts (Frey et al., 2000). This indicates that GAP-43 and
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FIGURE 3 | Mechanisms of actin cytoskeleton regulation by GAP-43. GAP-43 positively and negatively regulates the actin cytoskeleton through multiple routes of
action. GAP-43 promotes growth cone motility and axon outgrowth by (1) recruiting actin-regulating proteins by forming PI(4,5)P2 clusters, (2) interacting with NCAM
and spectrin, and (3) stabilizing actin filaments in a PKC-dependent manner. Conversely, m-calpain cleavage product of GAP-43 drives growth cone retraction and
collapse through the Go signaling pathway.

BASP1 act through partially redundant pathways, a concept
that was reinforced by observations of phenotypic differences
between GAP-43- and BASP1-induced neurite outgrowth and
of synergistic axon sprouting with co-overexpression of GAP-43
and BASP1 (Caroni et al., 1997).

Signaling Through PI(4,5)P2 Clusters
Growth-associated protein-43 and BASP1 regulate actin
dynamics through a shared pathway involving PI(4,5)P2 (Laux
et al., 2000; Caroni, 2001). In the intracellular surface of
cholesterol-rich rafts, GAP-43 and BASP1 co-distribute with
and promote the clustering of PI(4,5)P2 (Laux et al., 2000).
Concentrating PI(4,5)P2 in local environments is thought to
enhance the recruitment of actin-regulating proteins (Caroni,
2001). These proteins include WASP and ERM proteins known
for their roles in actin polymerization and actin cytoskeleton-
membrane crosslinking, respectively (Sechi and Wehland, 2000).

The functions of WASP and ERM proteins contribute to growth
cone motility and outgrowth (Figure 3).

PKC-Dependent Modulation of Actin
Growth-associated protein-43 binds and directly regulates
actin filaments in a PKC-dependent manner (He et al.,
1997). Phosphorylated GAP-43 binds actin with higher affinity
(Kd = 161 nM) compared to the unphosphorylated form
(Kd = 1.2 uM) (He et al., 1997). In accordance with
this enhanced binding, the cytoskeletal association of GAP-
43 increases with phosphorylation (Tejero-Díez et al., 2000).
Moreover, phosphorylated GAP-43 stabilizes actin filaments,
thereby promoting growth cone extension and motility (He et al.,
1997; Figure 3). On the other hand, unphosphorylated GAP-43
inhibits growth cone extension likely by serving as a barbed end-
capping protein (He et al., 1997). Capping proteins significantly
increase the concentration of actin monomers needed for
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polymerization and attenuate actin assembly, which is critical for
growth cone extension. While BASP1 may similarly regulate the
actin cytoskeleton, this hypothesis remains to be tested.

Functional Association With NCAM-180
and Spectrin
Growth-associated protein-43 has also been proposed to
modulate actin dynamics through the functional association
with the neural cell adhesion molecule-180 (NCAM-180) and
the cytoskeletal protein spectrin (Korshunova et al., 2007;
Figure 3). NCAMs engage in homophilic and heterophilic
binding with components of other cells and the extracellular
matrix (ECM) (Ditlevsen et al., 2008). These interactions,
in addition to establishing cell-cell and cell-ECM adhesions,
initiate intracellular signaling cascades important for neuronal
development, synaptic plasticity, and regeneration (Ditlevsen
et al., 2008). NCAMs directly associate with intracellular
signaling molecules to activate these downstream cascades
(Ditlevsen et al., 2008). NCAM-180 has been shown to mediate
neurite outgrowth by interacting with spectrin (Leshchyns’ka
et al., 2003), and spectrin was shown to bind GAP-43
(Riederer and Routtenberg, 1999). Based on these observations,
NCAM-180, spectrin, and GAP-43 have been hypothesized
to function in a complex to mediate neurite outgrowth. In
support of this hypothesis, NCAM-mediated neurite outgrowth,
in the presence of GAP-43, required functional NCAM-180
and spectrin (Korshunova et al., 2007). BASP1 was shown to
function independently of this mechanism in PC12 cells and
hippocampal neurons, where BASP1 failed to substitute the
stimulation of NCAM-mediated neurite outgrowth by GAP-43
(Korshunova et al., 2008).

PROPERTIES OF GAP-43 AND BASP1
AND THEIR LINK TO
NEURODEGENERATIVE DISEASES

Intrinsic Disorder and Phase Separation
in Pathological Protein Aggregation
Growth-associated protein-43 and BASP1 are intrinsically
disordered proteins (Zhang et al., 1994; Geist et al., 2013; Forsova
and Zakharov, 2016). The functional significance of this property
remains understudied in both physiological and pathological
contexts. In many neurodegenerative diseases, intrinsically
disordered proteins form soluble and fibril aggregates that are
central to the pathogenesis (Chiti and Dobson, 2006). The recent
discovery of liquid-liquid phase separation, which condensates
disordered proteins, gained interest as a potential mechanism
of pathological protein aggregation (Elbaum-Garfinkle, 2019).
Furthermore, proteins forming aggregates in neurodegenerative
diseases such as Tau (Wegmann et al., 2018) and Huntingtin
(Peskett et al., 2018) were shown to undergo phase separation.
The involvement of disordered proteins in neurodegenerative
diseases questions whether GAP-43 and BASP1 also phase
separate in this context, whether this process turns aberrant, and
what the functional consequences are.

Post-transcriptional Regulation in
Neurodegenerative Diseases
Post-transcriptional regulation allows a rapid adjustment of
the location and level of protein expression (Bronicki and
Jasmin, 2013). This spatiotemporal regulation is particularly
important in neurons because of their large and complex
morphology (Bronicki and Jasmin, 2013). A key regulator
of this process is the neuron-specific RNA-binding protein
HuD (Bronicki and Jasmin, 2013). HuD post-transcriptionally
regulates GAP-43 during neuritogenesis, regeneration, and
learning (Anderson et al., 2001, 2003; Quattrone et al., 2001;
Pascale et al., 2004). Interestingly, HuD is associated with
various neurodegenerative disorders. The level of HuD was
shown to be decreased in the hippocampus of Alzheimer’s
Disease patients (Amadio et al., 2009). This decrease correlated
with diminished expression of ADAM10, a protein known
to reduce the generation of pathogenic amyloid-β peptides
(Amadio et al., 2009). From genetic studies, HuD was also
identified as a susceptibility gene for Parkinson’s Disease
(Noureddine et al., 2005; DeStefano et al., 2008). Additionally,
HuD was shown to aberrantly interact with FUS mutant
that is causally linked to Amyotrophic Lateral Sclerosis (De
Santis et al., 2019). In light of these findings, the post-
transcriptional regulation of GAP-43 may be dysregulated in
neurodegenerative disorders.

PKC and CaM in Neurodegenerative
Diseases
Growth-associated protein-43 and BASP1 engage in intracellular
Ca2+ signaling through PKC and CaM (Cimler et al., 1985;
Apel et al., 1990; Maekawa et al., 1993). Ca2+ signaling plays a
central role in neuronal physiology, and Ca2+ dyshomeostasis
contributes to the pathogenesis of neurodegenerative disorders
(Bezprozvanny, 2009). As part of Ca2+ signaling cascades, PKC
and CaM significantly impact the disease states.

Protein kinase C has a vital role in memory encoding
and storage (Sun and Alkon, 2014); therefore, its involvement
in Alzheimer’s Disease – a major form of dementia – has
been studied extensively. Few studies showed that the activity
of PKC is decreased in the brains of Alzheimer’s Disease
patients (Wang et al., 1994; Matsushima et al., 1996), suggesting
potential adverse effects of its diminished activity. In alignment
with this finding, the PKC activator bryostatin reduced the
production of amyloid-β peptides and premature mortality in
mouse models of Alzheimer’s Disease (Etcheberrigaray et al.,
2004). On the other hand, whole genome-sequencing of late-
onset Alzheimer’s Disease patients identified gain-of-function
mutations in PKC (Alfonso et al., 2016). This study demonstrated
that enhanced PKC activity mediates synaptic depression induced
by amyloid-β peptides (Alfonso et al., 2016). Other studies also
linked PKC activation to synaptic changes such as reduced
cell-surface expression of AMPA receptor (Liu et al., 2010)
and dysregulated structural plasticity (Calabrese and Halpain,
2005). These findings point to the importance of balanced
PKC activity in neuronal physiology. They also raise the
possibility that PKC-dependent functions of GAP-43 and BASP1
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affect cellular pathways whose dyshomeostasis contribute to
neurodegenerative diseases.

Calmodulin connects Ca2+ signals to cellular functions
through various effector proteins (Chin and Means, 2000).
These effectors include Ca2+/CaM-dependent kinases and
phosphatases like CaMKII and CaN. CaMKII and CaN critically
regulate synaptic functions (Mulkey et al., 1994; Pang et al.,
2010) and contribute to synaptopathy in neurodegenerative
diseases (Kuchibhotla et al., 2008; Gu et al., 2009; Teravskis
et al., 2018). CaM also affects pathogenic processes such
as Ca2+ dysregulation and pathogenic protein fibrillation by
directly binding the plasma membrane Ca2+ APTase (PCMA)
and amyloid-β peptides (Berrocal et al., 2012; Corbacho
et al., 2017). Likewise, CaM binding by GAP-43 and BASP1
may directly and indirectly affect processes involved in
neurodegenerative disorders.

FUNCTIONS OF GAP-43 AND BASP1
AND THEIR LINK TO
NEURODEGENERATIVE DISEASES

Growth-associated protein-43 and BASP1 regulate the actin
cytoskeleton, which in turn modulates axon outgrowth (Gomez
and Letourneau, 2014; Blanquie and Bradke, 2018) and synaptic
functions (Eitzen, 2003; Smythe and Ayscough, 2006). Actin
dynamics are altered in neurodegenerative disorders, and
this change culminates in structural defects and synaptic
dysfunctions. Disruption of dendritic actin filaments were
observed in Drosophila models of polyglutamine diseases (Lee
et al., 2011). This disruption was associated with decreased
dendritic complexity – an early deficit that may contribute
to the pathogenesis (Lee et al., 2011). Similarly, decreased
levels of synaptosomal actin filaments were detected in
mouse models and patient brains of Alzheimer’s Disease
(Kommaddi et al., 2018). This reduction inversely correlated
with dendritic spine density and behavioral performance
(Kommaddi et al., 2018). Moreover, in Drosophila, pathogenic
tau mutant and amyloid-β promoted abnormal accumulation and
bundling of actin filaments, which correlated with neurotoxicity
(Fulga et al., 2007).

In addition, actin binding proteins contribute to the
pathogenesis of neurodegenerative disorders. For instance,
the actin depolymerizing factor cofilin was found to be
hyperactivated in Alzheimer’s Disease (Bamburg et al., 2010).
The accumulation of hyperactivated cofilin formed cofilin-
actin rods that led to impaired synaptic functions and synapse
loss (Bamburg et al., 2010; Cichon et al., 2012; Munsie and
Truant, 2012). Conversely, the level of the actin stabilizing
protein drebrin was dramatically reduced in Alzheimer’s Disease
(Harigaya et al., 1996; Hatanpää et al., 1999). A reduction in
drebrin levels impaired neuritogenesis (Geraldo et al., 2008),
resulted in synaptic dysfunctions (Kojima and Shirao, 2007), and
correlated with cognitive impairment (Counts et al., 2006). These
findings warrant examination of the actin regulators GAP-43 and
BASP1 in neurodegenerative diseases.

REGULATION OF GAP-43 AND BASP1 IN
NEURODEGENERATIVE DISEASES

Growth-associated protein-43 and BASP1 were examined in
many neurodegenerative diseases – Alzheimer’s Disease (Masliah
et al., 1991; De La Monte et al., 1995; Bogdanovic et al., 2000;
Rekart et al., 2004; Musunuri et al., 2014; Tagawa et al., 2015),
Parkinson’s Disease (Caraveo et al., 2017; Saal et al., 2017; Wang
et al., 2019b), Huntington’s Disease (Apostol et al., 2006; Dong
and Cong, 2018), Amyotrophic Lateral Sclerosis (Parhad et al.,
1992; Ikemoto et al., 1999; Andrés-Benito et al., 2017), and Spinal
Muscular Atrophy (Fallini et al., 2016) – through studies of
human patients and cellular and animal models. Most of these
studies present correlational changes in GAP-43 and BASP1 but
do not address their functional implications. In the following
sections, GAP-43 and BASP1 will be discussed in the context
of Alzheimer’s and Parkinson’s Disease, two neurodegenerative
diseases in which they have been studied the most.

Alzheimer’s Disease
Alzheimer’s Disease (AD) is the most common
neurodegenerative disorder causing dementia (Barker et al.,
2002). AD is neuropathologically characterized by extracellular
amyloid beta (Aβ) deposits termed amyloid plaques (Masters
et al., 1985) and intracellular neurofibrillary tangles composed
of the microtubule-binding protein tau (Goedert et al., 1988).
While AD involves a widespread loss of neurons, it primarily
affects cholinergic neurons in the basal forebrain (Whitehouse
et al., 1982), noradrenergic neurons in the locus coeruleus
(Bondareff et al., 1982), and pyramidal neurons in the entorhinal
cortex, subiculum, and hippocampal CA1 (Hyman et al., 1984;
Morrison and Hof, 2002). These vulnerable neurons have
long and thin axons with sparse myelination (Braak and Del
Trecidi, 2015). Such axonal properties increase the energetic
demand and exposure to pathogenic species that contribute
to the vulnerability in AD (Braak and Del Trecidi, 2015).
Immunohistochemical studies found that GAP-43 levels were
decreased in the neocortex but was preserved or even elevated
in the hippocampus of AD patients (Masliah et al., 1991; De
La Monte et al., 1995; Bogdanovic et al., 2000; Rekart et al.,
2004). The reduction in cortical GAP-43 immunoreactivity
likely reflects a profound neuron loss. The preservation or
increase in hippocampal GAP-43 immunoreactivity raises the
possibility that surviving neurons, by upregulating GAP-43,
initiate axon outgrowth to compensate for the lost connections.
Hippocampal GAP-43 immunoreactivity was observed in
dystrophic neurites associated with plaques and correlated with
aberrant sprouting (Masliah et al., 1991; Bogdanovic et al., 2000),
which is characteristic of synaptic pathology in AD (Masliah,
1995). Based on this observation, GAP-43-associated axon
outgrowth appears to be unsuccessful in establishing functional
connections and seems to be contributing to the synaptic
pathology instead. Examination of entorhinal fibers in amyloid
precursor protein transgenic mice provides evidence that this
aberrant sprouting is driven by amyloid deposition (Phinney
et al., 1999). This finding highlights the importance of extrinsic
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factors on the successful regenerative response and emphasizes
the need for combined therapy that overcomes both extrinsic
and intrinsic barriers to axon remodeling. In agreement with
the immunohistochemical data, quantitative mass spectrometry
detected a reduction of GAP-43 in the temporal neocortex of AD
patients (Musunuri et al., 2014). The same study also measured
decreased levels of BASP1 in AD patients (Musunuri et al., 2014).
In addition to their changes in expression, the extent of their
phosphorylation was altered in AD. The overall phosphorylation
of both proteins decreased in the temporal lobe of AD patients
compared to non-AD individuals (Tagawa et al., 2015). For a
detailed analysis of the phosphoproteome over the course of
disease progression, four mouse models of AD at early, middle,
and late time points were examined with respect to control
mice. This analysis identified 5 phosphosites in GAP-43 and 6
phosphosites in BASP1 (Figure 2 shows equivalent sites in rat
proteins based on sequence alignment in Clustal Omega; Tagawa
et al., 2015). Phosphorylation at these sites generally increased
in the middle stage of pathology and progressively decreased
(Tagawa et al., 2015). Although the physiological relevance of
these changes remains to be examined, this study prompts us
to explore the possibility of modulating GAP-43 and BASP1
phosphorylation for therapeutic interventions in AD.

Parkinson’s Disease
Parkinson’s Disease (PD) is the most common neurodegenerative
movement disorder (Tysnes and Storstein, 2017). PD is
neuropathologically characterized by the accumulation of
α-synuclein inclusions termed Lewy bodies (Spillantini et al.,
1997). In PD, dopaminergic neurons in the substantia nigra pars
compacta (SNc) primarily degenerate, causing motor symptoms
such as bradykinesia, rigidity, and tremor (Tysnes and Storstein,
2017). The axons of the SNc dopaminergic neurons are long,
thin, and poorly myelinated (Braak et al., 2004). Additionally,
they branch extensively in the striatum and form extraordinarily
large numbers of synapses (Bolam and Pissadaki, 2012) with
transmitter release sites numbering up to 300,000 (Matsuda
et al., 2009). These axonal properties contribute to the selective
vulnerability in PD (Braak et al., 2004). A transcriptome-
based meta-analysis of multiple studies found that GAP-43
and BASP1 are downregulated in the brains of PD patients.
This same study identified BASP1 as an important regulator
of other differentially expressed genes associated with synaptic
signaling. Immunoreactivity of tyrosine hydroxylase (TH), a
marker for dopaminergic neurons, was reduced in the SNc and
striatum of PD patients in reflection of a substantial neuron
loss (Saal et al., 2017). However, in the remaining TH+ SNc
dopaminergic neurons, GAP-43 protein and mRNA levels were
likewise decreased. In agreement with these data, reduced GAP-
43 expression has also been detected in the cerebral spinal fluid
of PD patients (Sjogren et al., 2000). Further evidence implicates
the involvement of GAP-43 and BASP1 in PD. In an in vitro
scratch lesion model using α-syn mutations causing autosomal-
dominant forms of PD, the study found reduced neurite
regeneration and subsequent loss of dopaminergic neurons
accompanied by a reduction of striatal expression of GAP-43

(Tonges et al., 2014). In one PD patient, infusion with glial cell-
derived neurotrophic factor at the putamen provided benefits
even after cessation of treatment (Patel et al., 2013). While these
reports suggest that increasing GAP-43 expression and therefore
the axonal tree would be beneficial, other groups suggest that
reduction of the axonal tree, in fact, confers protection in models
of PD (Pacelli et al., 2015). The apparent discrepancy between
these studies can be addressed if taken into consideration that the
effect in neuronal sprouting needs to be regulated. In support of
this idea, one study found that modulation of the activity of GAP-
43 and BASP1 through CaN can alter the degeneration of axonal
trees and confer neuroprotection in a rat model of PD (Caraveo
et al., 2017). This model displayed presynaptic and behavioral
impairments along with hypophosphorylation at 3 CaN-sensitive
sites each in GAP-43 and BASP1 (Figure 2; Caraveo et al.,
2017). Treatment with low doses of Tacrolimus, which partially
inhibits CaN, ameliorated the presynaptic and behavioral deficits
in addition to rescuing phosphorylation at these sites (Caraveo
et al., 2017). This correlation suggests a potential involvement
of GAP-43 and BASP1 phosphorylation in PD pathogenesis.
Interestingly, Tacrolimus is an FDA-approved drug currently in
widespread clinical use at high doses to suppress the rejection of
organs in transplant patients, a process in which CaN also plays
a critical role (Tron et al., 2019). This opens the possibility that
Tacrolimus could be repurposed as a potential therapy for the
treatment of PD.

CONCLUDING REMARKS

Growth-associated protein-43 and BASP1 are essential for
developing axons to grow toward their correct targets and
form synaptic connections during neuronal development and
after neural injury. These axonal functions highly depend on
their expression levels and phosphorylation status, which when
modulated appropriately, can stimulate mature neurons to re-
enter a growth state. This transition, which can protect and
enable surviving neurons to re-establish functional connections,
has been explored as a therapeutic avenue for neurodegenerative
diseases. Specifically, the effects of delivering agents that
upregulate GAP-43, such as BDNF, have been tested in animal
models of PD (Gupta et al., 2009). BDNF treatment, although
unable to revert neurodegeneration, demonstrated protective
effects on remaining neurons and ameliorated behavioral
impairments (Palasz et al., 2020). Several investigations into
understanding the mechanism of potential therapies have
identified GAP-43 as either upregulated or essential for its
ameliorative effects. Levetiracetam for treatment of retinopathy
(Mohammad et al., 2019) as well as for the repair of convulsant-
induced cognitive impairment (Wang et al., 2019a) directly
signals through the PKC/GAP-43 signaling pathway. Similarly,
TGN-020 for treatment of spinal cord injury (Li et al., 2019b),
and senegenin for the potential treatment for Aβ-induced
neurotoxicity (Jesky and Chen, 2016), involve upregulation of
GAP-43 protein levels for both neuroprotection and in vitro
regeneration. Low GAP-43 levels in cerebrospinal fluid were
associated with a poorer response to treatment of primary
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progressive multiple sclerosis using fingolimod or alemtuzumab
(Sandelius et al., 2019) suggesting that GAP-43 is important in
mediating its therapeutic effects. In rat models of PD, treatments
with Pilose antler extracts led to an increase in striatal GAP-
43 protein expression and less dopaminergic SNc neuronal
cell death (Li et al., 2019a). Despite the positive effects of
neurotrophic factors in animal models, their short half-life,
low bioavailability, and limited permeability through the blood-
brain barrier (BBB) imposed challenges in their application to
patients (Palasz et al., 2020). Such challenges associated with
using neurotrophic factors to increase GAP-43 and BASP1 levels
can be avoided by using other pharmacological agents that can
cross the BBB and modulate their activities, for instance, via
phosphorylation. A potential candidate is the FDA-approved
CaN inhibitor Tacrolimus. In a rat model of PD, tacrolimus
was shown to cross the BBB, alter phosphorylation of GAP-
43 and BASP1, and confer neuroprotection at doses 10-fold
lower than the standard immunosuppressive dose (Caraveo
et al., 2017). At sub-immunosuppressive doses, the risk of
secondary effects, such as opportunistic infections, posterior
reversible leukoencephalopathy, and seizures typically achieved
at clinical doses would be avoided. Moreover, these lower
Tacrolimus doses would finely tune GAP-43 and BASP1 to drive
sufficient, but not hyperactive, axonal sprouting in a spatially
and temporally confined manner. This regulation is necessary
to promote regeneration specifically in the affected neuronal
populations at the right time window while preventing potential
complications arising from hyperconnectivity. Additionally,
external inhibitory factors in the central nervous system
(Fournier and Strittmatter, 2001) and other disease-associated

factors (Phinney et al., 1999) need to be prevented from blocking
axon growth or driving the formation of aberrant connections.
Moreover, determining the stages of pathogenesis at which
regeneration of remaining axons can be protective will be
important. Further exploration of these areas will facilitate the
development of GAP-43- and BASP1-targeting therapies for
neurodegenerative diseases.
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