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Abstract: Over the last few years, research indicated that Human Milk Oligosaccharides (HMOs)
may serve to enhance cognition during development. HMOs hereby provide an exciting avenue in
the understanding of the molecular mechanisms that contribute to cognitive development. Therefore,
this review aims to summarize the reported observations regarding the effects of HMOs on memory
and cognition in rats, mice and piglets. Our main findings illustrate that the administration of
fucosylated (single or combined with Lacto-N-neoTetraose (LNnT) and other oligosaccharides) and
sialylated HMOs results in marked improvements in spatial memory and an accelerated learning
rate in operant tasks. Such beneficial effects of HMOs on cognition already become apparent during
infancy, especially when the behavioural tasks are cognitively more demanding. When animals age,
its effects become increasingly more apparent in simpler tasks as well. Furthermore, the combination
of HMOs with other oligosaccharides yields different effects on memory performance as opposed to
single HMO administration. In addition, an enhanced hippocampal long-term potentiation (LTP)
response both at a young and at a mature age are reported as well. These results point towards
the possibility that HMOs administered either in singular or combination forms have long-lasting,
beneficial effects on memory and cognition in mammals.

Keywords: human milk oligosaccharides; cognition; brain development; animal behaviour;
fucosyllactose; sialyllactose; long term potentiation

1. Introduction

The natural composition of breast milk is well recognized as the golden standard of infant
nutrition [1] and is associated with long-term health benefits [2–10]. Studies have shown that
exclusive breastfeeding is accompanied by a reduced risk for developing medical conditions during
childhood such as gastrointestinal infections (e.g., necrotizing enterocolitis) [5,6]. Indications that
breastfeeding confers protective effects in the onset and course of allergic diseases such as atopic
dermatitis, food allergy and asthma have also emerged over the recent years [7–9]. Such protective
effects of breastfeeding have been attributed to multiple factors related to the gut, as it is found that
breastfeeding can improve immune functioning, promoting a healthy gut microflora [11]. Apart from
the gut, bioactive components within breast milk such as the adipokines (e.g., leptin, ghrelin) help
regulate appetite control and energy intake. Breast milk also contains growth factors, such as neuronal
growth factors (NGF) and epidermal growth factors (EGF), which exert trophic effects on the neonatal
nervous system and enhance gastrointestinal mucosal maturation respectively [11–13]. In recent
years, the mental health benefits that breastfeeding provides have garnered much more attention in
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neuroscientific research. Notably, breastfeeding is associated with improved cognitive development, as
demonstrated by improved IQ scores [14] and a reduced risk of childhood behavioural disorders [15,16].
These findings also coincide with studies showing enhanced brain development parameters, such as
white matter development in frontal and temporal regions [17] and maturation of the basal ganglia and
thalamus [18]. On the whole, these studies indicate that there are clear developmental and cognitive
benefits related to breastfeeding and breast milk, which raises the question: which breast milk factors
facilitate cognitive development?

Breast milk is a complex liquid which contains many different lipids (such as the Milk Fat Globule
rich in phospholipids and long chain fatty acids), an assortment of vitamins (Vitamin A, B, C, D
K), sialic acid (both in free form and bound to oligosaccharides, glycoproteins and glycolipids) and
other biologically active components, some of which affect neurodevelopment [19–22]. Of particular
interest to infant nutrition and development are the Human Milk Oligosaccharides (HMOs). These
non-digestible carbohydrates are the third most abundant class of breast milk components, and over
200 HMOs, comprised out of 5 monosaccharides (glucose, galactose, N-Acetyl-Glucosamine, fucose
and sialic acid) have thus far been identified [23]. HMOs have recently moved into the spotlight of
cognitive research due to its widespread effects on infant development and cognition [4,11,20]. There
are three main families of HMOs; the non-fucosylated neutral HMOs, (e.g., Lacto-N-neoTetraose
(LNnT)), the fucosylated HMOs (e.g., 2′Fucosyllactose (2′-FL)) and the sialylated (SL) HMOs (e.g.,
3′Sialyllactose (3-SL) and 6′-Sialyllactose (6-SL)) [23,24]. Oligosaccharides are present in all mammalian
milk [25]. However, what makes human milk unique compared to other mammalian milk is that it
contains the largest diversity of complex oligosaccharides [25,26] and high concentrations of 2′-FL. It
should be noted that the presence of 2′-FL is subject to large inter individual variation depending on
the Lewis antigen blood group system of the mother, which encompasses two genes; the Lewis gene
(Le gene or FUT-3 gene) and the Secretor gene (Se gene or FUT-2 gene) [27]. Depending on genetic
expression, women are either defined as “secretors” (Se+), or “non secretors” (Se-), and Lewis positive
(Le+) or Lewis negative (Le-) [23,27]. Both Secretor and Lewis genes are responsible for yielding
fucosyltransferase-2 (FUT-2) and fucosyltransferase-3 (FUT-2) respectively, which append fucose to the
core oligosaccharides. Depending on which of these FUT enzymes are active, different oligosaccharides
will be created; as FUT2 expression results in the synthesis of 2′-FL, while FUT3 expression has been
associated with the formation of LNFP-II instead [28–30]. These polymorphisms essentially give rise
to four major milk groups within the human population, as both genes can be active, inactive or either
one of the two is active, hereby resulting in a variable HMO content in breast milk [29]. Around 60–72%
of the maternal population are secretors, and the milk of these “secretor mothers” contains an overall
higher concentration of HMOs in breastmilk as compared to non-secretors [23,27,31,32]. All in all,
a large variability exists within the human population concerning the exact proportions of different
HMOs [28]. Moreover, HMOs are also subject to dynamic changes within the same breastfeeding
female, depending on factors such as circadian rhythm, lactation stage, maternal diet, and maternal
genetic background [4,11,20,28–34].

Supplementation of infant formula with HMOs renders the composition and downstream effects
of infant formula to become closer to those of breastmilk. One of the well-documented advantages
of HMOs is its prebiotic role and the capacity to regulate the immune system in the periphery.
HMOs can exert antimicrobial and antiviral effects by binding to pathogens which reach the mucosal
surfaces in the gut or by directly binding to the gut epithelial receptors, effectively blocking the
access of pathogens [11,20]. Experimental studies in infants showed enhancing effects on the immune
response of additional 2′-FL supplementation. Goehring and colleagues [35] observed that infants who
were fed breastmilk or a 2′-FL enriched formula had lower concentrations of plasma inflammatory
cytokines (IL-1α, IL-1ß, IL-6, TNF-α) when compared to children fed the ordinary (non-enriched)
infant formula [35]. Furthermore, ex vivo stimulation of peripheral blood mononuclear cells (PBMCs)
yielded lower levels of TNF-α and IL-6 when infants were breastfed or were on a 2-‘FL enriched diet.
Enriching infant formula with 2′-FL and LNnT also renders the gut microbiome composition and



Nutrients 2020, 12, 3572 3 of 16

its metabolites (propionate, butyrate and lactate) of formula-fed infants closer to that of breastfed
infants [36]. It stands to reason that, if the supplementation of HMOs to infant formula produces
immunological and health responses similar to those of breastfed infants, this may also partly account
for cognitive outcomes [14]. Indeed, apart from HMOs involvement in immune functioning, a recent
study by Berger and colleagues [37] reported that the amount of 2′-FL, measured in mother’s breast
milk one month after birth, predicted improved cognitive outcomes in two-year-old children. Since it
is known that alterations in the immune system impacts brain development and later life cognitive
functioning [38], it is possible that the HMO mediated immune response provides a route via which
HMOs could contribute to cognition. Thus, investigating how HMOs impact underlying neural
mechanisms of their associated cognitive outcomes will provide valuable insight in HMOs’ role in
brain development and functioning.

While there have been correlational studies exploring the role of HMOs on development in
humans, no direct human study has thus far investigated both immune and cognitive outcomes with
HMO analysis in breast milk or upon HMO supplementation in infant formula. However, direct
studies on the effects of HMOs and cognition have been undertaken in murine models and piglets.
While there are obvious differences between species, several animal models have been used extensively
in behavioural research due to their translational value in brain development and behaviour. The
behavioural tasks used in animal models in probing various cognitive functions are well validated [39].
Moreover, since the life span of rodents in particular is relatively short, animal models allow the
investigation of the most sensitive developmental period to HMO supplementation. In addition,
behavioural studies in animals can be corroborated by more invasive measures in vivo, granting a live
view on the underlying neurobiological processes. One method commonly used in rodent memory
studies is electrophysiology. Long Term Potentiation (LTP) involves the strengthening of synapses in
response to prior stimulation during memory formation and retrieval. This produces a long-lasting
shift in synaptic strength and is therefore an important underlying mechanism of synaptic plasticity
and memory [40]. Findings derived from preclinical work could prove to be informative and may
serve as input to future longitudinal studies on the contribution of HMOs to the cognitive development
of humans.

This review’s aim is twofold. Firstly, it aims to summarize the effects of HMOs in animal research
and their subsequent cognitive and electrophysiological outcomes. Special consideration is given to
the type of HMO used (e.g., fucosylated (2′-FL), neutral (LNnT) and sialylated (3′-SL, 6′-SL)), the
age of the animals upon HMO administration, the used cognitive task complexity and the age of the
animals during testing. Its second purpose is to provide additional interesting avenues for future
research to explore. The search for relevant articles was conducted in Pubmed in the period of 1979
until August 2020, using a specialized search string comprised of both Mesh terms and key words in
the title and abstract (Appendix A). This resulted in the inclusion of nine articles that contained (1) an
animal model, (2) HMOs and (3) cognitive behavioural tests.

2. Assessing the Effects of HMOs on Cognitive Measures in Animal Models

Rodents and piglets are naturally curious and intelligent animals, which results in their frequent
use as animal models for the assessment of cognition in a wide variety of behavioural tasks [41–45].
Behavioural tests are considered to be a valid, minimally invasive way to expose underlying cognitive
processes, under the condition that the animal is capable of, and facilitated in, expressing such processes
externally. In the context of HMO research, the focus has mainly been on memory and learning
behaviour as cognitive capabilities. In the following sections, we will first graphically present an
overview of the animal tests which investigated the consequences of HMOs on cognition. Subsequently,
we present the main findings of the selected nine articles, grouped by the type of HMO (fucosylated
or sialylated), in Table 1. Thereafter, the main results will be described, which is then followed by a
discussion about the implications of the findings reported in the investigations.



Nutrients 2020, 12, 3572 4 of 16

The type of behavioural tests used to study the effects of HMOs on cognition make use of either the
intrinsic rewarding value of an animal’s natural curiosity in new exposures (Figure 1A,B,E) [41,42], the
aversion to uncontrolled swimming without a platform to rest on (Figure 1D) [43] or the willingness to
obtain an extrinsic reward like food or water (Figure 1C,F,G) [44,45]. Since animals prefer to be exposed
to new items or environments to explore, the time spent to explore this new item or environment can be
used as a measure for spatial or recognition memory. The willingness to obtain a food or water reward
is commonly measured in operant conditioning tasks in either a skinner box or an Intellicage [44,45].
Operant conditioning tasks encompass associative learning paradigms, in which certain behaviour is
reinforced via a reward or a punishment. In operant conditioning, different reinforcement schedules
exist, such as the Fixed Ratio (FR) schedule, in which animals have to reach a certain criterion before
they receive a reward. For example, an FR(4) schedule requires 4 correct responses from the animal in
order for it to obtain a reward.
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Figure 1. Summary of the behavioural tests used in the HMO studies. The type of animal placed inside
the test (rodent or piglet) corresponds to the animal model used in the behavioural paradigms included
in this review.

Overall, these cognitive tasks can be grouped by the level of complexity, as tasks that require a few
trials are considered to be easier to perform than a task that requires weeks of training. In light of this,
we have grouped the Y maze, T maze, Morris Water Maze (MWM) and the Novel Object Recognition
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Test (NORT) as simple cognitive tests and the 8-arm radial maze and the operant tasks (Skinner box
and Intellicage) as the complex cognitive tasks.

3. Effects of HMOs on Cognition in Mammals

3.1. Main Behavioural Findings

Supplementing mammals with additional HMOs leads to beneficial cognitive outcomes under
certain specific circumstances (Table 1, Figure 2). In general, both fucosylated and sialylated HMOs
contribute to an improved memory performance and faster learning speed (tests described in
Figure 1A–G) when tested in mature adulthood, irrespective of the age of administration of these
HMOs (e.g., during infancy or adulthood) [46–54].
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Figure 2. Graphical summary of behavioural tests results. The results have been grouped based on
the type of HMO (Fucosylated versus Sialylated), animal model (rodents versus piglets) and the age
of when the behavioural test has been performed. Infancy–young adulthood has been defined as the
period ranging from PND1–6 months of age, while mature adulthood encompasses animals of 1 year
old. Red crosses indicate that no significant differences were observed between the HMO and the
control group, while green check marks indicate that positive effects due to HMO supplementation
were reported. Details on the nature of such effects are summarized in Table 1.

3.1.1. Simple Cognitive Tasks

When rodents performed spatial and recognition memory tests during adolescence and early
adulthood, no effects of either fucosylated or sialylated HMOs, as assessed by the NORT (when tested
24 h after the acquisition phase), MWM and the Y maze, were reported. Contrary to the rodent studies,
three piglet studies showed that supplementing HMOs during the lactation period resulted in improved
spatial memory (T maze) in infancy [51] and object recognition (NORT) [52,53]. Supplementing only
oligofructose or the combination of 2′FL and LNnT increased object recognition when piglets were
tested one hour after the acquisition phase. When tested 48 h later, only the piglets who received a
combination of either Bovine Milk Oligosaccharides (mostly neutral non fucosylated oligosaccharides)
and 2′FL and LNnT [52] or Oligofructose and 2′-FL [53] displayed long-term recognition memory. In
mature adulthood (older than 1 year), rodent studies also found significant differences in both the Y
maze and the NORT for both sialylated and fucosylated HMOs. However, the sialyllactose piglet study
performed by Fleming and colleagues [54] yielded no results. In this study, they found no differences
between the sialyllactose group and control group on the NORT performed during infancy.
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Table 1. Summary behavioural studies.

Study Species HMO Component
and Dose

Age and Duration
Administration Age Test Tests Key Results

Fucosylated HMOs

Oliveros et al., 2016 [46]

Lister Hooded Rats 2′-FL
(1 g/KG/BW) From PND 3–weaning

Long Term study:
(1) 4–6 weeks
(2) 1 year old

NORT
Y maze
MWM

LTP (only at 1 year)

At 6 weeks of age no differences in
behaviour (n = 12) were found. At

1 year of age, 2′-FL rats showed
improved performance in the NORT

and Y- maze paradigms. No effect
was observed in the MWM. LTP was
more intense and long lasting in the
2′-FL supplemented groups (n = 10)

Sprague Dawley Rats 2′-FL
(1 g/ KG/BW)

From PND3 until
week 6

Short Term study:
6 weeks LTP

LTP was more intense and long
lasting in the 2′-FL supplemented

groups (n = 10).

Vazquez et al., 2016 [48] Sprague Dawley Rats

2′FL (350 mg/kg/BW
via AIN-93M diet)

L-Fucose (Fuc)
(equimolar amounts
of fuc and 2′-FL via

AIN-93M diet)

3–4.5 months old for
5 weeks

Started at
2.5–4 months old

Operant conditioning
(FR1)
LTP

2′-FL but not fuc displayed enhanced
LTP. Vagotomy inhibited the effects

of oral 2′-FL on LTP (n = 10) and
operant learning paradigms (n = 10).

Fleming et al., 2020a [52] Pigs (1050 Cambro
genetics)

Three groups:
Oligofructose (OF)

5 g/L
OF + 2′-FL

5 g/L OF + 1 g/L 2′-FL
Control.
Nothing

PND 2–33 PND 22 NORT

Pigs (n = 12) who received
Oligofructose (OF) displayed

enhanced object recognition when
tested 1 h after being habituated to

the two objects. When pigs
consumed both 2′-FL and OF, they

showed improved recognition
memory after a 48-h delay.

Fleming et al., 2020b [53] Pigs (1050 Cambro
genetics)

Four groups:
HMOs (2′FL + LNnT)
1 g/L 2′-FL + 0.5 g/L

LNnT
BMOs

12.4 g/L
HMOs + BMOs

1 g/L 2′-FL + 0.5 g/L
LNnT + 12.4 g/L

BMOs
Control. Nothing

PND 2–33 PND 22 NORT

Pigs (n = 12) who received only
HMOs displayed enhanced object
recognition when tested 1 h after

being habituated to the two objects.
When pigs consumed both HMOs
and BMOs, they showed improved

recognition memory after a 48-h
delay.



Nutrients 2020, 12, 3572 7 of 16

Table 1. Cont.

Study Species HMO Component and Dose Age and Duration
Administration Age Test Tests Key Results

Fucosylated HMOs

Vazquez et al., 2015 [46]

Sprague Dawley Rats

2′FL (1 g/kg/BW) via oral
gavage during acute

administration
and 2′-FL (350 mg/Kg/BW) via

AIN-93G diet, during short
time feeding

Acute administration:
when rats were 3 months

old
Short-time feeding from

2.5–4 months, for 5 weeks

Operant tests started when
administration started.

LTP was performed after
administration period.

Operant conditioning
(FR1)
LTP

2′-FL groups performed better in operant learning paradigms (rats n = 10, mice n
= 28) and showed an enhanced LTP response (rats and mice n = 8). The long-time
supplementation of 2′FL also increased the expression of molecules involved in
storage newly acquired memories (BDNF, PSD-95 phosphorylated CamKII, etc.)

C57BL/6 mice 2′FL (350 mg/Kg/BW via
AIN-93G diet)

Long-time feeding from
2–3.5 months old, for 12

weeks

Intellicage (FR1, FR4,
FR8)
LTP

Sialylated HMOs

Oliveros et al., 2018 [47] Sprague Dawley Rats

Neu5Ac
6′-SL

(Dose ranged from 400
mg/Kg/BW to 2600 mg/Kg/BW

based on theoretical model)

From PND 3 until weaning

After weaning NORT
Y maze

No effects detected after weaning (n = 10). At 1 year old, sia (Neu5Ac and 6′-SL)
exposed rats (n = 8♀) showed improved performance on all the behavioural tests
(NORT, Y-maze, Intellicage) and showed enhanced LTP (n = 10) when compared

to the control group. Of the SL supplemented animals, the 6′-SL group
performed better than the Neu5AC group1 year old

NORT
Y maze

Intellicage
LTP

Wang et al., 2007 [50]
Piglets

Landrace/Large
White cross

Sialic Acid (ingredient of
Casein glycomacropeptide

cGMP))
(4 groups of animals with their

own dose each; 0 mg/L
(control), 140 mg/L; 300 mg/L;

635 mg/L and 830 mg/L)

From PND 3 until end of
experiment PND 21–PND 35 8-arm Radial maze Supplemented groups (n = 12–14 per group) required less trials to learn the

required response, with a dose–response correlation for the difficult task.

Obelitz-Ryom et al., 2019
[51]

Pre-term delivered
(experimental groups)

Piglets Landrace x
Yorkshire x Duroc

Sialyllactose
(6′-SL + 3′-SL)

(380 mg/L)
Lactose (control)

(6000 mg/L)
PND1–PND19 PND13–PND18 Spatial T-maze

Four experimental groups were included in the study; PRE-SAL (n = 10 ♀, 10 ♂),
PRE-CON (n = 9 ♀, 11 ♂), TERM-CON (n = 9 ♀, 5 ♂) and TERM-SAL (n = 6 ♀, 6 ♂).

TERM CON piglets reached learning criteria of 80% correct choices on day 3,
PRE-SAL on day 4 and PRE-CON on day 5. More PRE-SAL piglets reached the T

maze learning criteria compared to PRE-CON piglets.
Upregulation of genes for sialic acid metabolism, myelination and ganglioside

biosynthesis were present in the hippocampus of SL supplemented preterm
piglets.

Term delivered
piglets (reference

groups)
Landrace x Yorkshire x

Duroc

Lactose (control) (6000 mg/L)
Pig’s milk (under natural

rearing conditions)

Fleming et al., 2018 [54] Piglets
(no breed specified) Sialyllactose (380 mg/L) PND2–PND22 PND15–PND22 NORT No effects (n = 17) were observed.

NORT: Novel Object Recognition Test, MWM: Morris Water Maze, LTP: Long-Term Potentiation. BMO: Bovine Milk Oligosaccharide. When provided, strains of species have been
included in the table. In all studies presented here, the HMOs were administered orally. All animals used in the studies were male, unless otherwise specified. When the experimental
groups have not been detailed in the key results column, the reported n indicates the number of animals per experimental group of that study.



Nutrients 2020, 12, 3572 8 of 16

3.1.2. Complex Cognitive Tasks

When considering the tasks that probe conditioning and learning capabilities and in which the
cognitive difficulty could be varied, such as the 8-arm radial maze [50] and operant tasks [47–49],
beneficial effects of HMO already surface at a young age in rats, mice and piglets alike. These effects
also persist throughout adulthood. Perhaps the beneficial effects of HMOs become especially apparent
upon increments on the cognitive load to meet the task demands.

3.2. Effects of HMOs on Long Term Potentiation (LTP)

The method of in vivo LTP induction in the studies listed here involved the implanting of
stimulating electrodes on the Schaffer’s collateral of the dorsal hippocampus and 2 to 4 recording
electrodes in the stratum radiatum underneath CA1 [46–49]. A high frequency stimulation (200-Hz
trains of pulses, 100 ms each and presented repeatedly with 1-min intervals) was delivered to the
Schaffer’s collateral and 30 min later the field excitatory post-synaptic potentials (fEPSPs) were recorded.
Enhanced LTP responses are reported in all these studies [46–49], both after weaning and during
adulthood, when animals were supplemented with fucosylated or sialylated HMOs.

4. Discussion

To the best of our knowledge, this review is the first to summarise the effects of fucosylated and
sialylated HMOs on cognition and electrophysiological brain recordings in rodents and piglets. The
effects of both types of HMOs uncovered in the reported investigations unequivocally point towards
long lasting beneficial effects on cognition and memory, which is further supported by changes in the
underlying physiological mechanisms as measured by LTP [46–49].

The majority of the reported animal studies, included in Table 1, revealed that HMOs enhance
learning and memory. For the simple cognitive tasks, the effects of HMOs are not unequivocal, as
differences are observed between the animal model used, task parameters, the dosage used and age of
administration and testing. It should be noted that in the majority of the studies, the HMO dosage was
comparable to concentrations found in human milk [28–31,33], and effects of HMO supplementation
were already visible at these physiological relevant dosages.

In rodents, no significant effects on spatial memory or long-term recognition memory are reported
when the animals’ age ranges from juvenile to young adulthood. In piglets, HMOs are found to affect
spatial memory and intermediate recognition memory but not long-term recognition memory when
they were fed only HMOs during infancy. Inter species differences between rodents and piglets may
help to explain why effects of HMO administration are visible in piglets but not in rodents when tested
at a very young age. The third trimester in human gestation coincides with the first ten postnatal days
of rat pups, while the neurodevelopmental trajectory and morphological properties of piglet brains are
much more comparable to humans [41,55–57]. This complicates the comparison of the effects of oral
delivery of HMOs between piglets and rodents. Differences reside in the immediate environment upon
birth and the extent to which the brain and body have developed at that point, as neonatal rat pups
would be more comparable to prenatal piglets in the final days before parturition, and there are no
studies performed on the cognitive effects of HMOs on piglets in young adulthood. This interspecies
difference in developmental stage upon birth and subsequent postnatal period might contribute to the
heterogeneity in the findings between species on simple behavioural tests such as the NORT and the
T maze.

Nevertheless, one cannot exclude the possibility that other factors than mere species differences
may be at play, for example, the test parameters used in the studies. In the NORT of the rodent studies,
the retention interval (time between acquisition phase and test phase) was 24 h, which is considered to
be fairly long and is considered to be a measure of long-term recognition memory [42]. In the piglet
studies, different retention intervals, ranging from 1 h (intermediate) to 48 h (long-term), were used.
It is possible that similar enhancing effects of HMO administration on recognition memory (NORT)



Nutrients 2020, 12, 3572 9 of 16

reported by Fleming and colleagues [52,53] would have been found in juvenile rodents if the retention
interval was 1 h instead of 24 h and if the rodents had been fed a similar combination of oligosaccharides
as the piglets received. However, when probing such a long-term recognition memory of one-year old
rodents, an improved recognition memory is observed in the HMO supplemented animals, together
with improved spatial memory as measured by the Y maze. As long-term recognition memory was not
observed in juvenile piglets and rodents when supplied with only one HMO but was observed in piglets
when they were given a combination of oligosaccharides, this may not be a simple matter of species
differences. Another explanation could be that within the developing brain, there are different processes
at play when retrieving a newly consolidated memory (one hour later) versus an older memory (24–48 h
later), which may require more resources, such as the combination of various types of oligosaccharides.
Interestingly, when piglets were supplemented with a complex mixture of oligosaccharides (HMOs
and BMOs or Oligofructose), they displayed an improved long-term recognition memory. Perhaps the
effects when HMOs form combinations or are provided with other oligosaccharides are more potent
and thus easier to discern than the effects of singular HMOs on memory.

Other factors such as gender and sample size could also contribute to the heterogeneity of the
simple behavioural test findings, but it is uncertain to what extent these factors may have influenced
the results. Only two sialyllactose studies (and no fucosyllactose study) used both males and
females, one rodent study by Oliveros and colleagues [47] and one piglet study by Obelitz-Ryom and
colleagues [51]. However, no separation based on gender was performed in the analysis. As studies
on postnatal administration of compounds, such as the study by Shumake and colleagues [58] have
demonstrated gender specific effects in rats, it stands to reason that early life HMO supplementation
could produce gender specific outcomes. Nonetheless, when comparing the findings generated by
Oliveros et al. [47] and Obelitz-Ryom et al. [51] with the exclusively male studies of the same species
and HMO administered, the behavioural results remained very similar. Furthermore, the majority
of the studies employed comparable sample sizes (n = 10–12 on average), and effects of HMOs on
cognition were already reported in studies with the lower sample sizes. While potential effects of
variation in sample size cannot be completely excluded, HMO supplementation already produces
beneficial results in experiments with lower sample sizes. Therefore, the heterogeneity in findings
between studies is more likely due to a combination of factors such as species and task parameters, as
previously discussed.

When both piglets and rodents were tested on complex cognitive tasks from a young age onwards,
HMOs exerted a beneficial effect on learning and memory. Therefore, it is possible that the HMOs
effects become more apparent when cognitive load is increased, either due to task difficulty or due
to aging. This may explain why the beneficial effects of HMOs are especially visible when the tasks
are cognitively more strenuous, such is the case with the 8-arm radial maze or the operant tests, as
increases in cognitive load make brain limitations more discernible.

While behavioural tests on learning and memory at a young age in general yielded mixed results,
HMO supplementation did significantly improve LTP from a young age onwards. Interestingly, while
in both young adult (2.5 months old) and mature adult (1 year old) just one HFS application was
sufficient to induce LTP, very young rodents (6 weeks old) required a second high-frequency stimulation
(HFS) to induce LTP. Nonetheless, HMO administration resulted in an enhanced LTP response in
both younger and older rodents alike. It is possible that LTP might be a more sensitive measure to
investigate the beneficial effects of HMOs on cognitive outcomes at a young age. Furthermore, under
normal circumstances, the LTP response is reduced in older rats as a natural result of aging [46]. This
natural reduction in LTP response was not encountered when the animals were supplemented with
HMOs. On the contrary, supplementation with HMOs facilitated an enhanced LTP response. Because
LTP is a measure of synaptic plasticity, it stands to reason that synaptic plasticity benefits from HMOs
both in the short-term as in the long-term. Therefore, supplementation of HMOs, both sialylated and
fucosylated, in infancy could have long-lasting protective effects on the molecular underpinnings of
learning and memory.
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It should be noted that these results have been gathered from only nine articles, which is the main
limitation of the present review. Nevertheless, while there are a limited number of studies on the
cognitive effects of HMO supplementation, the studies currently available show promising results
of how HMOs could contribute to cognitive development. These findings call for further in-depth
research on the cognitive effects of HMOs and to delineate their underlying mechanisms.

Potential Underlying Mechanisms

There are a few possible factors which could account for the cognition enhancing effects of HMOs
in mammals.

In the case of sialylated HMOs, Polysialylated Neural Cell Adhesion Molecules (PSA-NCAM)
could be upregulated. The PSA-NCAM complex is upregulated in newborn, immature neurons and
growing fibre tracts during embryogenesis and has been linked to increased synaptic plasticity [59–62].
Within the adult brain, PSA-NCAM is expressed in brain regions with high rates of neural plasticity
and neurogenesis, such as the olfactory bulb and the hippocampus [61]. Improved neural plasticity
and the survival of newborn neurons contribute to cognition and memory [62]. Therefore, it is possible
that sialylated HMOs are capable of influencing neurogenesis via upregulation of PSA-NCAM, which
in turn contributes to the reported improvement in cognition. This suggestion is further supported by
Oliveros and colleagues [47]. These authors found an increase in PSA-NCAM in 6-SL supplemented
animals. However, the role of fucosylated HMOs in plasticity and neurogenesis is currently not well
understood and requires further investigation.

A second possible factor is the improved immune functioning due to the supplementation of HMOs
and their well-established role in the immune system. As mentioned in the introduction, immune
factors also contribute to cognitive functioning [38], though there are multiple hypotheses on how this
may occur. One hypothesis states that perinatal immune activation directly affects neurodevelopmental
pathways necessary for learning and memory, which leads to reduced neurotransmitter function, a
reduction in hippocampal presynaptic proteins and impaired LTP [38]. A second hypothesis postulates
that early life immune activation indirectly determines the adult response to an infection with a
pathogen, either via exaggerated pro-inflammatory cytokines or via a decrease in anti-inflammatory
cytokines. This in turn could lead to downstream changes in cognition and neural function [38]. As
HMOs are capable of regulating the neonatal cytokine response in the periphery [11,33,35,63], it is
possible that they also exert their enhancing effects on cognition via the immune system.

A last possible factor through which HMOs may improve cognition involves the microbiome.
HMOs contribute to the microbiome composition within the gut and therefore could interact with the
brain via the resulting bacterial metabolites such as the Short Chain Fatty Acids [64]. As certain gut
bacteria are specific for the utilization of sialylated HMOs and other bacteria for the fucosylated HMOs,
a larger variety of HMOs may go hand in hand with a larger yield of specific gut bacteria capable
of metabolizing these HMOs, and thus determining their subsequent metabolites [65]. Interactions
between single HMOs and the microbiome have been previously reported by Tarr and colleagues [66].
They demonstrated that the administration of sialylated HMOs changed the microbial composition
in the gut of mice, which in turn led to a reduction in anxiety-related behaviour and a maintenance
of neurogenesis. The influence of the gut–brain axis has also been touched upon by Vazquez and
colleagues [48], as they found that ablating the vagal nerve, which is part of the gut–brain axis,
diminished the beneficial effects of orally supplied 2′-FL on LTP. Similar to these results, Kuntz and
colleagues examined the metabolic fate of 2′-FL and found that 2′-FL was not directly incorporated in
the brain but required an intact gut microbiome for the generation of fucose metabolites, which are
subsequently taken up into the systemic circulation and organs [67]. In addition, it is possible that
combinational HMOs may generate better effects than alone. This idea has already been demonstrated
at the level of the growth and function of gut bacteria [68,69]. Different HMOs are processed by different
bacteria, which contain either sialidases or fucosidases to cleave sia and fuc of the carbohydrates [65].
In turn, another group of bacteria can feed on the HMOs once the fuc and sia moieties are removed.
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These bacterial interactions, which depend on the HMOs present in the gut, may exert downstream
effects on memory and cognition via the gut–brain axis. In light of potential downstream effects
of the microbiome on behaviour, environmental housing conditions which affect the microbiome
should also be considered [70] in this context, although it is uncertain to what extent the microbiotic
variations due to husbandry may have influenced the effects of HMO supplementation on subsequent
behaviour. Finally, another important factor to consider in the context of the microbiome is gender
specific effects. While infant sex is reported to be largely unrelated to the HMO composition within
human breastmilk [31], another study by Moossavi and colleagues [71] found that the milk microbiota
vary depending on infant sex. This could potentially be attributed to cross interactions with the gut
microbiome of the infant, as gender differences have been reported there [71]. As HMOs interact with
both the milk and the gut microbiome [72,73], it is therefore possible that sex-dependent variations
could lead to differential cognitive outcomes of HMO supplementation.

5. Conclusions

The observation that HMOs are capable of enhancing cognition has initiated the search for a
better mechanistic understanding of its functioning. Nonetheless, there are still several outstanding
questions on the relationship between HMO and neonatal brain development, which warrant further
investigation. An important aspect that needs to be addressed is the apparent age-related differences
when assessing various cognitive tests. This point illustrates one of the current issues on HMO research
in animals, as the tools currently used may not be sensitive enough to fully explore the range to which
HMOs may affect brain development and cognition. Thus, one of the more complex tools could be
the use of challenging operant tasks, such as the Trial Unique Delayed Non-Matching to Location
(TUNL) measuring spatial memory and pattern separation [74], the 5-Choice Serial Reaction Time Task
measuring attention and motor impulsivity [75], or delayed reinforcement tasks measuring choice
impulsivity [76], ideally performed in the animal’s home cage. The difficulty of such tasks can be
varied and may thus be more suited to test cognitive functioning in young animals, as at a young age,
only effects of HMOs were found in difficult tasks.

Another important issue is that due to the large variability between the experimental design
and methods used across studies, comparing the effects of different HMOs between studies is
difficult. Such variability includes the age of testing, the tests and experimental parameters, the HMO
components used, the gender of the animals, variation in sample sizes, the environmental conditions
and the variation in (neuro)developmental stage during which the animals were supplemented the
HMOs. These limitations call for a larger, unified study in which the effects of different HMOs on
complex cognitive functioning are systematically compared, when administered both independently
and as in conjunction. In such a unified study, all these factors can be accounted for, enabling a
systematic comparison.

A last important issue is that most HMO studies so far have focused on singular HMOs, with
the exception of the two most recent studies performed by Fleming in 2020. The focus on singular
HMOs is a limitation because it does not reflect a naturalistic situation where maternal milk provides
a combination of different HMOs [77]. Therefore, considering the interactions of HMOs when
supplemented in combination would provide valuable insights on the influence of the gut microbiome
and its downstream effects on cognition and development.

While research on the cognitive implications of HMOs is still in its infancy, the early findings
reporting its long-lasting beneficial effects on memory and cognition are promising. Further studies
on the exact molecular mechanisms, ranging from immune functioning to neuroplasticity and the
microbiome will prove to be useful in deepening our understanding of how HMOs and their interactions
contribute to cognition and development.
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Appendix A

The following search string, comprised of both Mesh terms and key words in the title and abstract
was composed and entered in Pubmed:

(Oligosaccharides[MeSH Terms] AND milk, human[MeSH Terms] OR oligosaccharide*[Title/

Abstract] OR HMO*[Title/Abstract]) AND (learning[MeSH Terms] OR cognition[MeSH Terms] OR
memory[Title/Abstract] OR cognition[Title/Abstract] OR behavior[Title/Abstract] OR behaviour[Title
/Abstract]) AND (“sialic acids” [MeSH Terms] OR sialyl*[Title/Abstract] OR fucosyl*[Title/Abstract]
OR fucose[MeSH Terms] OR lacto-N-*[Title/Abstract] OR LNnT[Title/Abstract])

This search string enables the detection of articles that contain information regarding HMOs,
their cognitive outcomes and specific HMO components. Using the above search strategy, 108 articles
were found. Further exclusion criteria were articles that did not pertain to cognition or its associated
processes (learning and memory) and that did not make use of administered HMOs. This finally
resulted in 9 articles.
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