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Abstract

Lung adenocarcinoma (LUAD) is the main subtype of non-small cell lung cancer with a poor survival prognosis. In 
our study, gene expression, DNA methylation, and clinicopathological data of primary LUAD were utilized to identify 
potential prognostic markers for LUAD, which were recruited from The Cancer Genome Atlas (TCGA) database. 
Univariate regression analysis showed that there were 21 methylation-associated DEGs related to overall survival 
(OS), including 9 down- and 12 up-regulated genes. The 12 up-regulated genes with hypomethylation may be risky 
genes, whereas the other 9 down-regulated genes with hypermethylation might be protective genes. By using the 
Step-wise multivariate Cox analysis, a methylation-associated 6-gene (consisting of CCL20, F2, GNPNAT1, NT5E, 
B3GALT2, and VSIG2) prognostic signature was constructed and the risk score based on this gene signature classified 
patients into high- or low-risk groups. Patients of the high-risk group had shorter OS than those of the low-risk group 
in both the training and validation cohort. Multivariate Cox analysis and the stratified analysis revealed that the risk 
score was an independent prognostic factor for LUAD patients. The methylation-associated gene signature may 
serve as a prognostic factor for LUAD patients and the represent hypermethylated or hypomethylated genes might 
be potential targets for LUAD therapy.
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Introduction 
Lung adenocarcinoma (LUAD) is one major subtype 

of non-small-cell lung cancer (NSCLC) with high mortality 
(Siegel et al., 2015; Gharibvand et al., 2017). Because of being 
asymptomatic in the early phase and the delay of diagnosis, the 
5-year survival rate is 10.3% in the patients with LUAD (Li 
et al., 2016). In view of this, it is urgent to develop a reliable 
biomarker to predict the prognosis of LUAD.

DNA methylation is an epigenetic process involving the 
addition of a methyl group to DNA. The methylation of DNA 
has been demonstrated to play an important role in a variety 
of cellular processes and disordered methylation patterns 
have been shown to associate with several human diseases, 
including cancer. Because of the stability, reversibility, and 
easy detectability, DNA methylation has obtained clinical 
attention as a novel biomarker for diagnosis and prognosis 
of cancer (Hao et al., 2017; Xu et al., 2017), including lung 
cancer (Brock et al., 2008). DNA methylation in cancer 
always occurs in the CpG islands that were presented in the 

promoters of a gene (Yamashita et al., 2018). As a result, 
these methylated CpG sites could affect the activation of the 
promoter and control the expression of the corresponding 
gene. Typically, high methylation of a gene always inhibits 
its expression, but in some cases, high methylation has been 
observed to promote gene expression. Studies have shown 
that alterations in the expression of methylation-related genes 
are common in the development and progression of tumors 
(Sheikhnejad et al., 2013; Swm et al., 2021). Furthermore, 
methylation-associated genes could be used to predict the 
prognosis of several cancer types. Although the methylation-
associated genes have been demonstrated to be altered in 
LUAD tissue (Selamat et al., 2012; Bjaans et al., 2016; Pu 
et al., 2016), the prognosis value of these genes has not been 
well studied in LUAD.

In the current study, an integrated analysis of gene 
expression and DNA methylation datasets from the TCGA 
database was performed to identify methylation-associated 
prognostic genes for LUAD. A methylation-associated 
6-gene signature was constructed and validated, which might 
contribute to improving the prognosis of LUAD patients, and 
might be potential targets for LUAD therapy. 

Material and Methods
All data analyses were conducted relying on R (http://

www.r-project.org/, version 3.5.1). The analysis process is 
exhibited in Figure 1 as a flow chart.
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Figure 1 ‒ Flow diagram of our study. In parentheses are the numbers of patients in each cohort. All data analyses were conducted in R.

Data source 

Level 3 gene expression (RNA-seq) data, DNA 
methylation data, and the corresponding clinical information 
of the primary LUAD patients were retrieved from the TCGA 
database (https://portal.gdc.cancer.gov) in September, 2018. 
The detailed clinical data are shown in Table 2. Methylation 
data were based on the Illumina Infinium Human Methylation 
450k BeadChip. A total of 490 primary LUAD samples 
were available and selected for further analysis. Among 

these 490 patients, 56 patients had paired adjacent-normal 
samples and 450 patients had the DNA methylation data. The 
expression profiles of LUAD patients under the accession 
number GSE31210 (Okayama et al., 2012), GSE50081 (Der 
et al., 2014), and GSE37745 (Botling et al., 2013) from the 
Gene Expression Omnibus (GEO) database (http://www.ncbi.
nlm.nih.gov/gds/?term=) were downloaded as independent 
validation datasets. There were 226 patients in GSE31210, 
106 patients in GSE37745, and 128 patients in GSE50081.
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Screening for differentially expressed genes (DEGs)

EdgeR (Robinson et al., 2009) and DESeq2 (Anders 
and Huber, 2010) Bioconductor packages of R were utilized 
to evaluate the DEGs between tumor and 56 paired adjacent-
normal samples. Then, Benjamini and Hochberg approach was 
utilized to adjust the P values to false discovery rates (FDR) 
(Benjamini et al., 2001). The DEGs were identified based on 
|logarithmic fold change| >1, and FDR < 0.01, respectively. 
Volcano plots and scatter plots were generated using the ggplot2 
package (http://ggplot2.org/), Venn Diagrams were plotted 
using the VennDiagram package (Chen and Boutros, 2011), 
while heatmaps were created using the pheatmap package 
(https://cran.r-project.org/web/packages/pheatmap/index.html).

Correlation analysis between RNA-seq  
and DNA methylation

A correlation of gene expression and DNA methylation 
was estimated using Pearson’s correlation methods. The 
correlation coefficient (R) < - 0.5 and P < 0.05 were used 
as the threshold for obtaining a list of genes in which gene 
expression was inversely correlated with methylation.

Identification of prognosis-related signatures  
and calculating risk score

The intersections of up-regulated/down-regulated genes 
and gene list of negative correlation between gene expression 
and DNA methylation levels were selected as candidates for 
survival analysis. Then, a univariate Cox model was applied 
to determine the relationship between the expression level of 
each candidate DEGs and OS in LUAD patients to investigate 
which DEGs could be served as prognostic predictors for 
LUAD. After that, only the DEGs with a P value < 0.05 and 
hazard ratio (HR) > 1 for up-regulated genes or HR < 1 for 
down-regulated genes were screened out and fitted into a 
step-wise multivariate Cox regression to construct the gene 
signature. HR was utilized to determine the risky genes (HR > 
1) and protective genes (HR < 1). Subsequently, the risk score 
for each patient was computed using the following equation:

n
Risk score = ∑ Ei * βi

i =1

where “n” is the number of the selected genes, “Ei” stands 
for the expression level of gene i, and “βi” represents the 
coefficient of gene i.

Patients were classified into low- and high-risk groups 
according to the median risk score (Zhou et al., 2016). 
Meanwhile, the prognostic performance of the risk score 
was measured using the time-dependent receiver operating 
characteristic (ROC) curves by calculating the area under the 
curve (AUC) using the R package “survivalROC” (Heagerty 
et al., 2000). The defining point set up by 1-, 2-, 3-, 4- and 
5-year time-dependent ROC curve analysis was employed 
to assess the predictive value of the risk score for time-
dependent outcomes (Heagerty et al., 2000). Survival curves 
in the low- and high-risk groups were plotted by means of the 

Kaplan-Meier methods and the differences in the survival time 
between the two groups were compared using the Log-Rank 
test and Cox regression analysis (Jones and Crowley, 1989).

Cox regression analysis of the prognostic signature 
and other clinical parameters

Influences of various variables including risk score, 
age, gender, and stage on OS were evaluated by univariate 
and multivariate Cox proportional hazard regression models. 

Results

Identification of methylation associated DEGs

To screen out the DEGs between the LUAD and the 
paired adjacent normal samples, both EdgeR and DEseq2 
packages were used. A total of 9384 DEGs were detected by 
using the EdgeR package according to the threshold of fold 
change > 1 and an FDR value < 0.01, of which 6163 were 
up-regulated and 3221 were down-regulated. Meanwhile, 8894 
DEGs were identified by using the DESeq2 package, of which 
5390 were up-regulated and 3504 were down-regulated. The 
distribution of the DEGs identified by both EdgeR and DEseq2 
were shown using volcano plots (Figure 2A). Unsupervised 
hierarchical clustering analysis showed that these DEGs could 
distinguish LUAD samples and the adjacent normal samples 
(Figure 2B). Similarly, the PCA analysis also suggested that 
these DEGs could separate samples into LUAD and normal 
(Figure 2C). Finally, a total of 8495 DEGs were screened 
out (5303 up- and 3192 down-regulated) by overlapping the 
DEGs extracted by EdgeR and DEseq2 package.

To identify the methylation associated genes, we 
analyzed the correlation between the gene expression and 
the level of DNA methylation. Based on the predefined 
criteria (R< -0.5 and P < 0.05), a total of 634 methylation 
associated genes were extracted. Subsequently, the common 
part between the 634 methylation associated genes and the 
8495 DEGs were extracted. Ultimately, 210 methylation-
associated DEGs were identified for prognosis analysis, of 
which 159 was up-regulated (Figure 2D) and 51 was down-
regulated (Figure 2E).

Identification of risky and protective genes

To evaluate the prognostic value of the methylation-
associated DEGs, a univariate Cox regression analysis was 
conducted to investigate the correlation between the expression 
level of these methylation associated DEGs and the OS of 
the LUAD patients. Consequently, 21 methylation-associated 
DEGs (12 up- and 9 down-regulated) were found to be 
significantly associated with the OS. As shown in Figure S1A 
and S1B, the HRs of these 12 up-regulated DEGs were more 
than 1 (risky genes), while those of the 9 down-regulated 
DEGs were less than 1 (protective genes). All these 21 DEGs 
showed a negative correlation between the DNA methylation 
status and the gene expression level (Figure S2). The 12 up-
regulated DEGs with hypomethylation might be risky genes 
(Figure S2A), whereas the other 9 down-regulated DEGs with 
hypermethylation might be protective genes (Figure S2B).
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Figure 2 ‒ Identification of methylation-associated differentially expressed genes (DEGs) in lung adenocarcinoma (LUAD). (A) Volcano plots of DEGs 
analyzed by edgeR and DESeq2. (B) Heatmaps of DEGs identified by edgeR and DESeq2 (C) Principal component analysis (PCA) of the DEGs identified 
by edgeR and DESeq2. (D) Overlapping of up-regulated DEGs and the genes list negatively correlated with the DNA methylation. (E) Overlapping of 
down-regulated DEGs and the genes list negatively correlated with the DNA methylation.

Identification of a 6-gene prognostic signature  
and validation of the risk scoring system based  
on this gene signature

Subsequently, a step-wise multivariate Cox model was 
used to conduct a gene signature. Ultimately, a 6-gene signature 
(including CCL20, F2, GNPNAT1, NT5E, B3GALT2, and 
VSIG2) was developed (Table 1). Among these 6 genes, 4 
genes (CCL20, F2, GNPNAT1, and NT5E) were unfavorable 
genes (HR > 1) and the 2 genes (B3GALT2, and VSIG2) were 
favorable genes (HR < 1). 

For each LUAD patient, the risk score was calculated 
based on the gene expression level and the Cox regression 
coefficient. According to the threshold of median risk score, 
490 patients were divided into a high-risk group and a low-risk 

group based on the median risk score. The expression pattern 
of the 6 genes and the survival situation of LUAD patients 
in the high-risk group and low-risk group were displayed 
in Figure 3A. From this figure, we found that the mortality 
rate in the high-risk group was higher, relative to that in the 
low-risk group. 

To investigate the prognostic value of the risk score 
based on the 6-gene signature in the TCGA LUAD dataset, a 
univariate analysis was performed. The Kaplan-Meier curves 
suggested that the OS time of patients in the high-risk group 
was shorter than that of the low-risk group (Figure 3B, cox 
P = 8.42e-07, log-rank P = 3.33e-07), which implicated that 
the high-risk score was a poor prognostic factor for patients 
with LUAD (HR = 2.61, 95% CI= 1.78-3.83). The prognostic 
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Figure 3 ‒ Construction and validation of the methylation-associated gene signature. (A) The expression patterns of the 6 genes in the high-risk and 
low-risk group, and the survival status of each LUAD patient in the TCGA data set. The black dotted line is the median risk score, which is utilized to 
divide patients into the high-risk group and low-risk group. (B) Kaplan-Meier and ROC analysis of the survival prediction performance of the risk score 
which was based on the methylation-associated gene signature. TCGA was used as a training set, and GSE31210, GSE50081, and GSE37745 were used 
as validation sets.

Table 1 ‒ Univariate and multivariate analysis of the 6 genes for constructing the prognostic signature.

Gene symbol Ensembl ID Gene type Chromosomal 
position

Univariate analysis Multivariate analysis

HR (95% CI) P HR (95% CI) P

CCL20 ENSG00000115009 Protein coding Chr2: 227805739-
227817564 1.11(1.02-1.20) 1.50E-02 1.12(1.03-1.22) 7.00E-03

F2 ENSG00000180210 Protein coding Chr11: 46719180-
46739506 1.13(1.06-1.21) 2.10E-04 1.13(1.05-1.21) 8.20E-04

GNPNAT1 ENSG00000100522 Protein coding Chr14: 46719180-
52791668 1.65(1.34-2.04) 3.50E-06 1.38(1.05-1.80) 1.90E-02

NT5E ENSG00000135318 Protein coding Chr6: 46719180-
85495791 1.17(1.06-1.31) 3.10E-03 1.23(1.11-1.37) 1.60E-04

B3GALT2 ENSG00000162630 Protein coding Chr1: 46719180-
193186654 0.85(0.77-0.95) 4.10E-03 0.89(0.79-1.00) 4.40E-02

VSIG2 ENSG00000019102 Protein coding Chr11: 46719180-
124752238 0.88(0.82-0.95) 5.20E-04 0.87(0.79-0.97) 1.20E-02

HR: hazard ratio; CI: confidence interval



Meng et al.6

 

Figure 4 ‒ Expression patterns of methylation-associated gene signature. The expression level of the 6 genes in LUAD and paired adjacent normal tissues 
(A), and in high-risk and low-risk groups (B). (C) DNA methylation levels (Beta-value) of the 6 genes in high-risk and low-risk groups. 

capacity of the risk score was investigated by calculating the 
AUC value of the ROC curves. The time-dependent ROC 
curves for 1-, 2-, 3-, 4, and 5-year survival prediction are listed 
in Figure 3B, with an AUC of 0.738, 0.706, 0.717, 0.719, and 
0.657, respectively, demonstrating that the risk score had a 
high specificity and sensitivity in predicting of OS. 

To investigate the reliability of the risk score for prediction 
of OS, 3 expression profile datasets including GSE31210, 
GSE50081 and GSE37745 were used for validation. The 
results implicated that all patients in the high-risk group had 
a shorter OS than those in the low-risk group (GSE31210: 
HR = 4.3, 95% CI = 1.88-9.86, Log-Rank P =1.69e-04; 
GSE50081: HR = 1.77, 95% CI = 1.02-3.08, Log-Rank P = 
0.04; GSE37745: HR = 1.67, 95% CI = 1.06-2.63, Log-Rank 
P = 0.025) (Figure 3B). The time-dependent ROC curves 
showed that the 1-, 2-, 3-, 4-, and 5-year AUC values were 
0.766, 0.758, 0.72, 0.745, and 0.748 in GSE31210, 0.676, 
0.666, 0.691, 0.637, and 0.63 in GSE50081, 0.658, 0.674, 
0.599, 0.607, and 0.619 in GSE37745, respectively (Figure 
3B), demonstrating a reliable performance for predicting OS.

The gene expression pattern and the DNA methylation 
levels of the 6 genes are shown in Figure 4. The expression 
level of CCL20, F2, GNPNAT1 and NT5E in the tumor 
samples was significantly higher than that in normal tissues, 
while the expression level of B3GALT2, and VSIG2 displayed 
an opposite expression pattern (Figure 4A). Similarly, 
the expression of CCL20, F2, GNPNAT1 and NT5E was 
significantly higher in the high-risk group compared to the 
low-risk groups, but the expression of B3GALT2 and VSIG2 
in the high-risk group was lower than that of the low-risk 
group (Figure 4B). A comparison of the DNA methylation 
levels of these 6 genes between high- and low-risk groups 
was performed (Figure 4C). Of note, the methylation level 
of 3 genes (CCL20, GNPNAT1, and NT5E) was down-
regulated in the high-risk group compared with the low-risk 
group (all P < 0.05). In contrast, the methylation levels of 
the 2 genes (B3GALT2 and VSIG2) were up-regulated in 
the high-risk group (both P < 0.05). However, no difference 
in DNA methylation level of F2 was observed in the two 
groups (P > 0.05).
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Table 2 ‒ Univariate and multivariate Cox regression analysis of the 6-gene signature and overall survival of LUAD patients.

Variables Patients
(N)

Univariate analysis Multivariate analysis

HR (95% CI) P HR (95% CI) P

Age <=65/>65 237/253 1.35(0.94-1.95) 1.00E-01 1.62(1.11-2.37) 1.20E-02

Gender Male/Female 265/225 0.93(0.65-1.33) 6.90E-01 0.79(0.55-1.15) 2.20E-01

Stage I/II 262/115 2.68(1.68-4.26) 3.20E-05 2.60(1.62-4.18) 7.70E-05

Stage I/III 262/80 4.39(2.77-6.98) 3.80E-10 3.37(2.08-5.43) 7.00E-07

Stage I/IV 262/26 3.22(1.64-6.32) 6.70E-04 3.69(1.86-7.32) 2.00E-04

Risk score Low/High 245/245 2.61(1.78-3.83) 8.40E-07 2.30(1.53-3.46) 6.30E-05

HR: hazard ratio; CI: confidence interval

The risk score is an independent survival predictive 
factor

To investigate the prognostic factors for LUAD patients, 
a univariable Cox analysis was carried out based on the selected 
variables including age, gender, stage, and risk score. The 
results showed that stage II (HR = 2.68, 95% CI = 1.68-4.26, 
P = 3.20E-05), stage III (HR = 4.39, 95% CI = 2.77-6.98, P 
= 3.80E-10), stage IV (HR = 3.22, 95% CI = 1.64-6.32, P = 
6.70E-04), and high-risk score (HR = 2.61, 95% CI = 1.78-
3.83, P = 8.40E-07) were significantly correlated with poor 
OS of LUAD patients (Table 2). 

To measure whether the risk score was independent 
of other clinical features, multivariable Cox analysis was 
implemented. The results showed that age (HR = 1.62, 95% 
CI = 1.11-2.37, P = 1.20E-02), stage II (HR = 2.60, 95% CI =  
1.62-4.18, P = 7.70E-05), stage III (HR = 3.37, 95% CI = 
2.08-5.43, P = 7.00E-07), stage IV (HR = 3.69, 95% CI = 
1.86-7.32, P = 2.00E-04), and high risk score (HR = 2.30, 95% 
CI = 1.53-3.46, P = 6.30E-07) were independent prognostic 
factors for LUAD patients (Table 2). 

A stratification analysis was further performed based 
on clinical parameters. Patients in each subgroup including 
age (<= 65, and > 65), gender (male and female), and stage 
(II, and III-IV) were separated into the low-risk group and 
high-risk group according to the median risk score. For all 
stratified clinical variables, patients in the high-risk group had 
a shorter survival time, relative to those of the low-risk group 
(Figure 5, Log-Rank P < 0.05, Cox P < 0.05). Taken together, 
these findings suggested that the risk score based on the 6-gene 
signature was an independent survival predictive factor.

Discussion 
DNA methylation can regulate the gene expression and 

usually induces tumor suppressor gene silencing and oncogene 
activation through hyper/hypomethylation (Belinsky, 2004; 
Vaissiã Re et al., 2008). In this study, we demonstrated for the 
first time that integrated analysis of gene expression profiles and 
DNA methylation data could establish methylation-associated 
gene signature that can be used to predict the survival of LUAD 
patients. The risk score based on the methylation-associated 
gene signature exhibited good predictive performance in both 
TCGA and GEO datasets.

Our methylation-associated gene signature showed 
comparable sensitivity and specificity to the previous study 
for survival prediction (Figure S3). In a previous study (Lau 
et al., 2007), a 3-gene signature classified the patients into 

two groups and showed different survival times, however, the 
AUC values of the gene signature were not assessed. Although 
an 8-gene signature (He and Zuo, 2019) performed better in 
predicting survival in NSCLC patients, it did not perform 
as robustly as the gene signature in our study for predicting 
LUAD. A similar predictive performance was observed 
between a 7-gene signature (Krzystanek et al., 2016) and our 
methylation-associated gene signature, nevertheless, the AUC 
in their study was not calculated. In a 4-gene signature (Cui 
et al., 2019), the predictive performance based on the TCGA 
dataset was inferior to our signature, and the AUC values 
were not validated. Although all signatures were capable of 
predicting OS, our methylation-associated gene signature 
was much more robust. 

In this methylation-associated gene signature, the 
expression level of CCL20, F2, GNPNAT1, and NT5E was 
significantly up-regulated in the LUAD tissue and in the 
high-risk group. Significantly, the HRs of these 4 up-regulated 
genes were more than 1, and those methylation levels were 
hypomethylated, which indicated that these hypomethylated-
up-regulation genes are risky genes. Chemokines are responsible 
for the establishment of the tumor microenvironment, and the 
infiltration and migration of inflammatory cells and cancer 
cells (King, 2015). CCL20, a member of CC chemokines, has 
been observed to mediate the migration of inflammatory cells, 
thereby involving in metastasis of cancer, including colorectal, 
pancreatic, or lung cancer (Beider et al., 2009; Brand et al., 
2010; Wang et al., 2016). Moreover, Wang et al. (2015) have 
demonstrated that CCL20 is up-regulated in lung cancer, and 
increased CCL20 is related to poor prognosis. The full name 
for F2 is coagulation factor II which has been reported to be a 
prerequisite for lung-cancer-cell-induced platelet aggregation 
(Heinmöller et al., 1996). Significantly, in some instances, 
platelet aggregation directly links with the metastatic potential 
(Tang and Honn, 1995). GNPNAT1 was only reported in 
prostate cancer, which was suggested to be over-expressed in 
prostate cancer tissue (Ren et al., 2016) and to be connected 
with the development of castrationresistant prostate cancer 
(Kaushik et al., 2016). Growing evidence shows that NT5E 
is a key regulatory molecule in the development of cancer 
and is highly expressed in a number of cancers, including 
NSCLC (Zhu et al., 2017), and silence of NT5E suppresses 
the cell growth and migration of NSCLC cells (Zhu et al., 
2017). Significantly, high NT5E expression was an independent 
predictor of poor prognosis for OS and recurrence-free survival 
in NSCLC (Inoue et al., 2017). Another two genes identified 
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in our prognostic signature are B3GALT2 and VSIG2 which 
were down-regulated in the LUAD samples and in the high-risk 
group in our study. Moreover, those HR values were less than 
1, and these two genes were hypermethylated, suggesting genes 
B3GALT2 and VSIG2 with hypermethylated-down-regulation 
were protective genes. In a former study, 1 down-regulated 
gene B3GALT2 was identified among 139 LUAD-specific 
hypermethylated genes (Yin et al., 2014), which is in line 
with our results. B3GALT2 is applied to form a prognostic 
biomarker of carcinoma-associated fibroblasts in NSCLC 
(Navab et al., 2011). Additionally, carcinoma-associated 
fibroblasts play a crucial role in maintaining an optimal cancer 
microenvironment for cell proliferation and survival (Cirri and 
Chiarugi, 2012; Marsh et al., 2013). VSIG2 has been found 
to be differentially expressed in endometrial cancer (Shi et 
al., 2018), and to be significantly associated with bladder 

cancer risk (Moore et al., 2010). Since the 6-gene signature is 
established based on the hypomethylation-related risky genes 
and hypermethylation-related protective genes, it can provide 
new ideas for methylation-based treatment for LUAD. For 
example, the methylation strategy of a hypomethylated risky 
gene, or the demethylation of a hypermethylated protective 
gene in the signature.

Nevertheless, several disadvantages should be 
acknowledged in the current study. Firstly, this study is a 
retrospective study based on previously published datasets, 
hence, prospective studies should be carried out in the future 
to remedy the limitations of the retrospective study. Secondly, 
the functions of these methylation-associated DEGs should be 
verified based on experimental investigations. Thirdly, clinical 
studies are needed to further verify the accuracy and application 
potential of this novel prognostic signature for LUAD patients. 

Figure 5 ‒ Stratification analysis of the survival prediction performance of the risk score in different clinical parameters of LUAD patients. HR, hazard ratio.
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Conclusion
The risk score based on the methylation-associated 

gene signature is an independent survival predictive factor 
for LUAD patients. The potential clinically applicable 
methylation-associated gene signature may contribute to 
improving the prognosis of LUAD patients and the represent 
hypermethylated or hypomethylated genes might be potential 
targets for LUAD therapy.
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