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Identifying critical edges in complex 
networks
En-Yu Yu1, Duan-Bing Chen1,2 & Jun-Yan Zhao3

The critical edges in complex networks are extraordinary edges which play more significant role than 
other edges on the structure and function of networks. The research on identifying critical edges in 
complex networks has attracted much attention because of its theoretical significance as well as wide 
range of applications. Considering the topological structure of networks and the ability to disseminate 
information, an edge ranking algorithm BCCMOD based on cliques and paths in networks is proposed in 
this report. The effectiveness of the proposed method is evaluated by SIR model, susceptibility index 
S and the size of giant component σ and compared with well-known existing metrics such as Jaccard 
coefficient, Bridgeness index, Betweenness centrality and Reachability index in nine real networks. 
Experimental results show that the proposed method outperforms these well-known methods in 
identifying critical edges both in network connectivity and spreading dynamic.

The structure and function of complex networks attracted a great deal of attention in many branches of science1. 
Networks mediate the spread of information, sometimes, a few initial seeds can affect large portions of net-
works. Such information cascade phenomena are observed in many situations, for example, cascading failures in 
power grids, diseases contagion between individuals, innovations and rumors propagating through social net-
works, and large grass-roots social movements in the absence of centralized control. How to find critical nodes 
and edges is an important and interesting issue. With the rapid development of internet media, the information 
interaction between individuals is becoming more and more frequent and the mechanism of information diffu-
sion has become more and more complex. Many methods are used to measure the importance of nodes in net-
works. Degree centrality2, semi-local centrality3, k-shell4 and H-index5,6 are based on nodes’ degrees. Closeness 
centrality7, betweenness centrality8 and eccentricity centrality9 are based on paths in networks. PageRank10, 
LeaderRank11 and HITs12 are based on eigenvector. Sleep scheduling13 is one of the approaches to save residual 
energy of wireless nodes in energy-constraint large-scale industrial wireless sensor networks while satisfying 
network connectivity and reliability. In comparison, critical edges also play a significant role in the process of 
information diffusion. In complex networks, sometimes it is impractical to forbid all communications of a node, 
so it is necessary to truncate some important communication links. Critical edges analysis will be beneficial to 
guide or control the information dissemination from a global perspective.

In order to explore the transmission of information, many researches have focused on the network topology to 
find the critical edges. Degree product14 supposes that edges connecting two nodes with high degrees are critical.  
Betweenness centrality of edges15,16 and betweenness centrality of a group of edges17 suppose that edges linking 
two connected components are important. Average node reachability and the maximum flow of a network can 
characterize the ability of information transmission in networks and critical edges have serious influence on 
average node reachability and maximum flow18,19. In Jaccard coefficient20, if node i and node j have a lot of com-
mon neighbors, even if they have no direct connection, information also can spread from node i to node j easily, 
so edges are more important if there are less common neighbors. Complex networks may have many cliques. In 
Bridgeness21, if an edge is removed, information can spread through other edges in the clique which contains the 
removed edge, so, intuitively, edges in smaller cliques are more important.

What’s more, The ability to disseminate information is also an evaluation index to measure the importance 
of edges. In online social networks, the study finds three different spreading mechanisms: social spreading, 
self-promotion and broadcast22. An edge is important if most of the information is spreading through this edge23.

In this report, we only use the topology of networks to rank the importance of edges, considering not only 
the local characteristics (degrees of nodes, cliques) but also the global characteristics (betweenness centrality). 
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The proposed method is compared with Jaccard coefficient, Bridgeness, Betweenness centrality and Reachability 
index in three evaluation metrics, SIR model24,25, susceptibility index S26 and the size of giant component σ27 in 
nine real networks which have large differences in basic topological features and the results show that the pro-
posed method in this report can quickly decompose networks and has a greater impact on information spreading.

Results
If there are many different cliques containing two related nodes of an edge, the edge is not so important for 
the perspective of spreading. Based on above point and betweenness centrality of edges, a new index BCCMOD 
(Betweenness Centrality and Clique Model) is proposed to measure the importance of an edge e(u, v). BCCMOD is 
an index which combines the local and global characteristics. In BCCMOD, if we remove edges with high score, the 
effect of spreading is large. The performance of BCCMOD is compared with that of Jaccard coefficient, Bridgeness, 
Reachability and Betweenness. The results show that BCCMOD can quickly decompose networks and has a greater 
impact on information spreading in most cases comparing with other methods. The detailed definitions of indices 
are given in the Method section.

Data Description.  Nine undirected and unweighted networks are used to evaluate the performance of the 
edge ranking method. (1) Jazz, a collaboration network between Jazz musicians. (2) Oz, a network contains 
friendship ratings between 217 residents living at a residence hall located on the Australian National University 
campus. (3) Highschool, a network contains friendships between boys in a small high school in Illinois. (4) 
Innovation, a network spread among 246 physicians in five towns, i.e., Illinois, Peoria, Bloomington, Quincy and 
Galesburg. (5) Lesmis, a network contains co-occurances of characters in Victor Hugo’s novel Les Miserables. 
(6) Train, a network contains contacts between suspected terrorists involved in the train bombing of Madrid on 
March 11, 2004 as reconstructed from newspapers. (7) PowerGrid, a network contains information about the 
power grid of the Western States of the United States of America. (8) Email, a network contains the email com-
munication at the University Rovira i Virgili in Tarragona in the south of Catalonia in Spain. (9) Router, a net-
work contains autonomous systems of the Internet connected with each other. All data can be downloaded from 
Chicago network dataset28 and the basic topological properties of these nine networks are shown in Table 1. In 
order to guarantee the diversity of networks, these nine networks have large differences in total number of nodes 
and edges, average degree, maximum degree, average clustering coefficient and degree heterogeneity.

Evaluation metrics.  Susceptibility index S, the size of giant component σ and SIR spreading model are used 
to evaluate the performance of ranking methods.

Susceptibility index S.  In network connectivity metric, susceptibility index S is used to evaluate the performance 
of methods. Susceptibility index S is defined as:
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where ns is the number of components whose size equals s, smax is the size of giant component, and n is the size 
of whole network. For details, sort edges in descending order according to their ranking score firstly, and then 
calculate the Susceptibility index S after removing the edges from network one by one from high to low ranking 
scores. In this report, parameter p is defined as:

=p m
m

, (2)
r

where m is the number of all edges and mr is the number of removing edges.
The results are shown in Table 2 and Fig. 1. From Table 2 and Fig. 1, it can be seen that BCCMOD has the mini-

mum p when the largest S achieves in Lesmis, Highschool, Jazz, Train, Email and Oz. In Innovation, all methods 
have the same effect. In PowerGrid and Router, the largest S of BCCMOD is appeared the second earliest. So, the 
largest S of BCCMOD appeared the earliest in most cases compared with other methods, this demonstrates that 

Networks n m 〈k〉 kmax c H

PowerGrid 4944 6596 2.6682 19 0.0800 1.4505

Lesmis 77 254 6.5974 36 0.5731 1.8272

Router 5022 6258 2.4922 106 0.0116 5.5031

Jazz 198 2742 27.6970 100 0.6175 1.3951

Email 1133 5451 9.6222 71 0.2202 1.9421

Innovation 244 925 7.5819 28 0.3077 1.2764

Train 67 245 7.3134 29 0.5944 1.7100

Highschool 73 276 7.5616 19 0.4458 1.2242

Oz 217 1839 16.9493 56 0.3627 1.2094

Table 1.  The basic topological features of nine real networks. n and m are the total number of nodes and edges, 
respectively. 〈k〉 is the average degree for networks. kmax is the maximum degree for networks. 〈c〉 is the average 
clustering coefficient and H is the degree heterogeneity, defined as =H k

k

2

2
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BCCMOD can break down the network quickly. Moreover, the largest S of BCCMOD is the highest among all meth-
ods for all networks except Email and Router, which means BCCMOD has the greatest damage to networks. From 
these results, in the point of network connectivity, BCCMOD can quickly decompose networks and has the greatest 
damage to networks in most cases.

The size of giant component σ.  Besides susceptibility index S, another metric, the size of giant component σ is 
used to evaluate the performance of methods. For details, sort edges descending order according to their score 
firstly, and then count the size of giant component σ after removing the edges from network one by one from high 
to low ranking scores.

The results are shown in Fig. 2. The faster the curve falls, the better the effect of method is. From 
Fig. 2(b,c,f,h,i), it can be found that the curve of BCCMOD falls the fastest, which means BCCMOD can break down 
the network quickly. And in Fig. 2(d,g), the falling speed of the BCCMOD is close to the best case among all meth-
ods. In Fig. 2(a), the size of giant component σ drops quickly although it drops relative slow at the beginning. 
These results demonstrate that BCCMOD can quickly decompose networks in most cases.

SIR model.  In SIR model, there are three statuses: (1) S(t) denotes the number of nodes which may be infected 
(not yet infected); (2) I(t) denotes the number of nodes which have been infected and will spread the disease or 
information to susceptible nodes; (3) R(t) denotes the number of nodes which have been recovered from the dis-
ease or boredom the information and will never be infected by infected nodes again. In a network, each infected 
node will infect all susceptible neighbors with a certain probability μ. Infected nodes recover with probability β 
(for simplicity, β = 1 in this report) at each step. The process stops when there is no infected node. We can set a 
node to be infected and the others to be susceptible to estimate the influence of a single node in the network. The 
normalized final effected scale is defined as

=F t u
n

n
( , ) , (3)c

R t u( , )c

networks B Bc J R BCCMOD

PowerGrid 0.2977 0.0597 0.2560 0.4974 0.0685

Lesmis 0.3216 0.5215 0.3960 0.8353 0.0784

Router 0.3737 0.1469 0.1002 0.0115 0.0137

Jazz 0.6070 0.5242 0.7036 0.9759 0.5148

Email 0.9325 0.8536 0.8169 0.9268 0.7467

Innovation 0.0011 0.0011 0.0011 0.0011 0.0011

Train 0.2213 0.3320 0.2049 0.7172 0.1844

Highschool 0.4693 0.4765 0.6065 0.7112 0.3357

Oz 0.7989 0.8940 0.9038 0.9288 0.5185

Table 2.  The value of p corresponding to the largest S.

Figure 1.  The susceptibility index S over different value of p.
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where nR(tc, u) is the number of final effected nodes if node u is infected initially under SIR model and F(tc, u) is 
the finally normalized scale. To estimate the influence of edges, we can calculate the average influence of all nodes 
when remove a certain fraction of edges. We have an index

=
−R F t F t

F t
( ) ( )

( )
,

(4)
s

c c

c

(1) (2)

(1)

where F(i)(tc) is the average final infected scale of all nodes, i.e., = ∑ ∈F t F t u( ) ( , )i
c n u V c

( ) 1 , and F(1)(tc) and F(2)(tc) 
are results of original network and the network after removing p of edges.

In Table 3, we show the spearman correlation coefficients between the ranking scores and the relative differ-
ences of real infected scale Rs with μ/μc = 2 where μ = 〈 〉

〈 〉 − 〈 〉c
k

k k2
 in this report and all results are averaged over 200 

independent implementations. Edges are descending order and divided into 50 parts. For each step only 1 part of 
edges (remaining other 49 parts) are removed and calculated the relative differences of real infected scale corre-
sponding. Finally, two sequences (scores of the 2% edges and the relative differences of real infected scale) are 
obtained and the spearman correlation coefficients between them are obtained. From Table 3, it can be seen that 
BCCMOD has maximal spearman correlation in PowerGrid, Lesmis, Router, Jazz, Innovation, Train and Email. 
These results demonstrate that the edge which BCCMOD preferentially removed has a greater impact on the dis-
semination of real information.

Figure 3 shows the relative differences of real infected scale Rs after removing top 5% ranking edges under 
different infect rates. It can be seen that BCCMOD has higher Rs under different infect rates comparing with Jaccard, 
Bridgeness, Betweenness and Reachability methods. Generally, there is a significant impact on information 
spreading after removing top 5% ranking edges under BCCMOD.

Figure 4 shows the relative differences of real infected scale Rs under different ratio of edges removing p with 
μ/μc = 2. From Fig. 4, it can be seen that BCCMOD has higher Rs under different ratio of edges removing comparing 

Figure 2.  The size of giant component σ over different value of p.

networks B Bc J R BCCMOD

PowerGrid 0.3273 0.6425 0.1804 −0.2103 0.8406

Lesmis 0.3559 0.4416 0.1468 −0.1408 0.7024

router 0.5929 0.5914 −0.1241 −0.0561 0.8537

Jazz 0.1346 0.5526 0.4906 0.2034 0.7309

Email 0.3355 0.7077 0.5167 −0.1676 0.9232

Innovation 0.4767 0.7636 0.1284 0.1234 0.7523

Train 0.4832 0.5568 0.2256 −0.1013 0.7670

Highschool 0.7812 0.6267 0.4653 0.0613 0.7142

Oz 0.5650 0.8680 0.4653 0.1245 0.8324

Table 3.  Spearman correlation coefficients between the ranking scores and the relative differences of real 
infected scale Rs. All results are averaged over 200 independent implementations under μ/μc = 2.
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with other methods. These results demonstrate that BCCMOD has a greater impact on information spreading while 
removing a small part of edges than other methods.

Discussion
In this report, the results show that if there are many different cliques containing both two related nodes of an 
edge, then the edge is not important for the perspective of spreading. We propose a global structural index, 
called BCCMOD and compared with four well-known topological indices by susceptibility index S, the size of giant 
component σ and SIR model. The results show that BCCMOD performs good in identifying critical edges both 
in network connectivity and spreading dynamic. As indicated by the experiments on the SIR model, BCCMOD 
is effective in quantifying the spreading influences of edges. This will help us in some real-life applications such 
as controlling the spreading of diseases or rumors and withstanding targeted attacks on network infrastruc-
tures. What’s more, formal definitions of cliques have generally assumed that the network links are undirected, 
in directed networks, the definition of cliques will be modified29,30, correspondingly, the algorithm of mining 
critical edges also have subtle changes. Although the methods have a good performance, high computational 

Figure 3.  The relative differences of real infected scale Rs after removing top 5% ranking edges under different 
infect rates. All results are averaged over 100 independent implementations.

Figure 4.  The relative differences of real infected scale Rs over each node as seed under different ratio of edges 
removing p. All results are averaged over 100 independent implementations under μ/μc = 2.
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complexity make it can’t be used in large-scale networks. In BCCMOD, all nodes’ degrees should be determined 
(running time is O (m)) and the time complexity for calculating the betweenness centrality of all edges in undi-
rected networks is O (mn)31. The time complexity for finding all cliques in undirected networks is O (M (n)) where 
M (n) is the cost of multiplying two n × n matrices32 (for sparse matrices, M (n) is O (n2)). So the computational 
complexity of BCCMOD is O (mn + M (n)) in undirected networks. BCCMOD is a global index with not too high 
computational load and expected to be applied in small and middle undirected networks. How to optimization of 
our algorithm in large-scale networks and directed networks will be part of our future work. Besides SIR model, 
there also have other well-known dynamical processes to measure the importance of edges, for example, the 
susceptible-infected-susceptible (SIS) spreading model33 can examine how much information through the edge 
over a period of time.

Methods
Betweenness centrality.  We know that betweenness centrality of edges indicates that the more the shortest 
paths between node pairs pass through the edge e(u, v), the more important the edge e(u, v) is. The betweenness 
centrality of an edge e(u, v)15 is defined as:

∑
δ

δ
=

≠ ∈
BC u v u v( , ) ( , ) ,

(5)s t V

st

st

where δst is the number of all the shortest paths between node s and node t, δst(u, v) is the number of all the 
shortest paths between node s and node t which pass through the edge e(u, v), the larger the score BC is, the more 
important the edge is.

Critical edge identification method.  Generally, from the perspective of information spreading, the more 
important the two related nodes are, the more important the edge is. On the other hand, if there are many differ-
ent cliques containing e(u, v), even e(u, v) is removed, the information also can spread from u to v (or v to u) easily 
through other edges in these cliques. Based on above 2 points and combined betweenness centrality of edges, a 
new index BCCMOD (Betweenness Centrality and Clique Model)

Figure 5.  Four toy networks.
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can be defined to measure the importance of an edge e(u, v). Where BC(u, v) is the betweenness centrality of edge 
e(u, v), ku and kv are the degrees of node u and node v respectively, C(u, v)i is the number of cliques containing 
edge e(u, v) (in this report, clique means full connected subgraph, not the maximum full connected subgraph) 
whose size being i. For example C(u, v)4 = 3 means there are three cliques containing edge e(u, v) whose size being 
4. In this method, the larger the score is, the more important the edge is. For example, as shown in Fig. 5(a,c), the 
degrees of nodes 1 and 2 are 7 and 8 respectively. In Fig. 5(a) (max size of cliques is 4), C(1, 2)3 is 5 and C(1, 2)4 is 
2. When we remove edge e(1, 2), there are also many paths from node 1 to node 2, the effect of spreading is little. 
However, in Fig. 5(c) (max size of cliques is 3) with C(1, 2)3 being 1, when we remove edge e(1, 2), the effect of 
spreading is large since there is only one path (1, 3, 2) from node 1 to node 2. Table 4 shows the effect probability 
pe of nodes 2, 3, and 9 with the original infected source being node 1 on SIR spreading model with full contact 
process. Taking node 2 as an example, in Fig. 5(a,b), its effect probability is 0.3733 and 0.2240 respectively under 
μ = 0.2. However, in Fig. 5(c,d), the effect probability of node 2 is 0.2392 and 0.0380 respectively under μ = 0.2.

The Jaccard coefficient of an edge e(u, v) is defined as

∩
∪

=
Γ Γ
Γ Γ

J ,
(7)

e u v
u v

u v
( , )

where u and v are two related nodes of the edge e(u, v) and Γu is the set of u’s neighbors.The Bridgeness index of 
an edge e(u, v) is defined as

=B
S S

S
,

(8)
e u v

u v

e u v
( , )

( , )

where Su, Sv and Se(u, v) is the size of max clique which contains node u, v and edge e(u, v), respectively.
The Reachability index of edge e(u, v) is defined as

∑=
∈

R
V

R s G1
( ; ) ,

(9)
e u v

s V
e u v( , ) ( , )

where |V| is the number of nodes, Ge is the subnetwork by removing an edge e(u, v) from original network and 
R s G( ; )e u v( , )  is the number of reachable nodes from a node s over Ge.
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