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Abstract: Lens-free imaging technology has been extensively used recently for microparticle and
biological cell analysis because of its high throughput, low cost, and simple and compact arrangement.
However, this technology still lacks a dedicated and automated detection system. In this paper,
we describe a custom-developed automated micro-object detection method for a lens-free imaging
system. In our previous work (Roy et al.), we developed a lens-free imaging system using low-cost
components. This system was used to generate and capture the diffraction patterns of micro-objects
and a global threshold was used to locate the diffraction patterns. In this work we used the same setup
to develop an improved automated detection and analysis algorithm based on adaptive threshold and
clustering of signals. For this purpose images from the lens-free system were then used to understand
the features and characteristics of the diffraction patterns of several types of samples. On the basis of
this information, we custom-developed an automated algorithm for the lens-free imaging system.
Next, all the lens-free images were processed using this custom-developed automated algorithm.
The performance of this approach was evaluated by comparing the counting results with standard
optical microscope results. We evaluated the counting results for polystyrene microbeads, red
blood cells, HepG2, HeLa, and MCF7 cells lines. The comparison shows good agreement between
the systems, with a correlation coefficient of 0.91 and linearity slope of 0.877. We also evaluated
the automated size profiles of the microparticle samples. This Wi-Fi-enabled lens-free imaging
system, along with the dedicated software, possesses great potential for telemedicine applications in
resource-limited settings.
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1. Introduction

Analysis of micro-objects, e.g., cells and micro-particles, is among the major tasks in pathology,
biological research, and material science research. Concentrations and other physiological information
regarding cells, such as their size and shape, are crucial information for a pathologist or a physician to
reach a diagnostic conclusion. For example, information about the red blood cell (RBC) concentration,
white blood cell concentration, and platelet concentration of a patient’s whole blood sample plays
an important role in early diagnosis of many diseases. In most labs, especially in resource-limited
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settings, this type of study is generally conducted using a conventional optical microscope and
hemocytometer. In this conventional method, an expert manually inspects the samples, which is
tedious and prone to subjective error. On the other hand, recent biomedical research frequently
requires the analysis of increasingly large numbers of cell and particle samples [1]. Resource-rich
laboratories often use sophisticated automated alternatives, such as a Coulter counter and flow
cytometer, to handle large sample numbers [2]. However, these automated systems are bulky and
expensive, which limits their application and makes them impractical for resource-limited settings.
Furthermore, there is increasing demand for a compact, high-throughput, fast, and cost-effective
point-of-care cytometry system that can be operated by a non-expert user. These are the major
challenges that most of the biomedical labs are currently trying to address. Many research groups
have made extensive progress in this direction. Current advances in micro- and nanotechnology
have improved the utility of micro- and nanoscale devices and the possibility of overall device
miniaturization. These miniature devices retain advantages such as low power consumption and the
possibility of using batch processing to lower the unit cost. Kumar et al. recently demonstrated a simple,
cost-effective way to detect sickle RBC disease [3]. Richards et al. used advanced microfabrication
technology to demonstrate a novel micro-Coulter counter that can efficiently detect microparticles [4].
Stewart and Pyayt demonstrated a microscale flow cytometry system that uses advanced microfluidic
technology to efficiently detect cells and their sizes [5]. All these methods are based on microfluidic
technology and supported by an independent liquid flow source such as a peristaltic pump. However,
these support systems are bulky and very challenging to miniaturize, which affects the overall size of the
system. Many research groups successfully demonstrated other alternatives to detect and characterize
microparticles. Among them, the imaging of microparticles and cells using a compact lens-free imaging
system promises significant advantages [6]. Bishara et al. successfully demonstrated a compact lens-free
holographic microscopy system with a spatial resolution of 0.6 µm [7]. Isikman et al. demonstrated
a lens-free optical tomographic microscope with a large field of view [8]. Seo et al. demonstrated
a lens-free holographic imaging system that can perform on-chip cytometry [9]. All these methods
are based on an unconventional imaging technology called the lens-free imaging technology which is
gaining in popularity because of its advantages such as high throughput, compact size, low cost, and
reagent-free detection [10].

A lens-free imaging system is a simple arrangement of optoelectronic devices for capturing
the diffraction patterns of micro-objects that are located very close to the optoelectronic sensor,
e.g., a complementary metal–oxide–semiconductor (CMOS) or charge-coupled device (CCD) image
sensor [11]. The characteristics of a diffraction pattern generated upon illumination of the sample plane
with coherent light are governed by the physical and optical properties of the object, such as its size,
shape, and refractive index [11,12]. These properties can be obtained by characterizing the captured
diffraction pattern [12]. However, to date, these types of analysis have been done manually or using
semi-automated software such as Image J, which requires manual assistance to provide the threshold
range, circularity, and other parameters. Further, this type of software is generally designed for the
analysis of optical micrographs. Therefore, there is a need for a fully automated, dedicated algorithm
for fast, hassle-free characterization of the diffraction patterns in a lens-free image. In our previous
work we tried to implement an automated method based on global threshold [13,14]. However, the
algorithm shows a correlation in the range of 0.68 to 0.89 for microbeads. This is due to the variation in
the background intensity within the same sample. We tried to address this issue by adopting a local
threshold method.

In this paper, we introduce an automated method that can automatically detect, obtain, and
analyze the features of the diffraction patterns of micro-objects. The approach is based on the detection
of the midpoint of a diffraction pattern, followed by identification of the diffraction parameters, such
as the central maxima value (CMV), width of the central maxima (WCX), width of the central minima
(WCN), and peak-to-peak distance (PPD) [13,14]. For this purpose, we develop a mechanism to locally
obtain the signal pixels and a clustering procedure to acquire the central positions of the diffraction
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patterns. The detected parameters are used for filtering as well as to obtain the physical properties of
the micro-objects. The algorithm is optimized for fast, accurate performance by comparing the results
with standard microscope results. Finally, the performance of this approach is investigated for various
samples: microbeads, RBCs, and HeLa, MCF7, and HepG2 cells. The quantified results are compared
with the results of a conventional standard method to evaluate the agreement between the two.

2. Material and Methods

2.1. Lens-Free Imaging

Cell imaging is among the basic methods used in cytometry and feature profiling of micro-objects.
However, a high-resolution microscope is not the only choice for this purpose. The necessary
vital information required for cell cytometry and particle analysis can be provided by alternative
arrangements such as a lens-free shadow imaging system [6]. The lens-free imaging system is
a compact system consisting of a CCD or CMOS image sensor and a partially coherent light source, e.g.,
a light-emitting diode (LED) [13–15]. A schematic of the custom-built lens-free imaging system
is shown in Figure 1. The schematic illustrates the simplicity of the fabricated setup. In our
system, we used a five-megapixel (1920 ˆ 2560 pixel) monochrome CMOS image sensor (EO-5012M,
Edmund Optics, Barrington, NJ, USA) that can be purchased at 14 USD per chip for the order of
2400 chips (MT9P031, Aptina, Phoenix, AZ, USA), with a sensing area of 23.52 mm2 and unit pixel size
of 2.2 µm, and a blue LED with a peak wavelength of 470 ˘ 0.5 nm (HT-P318FCHU-ZZZZ, Harvatek,
Hsinchu City, Taiwan; costing approximately 3 USD) as a light source. A pinhole 300 ˘ 5 µm in size was
mounted on the top of the LED to achieve uniform semi-coherent illumination that illuminates samples
loaded in a transparent cell-counting chamber made of polymethylmethacrylate (C-Chip, C10288,
Invitrogen, Waltham, MA, USA). A single-board computer (Raspberry Pi, Raspberry Pi foundation,
Caldecote, UK) costing approximately 40 USD was used to record the captured images and to transmit
them wirelessly to a smartphone or a PC, where they were auto-processed using the custom-developed
software. An Edimax (Edimax Technology Co. Ltd, Xinbei, Taiwan) 2.4 GHz wireless adapter costing
about 10 USD was used to facilitate the Wi-Fi connection. All these components were packed within
9.3 ˆ 9.0 ˆ 9.0 cm3. This fabricated system was used to obtain whole-frame lens-free images that offer
a field of view approximately 25 times that of a 100ˆ optical microscope.
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Figure 1. Schematic and working principle of the lens-free imaging system. (a) Schematic of the
proposed system illustrating its simplicity with potential wireless file transfer facility; (b) cartoon of
working principle of the formation of the diffraction pattern of a micro-object; (c) external view of the
fabricated setup.
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2.2. Sample Preparation

We used several types of cell lines and microbead samples for this study. The preparation methods
of these samples are described below.

2.2.1. Polystyrene Microbeads

We used polystyrene microbeads (Thermo Scientific, Waltham, MA, USA) to examine the
performance of the algorithm for particle counting and size determination. We prepared four
heterogeneous samples with a wide particle size range (5–30 µm) by mixing in different concentrations
with de-ionized (DI) water. These samples were then examined under the lens-free system and
a standard optical microscope using a C-Chip.

2.2.2. RBCs

RBC samples were collected from Korea University Ansan Hospital under institutional review
board approval in a tube treated with ethylenediaminetetraacetic acid. The samples were then diluted
with Roswell Park Memorial Institute (RPMI-1640, Thermo Scientific) media and loaded in a C-Chip
for analysis under the proposed lens-free system and a standard optical microscope.

2.2.3. HepG2 Cells

HepG2 cell lines were derived from human liver tissue from the American Type Culture Collection
(ATCC HB-8065, Manassas, VA, USA) and grown in a high-glucose growth medium (Dulbecco
Modified Eagle Medium, DMEM) supplemented with 10% heat-inactivated fetal bovine serum, 0.1%
gentamycin, and a 1% penicillin/streptomycin solution under 95% relative humidity and 5% CO2

at 37 ˝C. The cells were then trypsinized and separated from the 24-well plate and incubated for
2–5 min at 37 ˝C. The incubated cells were washed and diluted with DMEM solution and then loaded
in a C-Chip for analysis under the lens-free system and optical microscope.

2.2.4. MCF7 Cells

A human breast cancer cell line (MCF7) was obtained from the American Type Culture Collection
(ATCC HTB-22, Manassas, VA, USA). The cells were maintained in a solution of DMEM containing
1% penicillin/streptomycin solution, 0.1% gentamycin, and 10% calf serum at 95% relative humidity
and 5% CO2 at 37 ˝C. These cells were then trypsinized to separate them from the well plate, followed
by incubation for 2–5 min at 37 ˝C. The cells were then washed with DMEM solution and loaded in
a C-Chip for examination under the lens-free system and optical microscope.

2.2.5. HeLa Cells

A human cervical cancer cell line (HeLa, ATCC CCL-2) was collected from the American
Type Culture Collection (Manassas, VA, USA). The cells were then maintained in a solution of
DMEM containing 1% penicillin/streptomycin solution, 0.1% gentamycin, and 10% calf serum at 95%
relative humidity and 5% CO2 at 37 ˝C. The cells were separated from the 24-well plate by applying
a trypsin solution and incubated for 2–5 min at 37 ˝C. After incubation, the cells were washed and
diluted in a DMEM solution and loaded in C-Chip for examination under the lens-free system and
optical microscope.

2.3. Algorithm

The algorithm used in this study contains a number of steps. The following sections describe the
processes involved in this method in detail.
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2.3.1. Summary of the Algorithm

As the signals of the diffraction patterns in a whole-frame lens-free image are significantly affected
by that of the background, the signals can be filtered using a threshold [16]. However, owing to the
large field of view and non-uniform background, a global threshold is unsuitable for this purpose (see
the comparison of existing segmentation method ‘graythresh’ with our custom developed method in
the Figures S1, S2 and Table S1 of the Supplementary Materials). Again, the strength of the signal and
value of the background may vary from sample to sample. To understand this, we studied lens-free
images of different samples (see Figure 2) and by evaluating the 3D intensity profile. This shows
the variation in the background values and pixel values of the signals. In this context, it is necessary
to acquire the signals locally [17]. We did this using a 10 ˆ 10 patch wise technique method [18].
To locate the midpoint of the filtered diffraction pattern, we employed a clustering method using
a 25 ˆ 25 patch wise technique. The midpoints of the clusters were obtained by averaging the spatial
coordinates of each of the filtered cluster elements in the 25 ˆ 25 window. Finally, we filtered the
unwanted diffraction noise by evaluating the circularity of the diffraction patterns. This algorithm is
then implemented as application software as shown in the Figure 3. The following are the steps for the
realization of this algorithm.
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Figure 2. Diffraction pattern analysis. Optical micrographs of a single (a) 10 µm bead; (b) 20 µm bead;
(c) RBC; (d) HeLa cell; (e) HepG2 cell; and (f) MCF7 cell; (g)–(l) diffraction images corresponding to
(a)–(f), respectively, (m)–(r) intensity profiles corresponding to (g)–(l), with statistical differences of
10 samples from each of these cell lines.
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Figure 3. Snapshot of the custom-developed application software. (a) Snapshot of custom-developed
Windows application software; (b) snapshot of custom-developed Android application; (c) optical
micrograph of region of interest at 100ˆ magnification; (d) diffraction pattern of a single microparticle;
(e) intensity profile of the diffraction pattern in (d) explaining the custom-developed diffraction
parameters along the dotted red line in (d).

2.3.2. Study of Diffraction Images

We conducted a study to understand the features of the diffraction patterns of the micro-objects
that were captured by the fabricated lens-free imaging system. For this study, we selected six types
of samples: 10 µm and 20 µm polystyrene beads, RBCs, and the HeLa, HepG2, and MCF7 cell lines.
We ensured the type and size of the sample by taking the optical micrograph of the same sample in
100ˆ optical zoom. We evaluated the intensity profile for 10 different diffraction patterns of each
type of sample manually using Image J (NIH, Bethesda, MD, USA) [15]. The intensity profiles of all
these samples are shown in Figure 2, which demonstrates that the diffraction patterns have almost the
same features as the intensity profiles. However, the diffraction parameters for each type of sample
differ significantly. We identified these parameters as the CMV, WCX, WCN, and PPD [13], as shown
in Figure 3e. These parameters represent the physical optical properties of the micro-objects [14].
To detect and characterize these parameters, it is important to precisely locate the position of the
diffraction pattern. We also studied the 3D intensity profile (see Figure 4 of the samples to understand
the variation of the intensity profile within the sample as well as in between the samples.



Diagnostics 2016, 6, 17 7 of 15
Diagnostics 2016, 6, 17 7 of 12 

 

 
Figure 4. 3D intensity plot of lens-free images of six samples. (a) 20 μm bead; (c) HepG2; (e) RBC; (g) 
MCF7; (i) HeLa cell; and (k) 10 μm bead. (b), (d), (f), (h), (j), and (l) are the 3D intensity plots 
corresponding to (a), (c), (e), (g), (i), and (k), respectively. 

2.3.3. Signal Acquisition 

The signals of the diffraction patterns in a whole-frame image from a lens-free system were 
filtered using a 10 × 10 sliding window filter. A schematic representation of the windowing is shown 
in Figure 5b. The threshold value in a 10 × 10 window was calculated by finding the difference 
between the maxima and minima of the pixels in that window. If the pixel value difference between 
the maxima and minima in that window exceeds 30 units, then the threshold value is equal to half 
the sum of the maxima and minima. Any pixel in that window having a value greater or less than the 
threshold value was recorded and stored in a binary image of the same size as the original image. 
The window was kept moving until it reached the end of the image. 
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(g) MCF7; (i) HeLa cell; and (k) 10 µm bead. (b), (d), (f), (h), (j), and (l) are the 3D intensity plots
corresponding to (a), (c), (e), (g), (i), and (k), respectively.

2.3.3. Signal Acquisition

The signals of the diffraction patterns in a whole-frame image from a lens-free system were
filtered using a 10 ˆ 10 sliding window filter. A schematic representation of the windowing is shown
in Figure 5b. The threshold value in a 10 ˆ 10 window was calculated by finding the difference
between the maxima and minima of the pixels in that window. If the pixel value difference between
the maxima and minima in that window exceeds 30 units, then the threshold value is equal to half
the sum of the maxima and minima. Any pixel in that window having a value greater or less than
the threshold value was recorded and stored in a binary image of the same size as the original image.
The window was kept moving until it reached the end of the image.
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of the windowing method; (c) filtered binary image of (b); (d) detected and marked diffraction patterns
in a whole-frame lens-free image.

2.3.4. Clustering

The filtered binary image contains only the probable signal pixels with their actual spatial
coordinates. Figure 5c shows a filtered binary version of a lens-free image. However, these binary
images are sparse in nature. The pixels in a filtered binary image are not continuous, and edge pixels
from two neighboring diffraction patterns are very difficult to assign to a particular origin (see the
region of interest in Figure 5c). The image also contains some unwanted noise pixels. To eliminate
these shortcomings, a clustering method was employed. A 25 ˆ 25 patch-wise technique was used
to find the spatial distance between the signal pixels. The pixels inside a particular window were
grouped together on the basis of the calculated spatial distance. Any pixel having a spatial distance
less than 3 pixel units from the neighboring pixels was considered as a probable cluster member, and
any isolated pixels were neglected. The window was kept moving until it reached the end of the
image. The tentative midpoint of a cluster or diffraction pattern was calculated by averaging the
spatial coordinates of each cluster element.

2.3.5. Diffraction Parameter Acquisition

The CMV of a diffraction pattern is the pixel value of the midpoint. The CMVs of the diffraction
patterns in a whole-frame lens-free image were obtained by mapping the calculated midpoint positions
from the binary clusters to the original image. The WCX of a diffraction pattern was obtained across
the midpoint by calculating the number of all pixels in a row (or column), where the pixel values were
similar to the CMV. The WCN of a diffraction pattern was obtained across the midpoint by calculating
the number of all pixels in a row (or column), where the pixel values were less than the CMV.
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2.3.6. Circularity Filter

A study of the diffraction images of six different types of samples reveals that the diffraction
patterns are circular. This property is an advantage for filtering unwanted diffraction patterns.
Therefore, we implemented another filter, which evaluates the circularity of the diffraction patterns
by calculating the aspect ratio of the WCX and the WCN. If the aspect ratio (WCX vertical/WCX
horizontal) of a particular pattern is equal to 1, then it was considered; otherwise, it was neglected.
Similarly, the circularity was obtained using the WCN. The filtered diffraction patterns were considered
final and marked (Figure 5d).

2.3.7. Size Determination

In this step, the PPDs of the filtered diffraction patterns were calculated. The PPD was
evaluated by calculating the difference between the CMV and the minima of the diffraction pattern.
The concentrations of the microparticles were calculated by evaluating the total number of filtered
diffraction patterns. The sizes of the microparticles were obtained by converting the PPD to the original
image as described in our previous work [14]. In this method, the original size of the objects from the
detected PPD value were obtained using the equation

Y “ 0.28X (1)

where Y is the original size, and X is the PPD. A concise flowchart of all the steps of the algorithm is
depicted in Figure 6.
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3. Results and Discussion

As described in an earlier section, the features of the diffraction patterns of micro-objects were
evaluated for six different types of samples. For this purpose, we used a 10 µm bead, a 20 µm bead,
an RBC, and single HeLa, HepG2, and MCF7 cells. Optical micrographs and the corresponding
lens-free images of each sample are shown in Figure 2. The intensity profiles were obtained manually
by selecting an array of signal pixels from the diffraction patterns (see the red line in Figure 2g) using
Image J (NIH, USA) image processing software. Thus, we obtained 10 different profiles of each type of
sample for statistical study. The average coefficients of variation of the 10 µm bead, 20 µm bead, RBC,
and HeLa, HepG2, and MCF7 cells are 0.53, 0.08, 0.06, 0.19, 0.23, and 0.21, respectively. The features of
the diffraction patterns of all six samples are almost identical. However, each sample has different
diffraction parameters. The statistical averages, i.e., the average of the diffraction parameters of
10 samples, for the 10 µm bead, 20 µm bead, RBC, and HeLa, HepG2 and MCF7 cells are as shown in
the Table 1. This shows that the physical sizes of the diffraction patterns are almost the same, as there
are very few differences in the WCX and WCN for all the sample types. However, the PPD and CMV
differ significantly for each type of cell.

Table 1. Statistical average of 10 samples for the diffraction parameters.

Sample/Diffractin Parameters 10 µm Bead 20 µm Bead RBC HeLa HepG2 MCF7

CMV 144 132 176 149 151 139
WCX 8 7 11 6 7 7
WCN 4 4 5 4 5 4
PPD 38 86 69 65 89 85

We also studied the variation in the pixel values, particularly that of the background of the
lens-free image, for each type of sample. We used the lens-free images of the 10 µm bead, 20 µm bead,
RBC, HeLa, HepG2, and MCF7 cells. The 3D profiles of these images are shown in Figure 4. The study
shows that the background of the lens-free image varies with the sample type. This is especially
noticeable in the RBC sample (about 180) in Figure 4f, compared to other samples (approximately 160).
This is due to the opacity, refractive index, and cell density of the samples. Again, in some samples
(Figure 4f,l) the signal intensity is comparatively low (see magnified figures in the Supplementary
Figure S3).

To overcome all of these shortcomings, we need a mechanism to obtain the adaptive threshold.
Therefore, we implemented the patch-wise technique method for this purpose. To determine the
appropriate window size, we tested the algorithm with different window sizes and compared the
results with the standard result. We also evaluated the processing time required for each window
size. The results are shown in Figure 7a,b, respectively. The result indicates that the 10 ˆ 10 window,
which provides more accurate results in less time, is ideal for obtaining the local threshold. This is also
indicated by the size of the diffraction patterns. The total width (WCX + WCN) of the diffraction pattern
for each sample is approximately 10–15 pixel units. Therefore, we implement the 10 ˆ 10 window in
this algorithm.

Again, the filtered binary images are sparse in nature (Figure 5c). To determine the midpoint of
the diffraction patterns, we need to find the actual group of sparse signal pixels. For this purpose,
we developed a clustering method in which the spatial distance between the signals is calculated.
This was done by implementing a patch-wise technique to locally compute the spatial distances.
We also optimized the size of this window for better performance in less processing time. The results
are shown in Figure 7c,d. The results indicate that the 25 ˆ 25 window exhibits better performance
with less processing time. We used these optimized parameters in the algorithm and implemented it
on the custom-developed Android and Windows applications. Snapshots of the application layout are
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shown in Figure 3a,b. Using this application software, we evaluated the counting and size profiling of
the six types of samples.Diagnostics 2016, 6, 17 2 of 12 
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the local threshold; (b) window size vs. processing time for obtaining the local threshold; (c) window
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clustering of filtered binary image.

The counting results from the custom-developed algorithm for all six samples were compared
with the standard optical microscope results. Figure 8a compares the counting performance of the
two modalities. The comparison shows a correlation of 0.91. The linearity of the counting results from
the two modalities is compared in Figure 8b. This shows linear behavior with a slope of 0.877 and
R2 value of 0.820. In addition, the size profiling results from the automated method were compared
with the results from the standard optical microscope. The results for bead samples #1–4 are shown
in Figure 8c–f, respectively. The correlation coefficients of these comparisons are 0.947, 0.919, 0.906,
and 0.707, respectively, which indicates that the results of the proposed system agree with those of
the conventional method. The average error for the size determination is about 1.6 µm (see Table S2
in Supplementary).
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4. Conclusions

In summary, an automated micro-object counting method for a lens-free imaging system was
demonstrated. A comparison of the results obtained using this approach with those obtained using
the standard method shows good agreement between the two modalities. The correlation coefficient of
0.91 and slope of 0.877 show the agreement and linearity between the automated and conventional
approaches. Further, a comparison of the size results shows correlations of 0.70 or greater, which
indicates the feasibility of automated size characterization using the lens-free system. The lens-free
system is made of inexpensive components, e.g., an LED costing 3 USD and a CMOS image sensor
costing 14 USD, the cost of which is negligible compared to that of a conventional auto-detection
system. The automated algorithm processes the result within the range of 15 to 20 s. Therefore,
this would be a cost-effective option for many research facilities. This type of system, along with the
dedicated algorithm, can evaluate several hundred diffraction patterns of micro-objects including RBCs
and HeLa, HepG2, and MCF7 cells in a few minutes using a moderate smart phone. This combination
of a Wi-Fi-enabled lens-free system and automated detection software would provide a cost-effective
telemedicine facility for early diagnosis in resource-limited settings. However there is more scope to
upgrade the system to analyze the poor signals from small microparticles (less than 2 µm). This may
be achieved by introducing more sophisticated sensors with lower pixel size alongside high density.
An automated feature recognition algorithm such as a deep learning algorithm may be an added
advantage for auto recognition of the type of cells. This will eradicate the dependency of the current
algorithm on the diffraction parameters, which may be a scope for future research.

Supplementary Materials: The Supplementary files are available online at www.mdpi.com/2075-4418/6/2/17/s1.
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