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Abstract: The integration of multi-platform, multi-angle, and multi-temporal LiDAR data has become
important for geospatial data applications. This paper presents a comprehensive review of LiDAR
data registration in the fields of photogrammetry and remote sensing. At present, a coarse-to-fine
registration strategy is commonly used for LiDAR point clouds registration. The coarse registration
method is first used to achieve a good initial position, based on which registration is then refined
utilizing the fine registration method. According to the coarse-to-fine framework, this paper reviews
current registration methods and their methodologies, and identifies important differences between
them. The lack of standard data and unified evaluation systems is identified as a factor limiting
objective comparison of different methods. The paper also describes the most commonly-used
point cloud registration error analysis methods. Finally, avenues for future work on LiDAR data
registration in terms of applications, data, and technology are discussed. In particular, there is a need
to address registration of multi-angle and multi-scale data from various newly available types of
LiDAR hardware, which will play an important role in diverse applications such as forest resource
surveys, urban energy use, cultural heritage protection, and unmanned vehicles.

Keywords: laser scanning; point clouds; registration; coarse-to-fine strategy; review

1. Introduction

Rapid acquisition of spatial information has become important in the development of “geospatial
big data”, also facilitating application of these data in social management and scientific research.
Data obtained by remote sensing methods are gradually extended from 2D to 3D paradigms and
are widely used in professional areas such as geographical monitoring, resource investigation,
environmental monitoring, change detection, water surveys, disaster assessment, and other fields.
For most current applications, increasing attention is being paid to large-scale, multi-dimensional,
comprehensive acquisition of geospatial data. However, it is relatively difficult to meet all these
requirements with a single sensor due to limitations of collection range, scanning time, acquisition
perspective, and acquisition accuracy. Integration of multi-platform, multi-angle, and multi-temporal
remote sensing data is therefore important for geospatial data application.

The registration technique is a core element in integration of multi-platform, multi-angle, and
multi-temporal remote sensing data. Early registration techniques mainly focused on 2D image
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registration. Research in this field began in the 1970s [1], initially for military purposes, but has been
gradually extended to remote sensing, medicine, computer vision, and other fields. Image registration
methods include the grayness-based and feature-based methods. In general, the feature-based method
appears to yield better registration because it considers more contextual image information. Smallest
univalue segment assimilating nucleus (SUSAN) [2], scale-invariant feature transform (SIFT) [3],
maximally stable extremal regions (MSER) [4], and speeded up robust features (SURF) [5] are widely
used operators to extract image features needed for image registration. The development of registration
methods has differed in different fields because each field has its own requirements and characteristics.
Several researchers have reviewed registration methods and proposed mature image registration
frames [6–9].

As an advanced active remote sensing technology, LiDAR can obtain 3D point clouds of the
target object. LiDAR registration is thus 3D rather than 2D. In 1987, the quaternions method was
first proposed to estimate transformations between 3D point sets [10]. Subsequently, Besl and McKay
proposed a classical iterative closest point (ICP) algorithm for point cloud registration [11]. This method
was continuously improved in subsequent research, eventually becoming a comprehensive fine
registration method [12]. Early LiDAR point cloud registration was mostly used in industrial fields,
with point clouds obtained by a laser scanning system at close distance, and where registration objects
were mostly single-target small-scale dense point clouds. Over the last two decades, the LiDAR system
has been widely used in earth surface research, such as for forest parameter estimation [13], building
reconstruction [14,15], natural disaster monitoring [16], and solar energy potential estimation [17].
LiDAR registration has thus become a key area of research also in the fields of photogrammetry and
remote sensing.

There are valuable reviews in the literature of range image or points cloud registration techniques
in the fields of computer vision and mobile robotics [12,18,19]. Salvi et al. [18] surveys different pre-2007
techniques for both pair-wise and multi-view range image registration, and provide an overview
framework, with techniques ranging from coarse to fine. Tam et al. [19] provide a better understanding
of registration from the perspective of data fitting and also consider non-rigid registration. Pomerleau
et al. [12] focus on the different ICP variants during the last twenty years as well as their use cases for
mobile robotics applications.

Compared with the computer and industrial fields, objects that need to be scanned by the LiDAR
system in photogrammetry and remote sensing are mainly larger-scale geospatial features that cover
complex and diverse geographical entities and that have distinct spatial stratification. LiDAR point
clouds are thus multi-level and have large range, high noise, and small point density, with these
being the major factors leading to differences between the point cloud registration algorithms used in
photogrammetry and remote sensing and those used in the computer vision field. This paper reviews
existing laser scanning point cloud registration methods mainly in photogrammetry and remote
sensing, and can thus be regarded as extending the overview of point cloud registration methods
to these fields. In order to render the description of registration methods more comprehensive,
some registration methods from other fields also are mentioned.

2. Brief Presentation of LiDAR Technology and Research

LiDAR has developed rapidly in the past 30 years and the LiDAR sensor can now be mounted on
various platforms, including airborne, vehicle, tripod, and satellite platforms. Different platforms have
distinct traits and applications, as shown in Table 1.

We performed a search of peer-reviewed journal publications in the Scopus database as of 2016
(using the search statement: TITLE-ABS-KEY (“LiDAR” OR “terrestrial laser scan *” OR “mobile
laser scan *” OR “airborne laser scan *” OR “space-based laser scan *”) AND NOT TITLE-ABS-KEY
(“aerosol”)), and statistically analyzed the results.
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Table 1. Comparison of LiDAR systems mounted on different platforms.

Platforms System
Abbreviation

Scanning
Perspective

Scanning
Range

Point Cloud
Density Application Areas

Airborne ALS Top view Surface shape Relatively
sparse

Terrain mapping, forest
surveys, 3D urban areas

Vehicle MLS Side view Stripe shape Dense Road mapping,
3D urban areas

Tripod TLS Side view Point shape Dense Deformation monitoring,
reverse engineering

Satellite SLS Top view Surface shape Large spot size,
low density

Forestry surveys, atmospheric
measurements,

snow monitoring

Figure 1a summarizes the number of published articles and reviews discussing LiDAR for each
year from 2000 through 2016; the number of publications shows an overall upward trend, indicating
the increasing importance of this research. Given the rapid development and significant application of
LiDAR, it is useful to summarize current research. A tag cloud map was therefore created based on
frequency of occurrence (Figure 1b) [20]. The tag cloud map shows that, from a technology perspective,
most papers deal with research and construction of algorithms for LiDAR data, such as classification,
segmentation, information extraction, reconstruction, and biomass estimation.
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Figure 2 shows the proportion of different literature types, with the most common being articles
and conference papers; review papers are relatively rare. Available review papers cover forest
resource investigations [13,21], land cover classification [22], geological hazard assessment [16,23],
building model reconstruction [14,24], road extraction [25], snow depth measurement [26], cryosphere
studies [27], and sea ice and ice sheet monitoring [28,29], but no reviews have been published in
international peer-reviewed journals discussing registration of laser scanning data in photogrammetry
and remote sensing.

We refined our search across publications related to registration (by using the search statement:
(TITLE-ABS-KEY(“LiDAR” OR “terrestrial laser scan *” OR “mobile laser scan *” OR “airborne laser
scan *” OR “space-based laser scan *”) AND NOT TITLE-ABS-KEY(“aerosol”)) AND (TITLE (“registrat
*”) OR KEY(“registrat *”))). Annual variations in percentages of registration-related publications
on LiDAR are shown by the red polyline in Figure 1a. This shows that that the proportion of
registration-related publications generally increased year-by-year; while researchers continue to
expand the range and depth of LiDAR applications, they therefore also continue data-registration
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research, for the purpose of improving the accuracy and efficiency of LiDAR application by integrating
multi-source data.
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In total, 501 papers related to LiDAR registration were published in different journals between
2000 and 2016; Figure 3 shows the 14 journals or conferences publishing more than five papers
on LiDAR registration. It can be noted that the International Archives of the Photogrammetry,
Remote Sensing and Spatial Information Sciences published the most papers related to LiDAR
registration, followed by mostly authoritative photogrammetric and remote sensing journals such as
the ISPRS Journal of Photogrammetry and Remote Sensing, Remote Sensing, and IEEE Transactions on
Geoscience and Remote Sensing. The number of publications in the journal Sensors, which publishes
research on the science and technology of sensors and biosensors, is also significant.
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In the present paper, we review publications from international peer-reviewed journals on LiDAR
registration in the fields of photogrammetry and remote sensing. In order to render the review more
comprehensive, we also include important research papers and conference papers that have significant
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reference value. Section 3 of this paper introduces the classification of LiDAR registration methods
and briefly describes the research status of same-platform and different platform LiDAR registration.
In Section 4, we discuss in detail current methods used for LiDAR registration based on the principles
of methods used. Section 5 briefly introduces current methods used for evaluating the accuracy of
LiDAR registration. Section 6 compares different LiDAR registration techniques. Sections 7 and 8
respectively present discussions and conclusions.

3. Classification of LiDAR Registration Methods

Depending on which platform originally generated the point cloud requiring registration,
LiDAR point cloud registration can be divided into same-platform registration and registration
between different platforms. In earth surface research, there are four main LiDAR systems, i.e.,
space-based laser scanning (SLS), airborne laser scanning (ALS), mobile laser scanning (MLS), and
terrestrial laser scanning (TLS), divided according to the mounted platform (as shown in Table 1).
Same-platform registration mainly includes multi-station TLS registration and ALS strip adjustment.
For LiDAR registration between different platforms, research mainly focuses on ALS-MLS and
ALS-TLS registration.

TLS can obtain accurate location information from global navigation satellite system (GNSS)
receivers at the same time the target point clouds are obtained; this location information can be used
directly to integrate the different point clouds [30]. However, it is not easy to use GNSS to obtain
the exact position of the control point, and even slight instrumental deviations can produce large
errors [31]. Furthermore, the spatial accuracy of GNSS in urban areas and forests is limited and prone
to lockout, leading to a lack of reliability. Another solution is therefore to set the standard target while
simultaneously acquiring the point clouds of the target object, and to then use the standard target
to stitch together adjacent-station point clouds. However, in most cases, due to lack of GNSS and
standard targets, one must rely only on point clouds themselves for registration.

Due to scanning height and field of view limitations, each flight path for ALS data acquisition can
only cover a limited ground width. When large areas must be scanned, many flight paths are required,
and a certain degree of overlap between each path must be maintained. Since ALS is an integrated
system, there are a number of potential systematic errors for points on the flight paths, including laser
ranging errors, sensor mounting errors, and POS and orientation system errors [32–34]. In order to
eliminate differences between point clouds on flight paths, difference adjustment between different
flight paths is necessary. At present, either data-driven methods or sensor system-driven methods can
be used to accomplish this adjustment [35]. Data-driven methods use geometric features extracted
from the point clouds to calculate the rotation matrix and translation vector [34,36,37]. However,
since systematic errors are not linearly distributed, it is difficult to achieve high-precision flight path
adjustment using data-driven methods [38], and most researchers opt for the sensor system-driven
method, which uses the LiDAR positioning equation as an adjustment model [39–42]. Both data-driven
and sensor system-driven methods require determination of the control unit (point, line, or surface
feature), which is used to assess and correct differences between the flight paths [36].

For LiDAR registration between different platforms, research focuses on ALS-MLS and ALS-TLS
registration. SLS data are characterized by large spots and sparse distribution and are mainly used for
forest resource surveys, and monitoring of sea ice and land ice; integration of SLS data with LiDAR
data acquired from other platforms makes no sense. There is therefore no research on registration
between SLS and LiDAR data from other platforms.

The data obtained by different LiDAR platforms are heterogeneous in three respects: (1) different
perspectives: data collected by SLS and ALS systems are from a top view, while data collected by
MLS or TLS systems are from a side view; (2) different spatial resolution: the resolution of ALS
data is generally at the meter scale, while MLS and TLS data are at the centimeter scale, with TLS
being more precise; (3) different content of focus: ALS data cover general features, while MLS data
cover both trajectory sides. Due to the heterogeneity and discreteness of point cloud data, it is very
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difficult to automatically register two or more point clouds from different platforms. Although there
is great potential for automatic registration of point clouds under feature guidance, there are still
significant challenges, including how to obtain the conjugate feature which can guide point cloud
registration by overcoming heterogeneity, and then how to perform high-quality 3D registration using
this conjugate feature.

Point cloud data registration studies frequently apply a coarse-to-fine registration strategy [43–47].
This strategy is not widely adopted for registration between different platforms, but is used for
same-platform registration, as described above. In coarse registration, the initial registration parameters
for the rigid body transformation of two point clouds are mainly estimated using the feature-based
method. In fine registration, the main objective is to achieve maximum overlap of two point
clouds, mainly using the iterative approximation method, random sample consensus method, normal
distribution transform method, or methods with auxiliary data. We will further describe these methods
adopted for coarse-to-fine strategies in Section 4.

4. Registration Techniques for LiDAR Data

Based on the coarse-to-fine registration strategy, this section presents an overview of four
feature-based coarse registration methods and four fine registration methods. Fine registration methods
are iterative approximation methods, random sample consensus methods, normal distributions
transform methods, and methods with auxiliary data.

4.1. Coarse Registration Methods

The feature-based coarse registration method mainly refers to registration based on point, line and
surface features, which possess some invariance over a certain period of time and are widely used
for coarse registration [48]. In LiDAR data registration, these features may include building corners,
contours, road networks, roof patches, and similar site features [49–51]. Since this method uses
the feature primitive rather than directly registering the point clouds, identification of appropriate
registration primitives is critical for registration accuracy. In practice, discrepancies within LiDAR
data arising from use of different platforms (such as different perspectives, different resolutions,
and discretization of point cloud data) make it difficult to locate conjugate features of objects to be
registered [52], and study of LiDAR data registration methods using conjugate point, line, and surface
features remains an area of active research. Here, we classify feature-based methods into four classes:
point-based methods, line-based methods, surface-based methods, and others.

4.1.1. Point-Based Methods

Points are most widely used within the feature-based LiDAR registration method [53]. Extraction
of feature points is very important in this method and the extraction result directly affects the
registration accuracy of point clouds. Compared with natural environments and objects, the artificial
objects are often more geometrically regular, and the accuracy of their geometric feature information
is relatively high [54]. Building corners, traffic signs, and road signs are therefore commonly-used
feature points.

On the other hand, feature points can also be points extracted by using point feature operator,
such as point feature histograms [55], spin images of points [56], or scale invariant feature transform
features [57]. These feature points extracted using operator are also referred to as keypoints. A good
feature operator should possess good noise resistance and be invariant with the rotation and translation
of point clouds [3]. There are numerous 3D keypoint operators including local surface patches
(LSP) [58], intrinsic shape signatures (ISS) [59], keypoint quality (KPQ) [60], heat kernel signature
(HKS) [61], Laplace-Beltrami scale-space (LBSS) [62], Mesh- Difference-of-Gaussians (DOG) [63],
and 3D Harris [64]. Tombari et al. [65] and Hänsch et al. [66] survey these 3D operators and compare
their performance. As shown in Table 2, point feature, point domain feature, or rotated image feature
descriptors are commonly utilized for LiDAR registration.
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Table 2. Point-based registration methods for point clouds.

Feature Type Methods Test Objects Data Platform

Point feature
Projection density [49] Buildings ALS, TLS

Movable guidance point registration [67] Buildings ALS, TLS
Geometric shape constraint [48] Urban scenes TLS

Point domain feature
Normal vector angle histogram [55] Urban scenes, Indoor scenes TLS

Minimum Euclidean distance of point pairs [68] Indoor scenes TLS

Rotated image feature
3D Euclidean distance of point pairs [69] Urban scenes TLS

SIFT operator [70] Buildings TLS
kd-tree [71] Urban scenes TLS

Registration based on point features still has problems relating to noise sensitivity, low
robustness, and large time complexity, and it remains difficult to achieve high precision. Several
methodological improvements have recently been proposed in order to address problems of poor
computational efficiency and poor robustness, including feature point extraction using the 3D operator
for implementation of a point cloud registration algorithm [72–74]. In addition, many studies focus
on extracting geometric features by constructing the domain topologic information of points and
then optimizing the point cloud registration process based on domain features [75]. This approach
improves registration accuracy and shows high robustness to noise [66,76]. Aiger et al. proposed a
method for implementing point cloud global registration based on 4-point congruent sets (4PCS) of
features [77]. This method exploits the fact that the ratio between the lines formed by four coplanar
points remains invariant in the process of affine transformation, and does not require calculation of
complex geometric characteristics. The method has high efficiency and good anti-noise ability [78],
and can achieve automated marker-less registration [79]. Theiler et al. [79] improves 4PCS using 3D
keypoints, such as 3D DOG, and 3D Harris keypoints.

It is of note that there are differences in point cloud information obtained using different LiDAR
systems to scan the same geographical entities from different perspectives. Even with the same
acquisition device, multiple measurements are required to obtain complete target point clouds,
especially with TLS equipment, due to obscuration of objects and limited acquisition range. As a
result, areas of overlap between top-view LiDAR point clouds and side-view LiDAR point clouds
are small, as are multi-station TLS LiDAR point clouds, and extraction of point features is difficult;
the point-based registration method therefore cannot be applied in such cases [36].

4.1.2. Line-Based Methods

Lines have stronger geometric topologies and constraints relative to points and permit higher
registration accuracy [80,81]. Line features, such as road networks and building contours, are common in
large-range 3D point cloud scenes and can be used for LiDAR registration (as shown in Table 3). Buildings
are the largest and most important geographical entities in urban spaces, and building contours have
been widely used in building model reconstruction and LiDAR point cloud registration [51,76,82].
In addition, roads, which are also important elements of urban space, have been extracted based on
their unique linear and regular characteristics [83–85] and combined with building contours to achieve
registration of point cloud data [46].

Due to the prominence of line features and their ease of extraction, point cloud data registration
based on line features has relatively high accuracy and precision. In addition, compared with surface
features (described next), the number of line features required during the registration process is
relatively small [86]. However, because the completeness and precision of extracted line features are
limited, only coarse registration can be achieved.
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Table 3. Line-based registration methods for point clouds.

Feature Type Methods Test Objects Data Platform

ALS, MLS
Line feature translation, rotation quantity [87] Urban scenes ALS, TLS

Laplacian matrix decomposition [88] Urban scenes ALS, TLS
Point cloud segmentation based on TIN [36] Urban scenes ALS

Combination of building
contours and road networks

Road networks used for coarse registration,
building contours used for fine registration [46] Urban scenes

4.1.3. Surface-Based Methods

Surface features contain more information than line or point features and are less affected by
noise. They can therefore be used for automatic registration of LiDAR point clouds. In urban spaces,
surfaces are an important element of the ground object structure. LiDAR devices on different platforms
can obtain a large amount of ground point cloud data and more precise registration can be achieved
by making the best use of these surface features. The extraction accuracy of surface features and their
distribution in the point cloud scene directly affect the final registration result. Many researchers
have used the least squares method, random sample consensus algorithm, and principal component
analysis method for surface fitting, allowing surface features to be obtained in the point cloud scene.
The extracted surfaces are mainly ground, roofs, and building facades.

As shown in Table 4, most researchers use the least squares method when performing point
cloud registration based on surface features. The method is used to minimize the distance between
corresponding surface features of different LiDAR point clouds [89]. When using the least squares
method for registration of 3D surfaces, it is necessary to take full account of the randomness of the
local surface-normal vector [90]. The accuracy of this method is sufficient for ground deformation
monitoring [89]. Some researchers have also implemented point cloud registration by locating
conjugate surface features [91–93].

Table 4. Surface-based registration methods for point clouds.

Feature Type Methods Test Objects Data Platforms

Least squares
surface

Euclidean distance of the corresponding
surface [94] Individual objects TLS

Combined with intensity information [95] Individual objects,
indoor scenes TLS

3D similarity transformation model [96] Small plateau ALS, images

Stochastic model [97] Individual objects TLS

Conjugate surface

Three pairs of conjugate surface features [98] Urban scene TLS

Rodriguez matrix [99] Buildings TLS

2D similarity transformation and simple
vertical shift [100] Buildings ALS, TLS

Despite the higher accuracy of registration based on surface features, the requirements for point
cloud segmentation and the fitting algorithm are high, because surface features must be extracted
before registration. In addition, the 3D point cloud scene to be registered must contain numerous
surface features [98]; otherwise, it is difficult to guarantee registration accuracy.

4.1.4. Other Feature-Based Methods

Although many studies have used point, line, and surface features to obtain high-accuracy LiDAR
point cloud registration, there are still some difficulties relating to large-scale urban 3D point clouds.
For example, point-based methods are extremely susceptible to the influence of point density and noise.
Most line-based methods are only applicable to buildings when the contours of the building are easy
to extract, making these methods difficult to apply to suburbs with fewer buildings. Surface-based
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methods have high requirements for overlapping areas, and at least three pairs of surfaces should be
present in the clouds to be registered [48].

Given these problems, some researchers have considered using a combination of point, line, and
surface features to construct a joint transformation model [101], or to find conjugate spatial curves [102],
in order to calculate point cloud registration parameters. Alternatively, other registration features, such
as circles, spheres, and cylinders, can be used to calculate the registration parameters between different
point clouds [103]. However, due to the relatively high extraction requirements, these methods are
difficult to extend to general situations and are not widely used [104]. On the other hand, based on
the results of feature extraction, if urban 3D point clouds can be classified by semantic analysis [105]
and the corresponding relationship between classified surface objects can then be identified, relatively
good point cloud registration can be achieved [106].

4.2. Fine Registration Methods

4.2.1. Iterative Approximation Methods

In current point cloud registration research, the iterative approximation method mainly refers to
the ICP algorithm and its series of improved algorithms. The ICP algorithm is built on the quaternions
method, which uses a 4D vector to represent three rotation parameters and one angle parameter [10,107].
The advantage of this method is that it can directly solve rigid body transformation through a rigorous
mathematical process, without the need for an initial estimate of location. Besl and McKay first proposed
the ICP method for registration of 3D data [11]. This method assumes good estimation of initial location;
a number of points are selected from the point set to be registered, and the points corresponding to
these points in the reference point set are then identified. The transformation is obtained by minimizing
the distance between these pairs of points. The closest point set is then recalculated according to a
rigorous solution process and repeated iterations are performed until the objective function value
remains constant and the registration result is obtained. This method does not fully consider the effect
of noise on accuracy of registration results; however, the effect of noise can be reduced by weighting the
least squares distance to improve registration accuracy [108–110]. In the computer vision field, in order
to speed up the registration process and prevent locally optimized results, several studies register point
clouds by calculating feature-substitute point pairs, including invariant features, such as curvature and
spherical harmonics [111], surfaces [112], and angular-invariant features [113]. Such ICP-registration
methods in computer vision are reviewed in [12,114–116].

The development of LiDAR technology has greatly promoted application and development of ICP
algorithms for remote sensing and mapping. In the ICP process, it is important to identify the closest
point to a known location, with three search strategies used, i.e., point-to-point, point-to-surface, and
point-to-projection [90,117–119]. However, since the LiDAR device uses discrete laser pulses to measure
the distance to a ground target, the target point clouds are practically a dense set of sampling points
and do not reflect all details of the target object, especially at the target boundary. Furthermore, due to
differences between acquisition devices, angles, and methods, there is no one-to-one correspondence
between point sets of LiDAR point clouds from different platforms, and point clouds are easily affected
by noise. Registration accuracy is often not ideal and the calculation process is complicated; direct use
of the ordinary ICP algorithm therefore often leads to anisotropic and inhomogeneous localization
errors. In addition, the ICP algorithm requires that initial location of point clouds should not differ
significantly; otherwise, the algorithm will render locally optimal solutions. Many researchers have
therefore attempted to improve the ICP algorithm, using strategies that are mainly focused on looking
for other registration features, algorithm optimization, and selection of appropriate data-management
methods, as shown in Table 5.
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Table 5. Improved methods based on ICP.

Improvement Strategy Advantages Methods

Find other registration
features

Effectively reduce noise
interference

Variation of geometric curvature of point, variation of
normal vector of point and normal vector angle [120]

Distance from point to tangent plane of closest point
in model [121]

Angle between point and direction of k adjacent points
in field [113]

A point-to-plane method using General Least Squares
adjustment model [90]

Optimize registration
algorithm

Directly improve algorithm
efficiency

Weighted analysis of anisotropic and inhomogeneous
registration properties [122]

Weight matrix in three principal directions calculated
by covariance matrix [123]

Select appropriate data
management method

Quickly and efficiently store
and manage discrete LiDAR

point clouds

Octree [124]

3D R-tree [125]

quad-tree [113]

kd-tree [126]

Because the ICP algorithm performs point cloud registration based on an iterative process, it is
slow at finding corresponding points between two point clouds and is less efficient when registering
large-scale, high-density point cloud scenes. However, the ICP concept is used in some registration
algorithms for specific surface objects. For example, Bucksch and Khoshelham proposed a registration
method based on a tree skeleton line for TLS data from different stations [127]. Optimal conversion
parameters were obtained by minimizing the distance between points in input point clouds and the
skeleton line in reference point clouds.

4.2.2. Random Sample Consensus Methods

Random sample consensus (RANSAC) methods were proposed by Fischler and Bolles [128],
and have been widely used in 2D and 3D data processing; they have also been studied for use in
image registration [129–132]. With the development of LiDAR technology and its application in
geography, RANSAC methods have been used for point cloud data preprocessing and segmentation
in numerous studies [70,133,134]; their application to point cloud registration has in fact become an
important area of research [135]. RANSAC methods involve three steps. First, a number of control
points are randomly selected from point cloud data and used to calculate the conversion relationship.
Second, the conversion relationship is used to eliminate external points from point cloud data, and
the point cloud data registration degree is then calculated. Finally, an iterative transformation is used
to find the data set with maximum registration degree, and this is then used to calculate conversion
parameters [129]. The process is similar to that of the ICP algorithm, but can avoid iteration over entire
point clouds. In combination with the SIFT operator, RANSAC can effectively solve the problem of 3D
point cloud data registration without local features, while improving registration efficiency [136,137].

4.2.3. Normal Distribution Transform Methods

Normal Distribution Transform (NDT) methods were first proposed in 2D space [138] and then
gradually extended to point cloud data registration in the fields of robotics and photogrammetry [139–141].

Applications of NDT are common in mobile robotics, mainly because the robot can obtain the
positional relation between two points through the rangefinder when measuring data. With direct
initial transformation, the NDT algorithm can be used to quickly and simply achieve fine registration
of point clouds. The main idea of this method is to convert point cloud data in a 3D grid into
a continuously differentiable probability distribution function. The probability distribution of the
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samples of each 3D point position measurement in the grid cell is represented by a normal distribution.
Subsequently, the probability of normal distribution of two point cloud data sets is optimized using the
Hessian Matrix method to achieve point cloud registration [139]. A key process in the NDT algorithm
is to build grids for point clouds, but grid size is difficult to determine. The use of different grid
sizes to organize point clouds therefore becomes an effective way to establish grids for 3D point
clouds [142–144].

Since laser scanners used in photogrammetry cannot measure the positional relationship between
two points and cannot carry out the initial transformation, to date there has been little research on
applications of the NDT algorithm in photogrammetry. Ripperda and Brenner showed that if the
laser scanner is set up approximately upright for each scan, LiDAR point clouds can be sliced parallel
to the ground and 2D NDT can be applied to the sliced clouds; this was the first application of the
NDT algorithm to TLS point cloud registration [145]. However, as the method is still inherently
2D, not extended to 3D space, it presents challenges for wide-range promotion and application.
Magnusson et al. developed a 3D NDT algorithm by replacing the 2D space rotation matrix with a 3D
space rotation matrix [146].

The NDT algorithm has fast computational speed and high precision. It is especially suitable for
processing large-scale and large data-volume point cloud data, but requirements for initial locations of
point cloud data remain high. When using the NDT algorithm for point cloud registration, a coarse
to fine registration strategy is therefore used, i.e., in the initial registration process, feature-based
methods, which do not have strict requirements for initial positioning of point clouds, are used to
obtain coarse registration. After the registration result is obtained, the NDT algorithm is used to
achieve fine registration. However, there is still a lack of applied research using this approach in
large-scale complex geographical environments.

4.2.4. Methods with Auxiliary Data

In the process of acquiring point cloud data, under certain conditions LiDAR equipment
can simultaneously obtain target image data and measurement-device location GNSS coordinates.
Especially when using TLS to obtain point clouds, a standard target is generally used to quickly stitch
multi-station point clouds. Images, GNSS data, and standard targets can therefore effectively assist
in registration.

In image-assisted point cloud registration, images are generally used to extract features, including
2D SIFT features [147] and conjugate corner features [35]. These features are described, screened,
registered, and mapped to 3D space to find conjugate features [52,148]; the point cloud conversion
parameters are then calculated [52,149]. Compared with discrete LiDAR point clouds, the image has
rich space-continuous spectral information, so textural features are evident [150], and features based
on image extraction have higher reliability and robustness.

GNSS can accurately obtain the coordinates of the ground target. Some LiDAR equipment
therefore also records the spatial location of the platform equipment center while acquiring 3D
point clouds. Initial global registration of airborne and MLS data can be performed using GNSS
information [30,151], but, in complex urban areas, occlusion by buildings can cause GNSS signal
lockout, reducing registration accuracy of point clouds [152].

A standard target is widely used in multi-station TLS point cloud stitching, which uses a special
standard target as the same name feature for registration. During the scan of objects by LiDAR
equipment, these standard targets can be placed in appropriate locations in the scan area. It must
be ensured that more than three standard targets are placed between adjacent scanning stations.
After obtaining the standard target information, automatic registration can be performed using
associated LiDAR registration processing software, such as Cyclone software. In forests, a dense
tree canopy can significantly reduce GNSS positioning accuracy and even hinder the acceptance of
GNSS signals. Registration of 3D point clouds based on standard target information only has a narrow
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range of applications due to the challenges posed by complex scanning scenes and difficulties in
setting targets.

5. Error Analysis Methods

Point cloud registration error analysis is mainly performed to determine the degree of registration
between different point clouds in a common area. Because point clouds have discrete characteristics,
the accuracy of registration is generally obtained by calculating the offset distance between model
point clouds and registration point clouds after transformation. Specifically, the offset distance
can be classified as either point-to-point or point-to-surface distance. Quantitative evaluation of
LiDAR data registration results on different platforms or the same platform is of great significance
for automatic registration theory and algorithmic implementation of 3D laser point cloud data.
There may be significant differences in registration results for different scenarios and ranges due
to algorithm complexity and differences in applicability. For example, in small-scale digital archiving
of cultural heritage sites, registration accuracy should be within the range of centimeters or millimeters.
In contrast, in large-scale geographical applications, due to the complexity and diversity of surface
morphology, as well as constraints relating to the performance of the acquisition platform, point cloud
registration accuracy for registration of a single target is low (generally required within the decimeter
level). After performing point cloud registration using a specific method, it is therefore necessary
to perform error analysis on the registration results to select the most suitable registration method.
There are three main ideas relating to such error analysis:

(1) Comparison with existing registration methods. At present, most registration methods are
improved methods developed from existing relatively mature methods. One important process
is therefore to compare the results obtained using original and modified methods. This approach
is widely used with the ICP algorithm and its improvements. After point cloud registration
using the ICP algorithm and improved algorithms, parameters such as average offset distance,
maximum offset distance, minimum offset distance, and standard deviation between model point
clouds and conversion data of registration point clouds can be obtained, and the performance
of the different registration methods can be analyzed. Bae and Lichti employed traditional
and improved ICP algorithms for registration of TLS point clouds [153]. They calculated the
mean offset distance and standard deviation between points and corresponding surfaces after
conversion of registration point clouds and found that the mean offset distance and standard
deviation of the traditional ICP algorithm were 2.24 m and 2.55 m, respectively. The improved
ICP algorithm had corresponding values of 0.12 m and 1.50 m, respectively. Clearly, registration
accuracy was significantly improved with the improved algorithm. In point cloud registration
using an ICP-type algorithm, the time efficiency of registration is an important reference index.
When analyzing registration results, the time complexity of different methods must therefore also
be quantitatively evaluated.

(2) Error analysis based on a reference point. The range of 3D point clouds of a geographical
scene obtained by LiDAR is generally large, especially for ALS data. Calculating the offset
distance of each registration point will therefore result in large calculation volumes. However,
computational complexity can be effectively reduced by selecting reference points from point
clouds and calculating offset distances between them. Before data were scanned, Yang et al.
manually placed objects in the scanning scene, and object information in LiDAR point clouds
from different stations was obtained through TLS equipment [48]. By calculating the offset
distance between objects, the registration accuracy of this method was evaluated and compared
with that of the method proposed by Dold and Brenner [93].

(3) Error analysis based on a common point. When an ALS system is used to obtain surface 3D
point clouds, it is difficult to set reference targets in the scanning scene, and this method is
therefore more difficult to apply to analysis of ALS data registration results. Common point
clouds, such as the ground points from ALS and MLS, can be selected from LiDAR point clouds
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and the offset distance between point clouds can then be calculated based on the common
point [46,67]. Geographical scenes are unique and complex, and no geographical scenes have
exactly the same geographical landscape; the geographical scene at the same location will also
change with time. As a result, when validating the scientific meaningfulness and reliability of a
proposed method, most researchers focus on specific scenarios and specific objects, rather than
natural geographical scenes.

It is difficult to evaluate the advantages and disadvantages of different methods because the
evaluation indices used by different authors are not consistent. In order to quantitatively evaluate
different methods, it is therefore necessary for authoritative organizations to establish standard data
sets for point cloud registration and a set of comprehensive evaluation indices. The International
Institute of Photogrammetry has established a set of standard data sets for building 3D reconstructions
and surface-cover classifications, which has helped standardize research in these fields.

6. Comparison of Different Point Cloud Registration Methods

Geographical scenes contain a large amount of features, especially in urban space, where
widely distributed buildings, roads, and transport facilities provide many point, line, and surface
features. Such features can be used to quickly achieve registration between different point clouds.
Feature-based registration methods are usually applicable for coarse registration, which provides a
good initial position for fine registration, effectively reducing computation demands for point cloud
registration. A key process in this feature-based approach is feature extraction, which directly affects
final registration accuracy. Although the existing feature-based method can achieve good results
by searching for conjugate points, lines, or surface features, it is still difficult to use feature-based
methods for large-scale LiDAR point cloud registration, because it is difficult to guarantee that
extracted features are evenly distributed within the global range. Since point clouds are irregular and
discrete, a point-based feature method is more sensitive to the density of point clouds and noise than a
line-based or surface-based feature method. At present, most line-feature methods use lines obtained
from building point clouds to calculate conversion parameters, but this is relatively difficult in areas
with few buildings. The surface-based feature method requires large overlap between different LiDAR
point clouds to locate conjugate surface features. In addition, most feature-based registration studies
use local features of point clouds, and there is little research on use of global features. Global features
can characterize the global characteristics of point clouds, while local features only represent its domain
characteristics. The feature-based approach must thus maintain a balance between feature proficiency,
method stability, and time efficiency [154].

Most existing feature-based registration methods can only be used to achieve initial registration.
In contrast, the iterative approximation method, the random sample consensus method, and the normal
distribution transformation model are widely used for fine registration. Because LiDAR point cloud
registration using the ICP algorithm occurs through iteration, requirements for the initial position of
the point clouds are relatively high. When the initial position of the point clouds is poor, it is difficult to
obtain a globally optimal solution. The ICP algorithm also requires high point cloud density; when this
is low, registration errors may occur in the search for the closest point. In addition, time complexity is
generally high with the ICP algorithm. Selecting an effective feature can help speed up the convergence
process and reduce registration time [75]. However, it is still impossible to avoid potential errors
during location of the closest point by an effective feature. Such problems have been discussed at the
target level [155] and as a local feature of a computational point [153].

An important process in the RANSAC registration method is continuous filtering of registration
features during point cloud registration, with the optimal registration feature used to solve conversion
parameters. The random sample consensus has been widely used for point cloud registration, and can
achieve good registration results even if overlapping areas are small. However, this method requires
iterative sampling and calculation of point cloud consistency. The number of iterations has a significant
influence on registration speed and accuracy. If the number of iterations is too high, convergence speed
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is relatively slow, but if the number of iterations is too small, this will lead to poor selection of samples,
making it difficult to obtain desired registration results.

Although the NDT algorithm has been widely used for 2D image registration, it is rarely used
in 3D LiDAR research. The NDT algorithm does not require knowledge of the corresponding point
relationship or extraction of the registration feature from point clouds; consequently, its calculation
efficiency and registration precision are higher. However, this method has a significant drawback in
that the cost function is not continuous. Since the method first divides the point clouds into grids and
then calculates the Gaussian distribution in the grid, the discontinuous cost function cannot guarantee
calculation of high precision conversion parameters. If grid size is too large, final registration accuracy
is difficult to guarantee. If grid size is too small, the probability distribution function in the body
element cannot accurately characterize the surface features. A multi-scale method could effectively
solve the problem of determining the grid unit scale. In the image data-assisted point cloud registration
process, most registration methods remain feature-based. Use of GNSS and target data depends on
known locations of auxiliary data; the principle is simple and easy to implement, but the degree of
automation is often not high. In Table 6, we compare these point cloud registration methods.

Table 6. Comparison of various point cloud registration methods.

Methods Main Idea Advantages Problems

Feature-based methods

“Feature
extraction—feature

matching—point clouds
registration”, using

features to guide point
cloud registration

High precision,
results are robust

and reliable

Requires that target has
significant features;

extracted feature
precision and quality

are difficult
to guarantee

Iterative approximation methods

Euclidean distances
between point clouds are

continually reduced
by iteration

High precision, and
mostly used for
fine registration

Requires large overlap
area; high requirements

for initial position;
prone to local

optimal solution

Random sample consensus methods
Registration parameters

are calculated using
smallest sample set

High efficiency,
strong anti-noise

capability

Number of iterations
required for

convergence is difficult
to determine

Normal distribution
transformation methods

Construct body element,
generate point cloud

distribution model, and
determine optimal

matching relationship

Efficiency is relatively
high; no need for

good initial position

Requires point clouds
to have large

overlapping areas

Methods using
auxiliary data

Image-assisted
methods

Extract same named
feature in image, then use
feature matching method

Principle is simple,
mostly used in

global registration

Image data availability
is poor, and it is difficult

to ensure quality of
extracted feature

GNSS-assisted
methods

GNSS data assisted point
cloud coordinate
transformation

Principle is simple,
mostly used in

global registration

Accuracy of GNSS data
and signal lockout

Standard
target-assisted

methods

Calculate point cloud
conversion parameters

using standard
target information

Principle is simple
and easy to operate

Less automation, not
suitable for

complex scenes

Additionally, we compare the applications and performances of different point cloud
registration methods, as shown in Table 7. These registration methods are classified based on the
coarse-to-fine strategies, the applications of these methods are presented by experimental environment,
the performances of these methods are compared based on the deviation between reference and
registered data, and the information of the experimental environment, experimental data, and deviation
of each method is listed according to the paper.
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Table 7. The applications and performances of different registration methods.

Methods Experimental Environment Experimental Data Deviation (m)

Point-based
methods

Projection density [49]
Outdoors, urban scene, the
campus of Nanjing University,
China, covers 1000 × 1000 m2

ALS: density = 11 points/m2; accuracy
(h) = 0.30 m; accuracy (v) = 0.15 m
TLS: density = 25 points/m2

0.50
0.44 (h) 1

0.15 (v)

Geometric shape constraint [48]

Outdoors, open park,
covers 1450 × 650 × 65 m3 TLS: density = 442 points/m2; 40% overlap 0.068

Outdoors, uptown,
covers 600 × 400 × 30 m3 TLS: density = 326 points/m2; 20% overlap 0.072

Outdoors, subway station,
covers 300 × 450 × 10 m3 TLS: density = 673 points/m2; 50% overlap 0.069

Movable guidance point [67]

Outdoors, urban building,
the campus of Nanjing
University, China,
covers 400 × 1600 m2

ALS: density = 1 points/m2;
accuracy (h) = 0.3 m; accuracy (v) = 0.2 m
TLS: at 50 m, density = 100 points/m2;
accuracy (h) = 6 mm; accuracy (v) = 4 mm

0.26

3D distance of point pairs [69]

Outdoors, urban scene,
courtyard-like square with
manmade objects

TLS: angular resolution = 0.12◦ ;
7 scans, each scan contains
2.25 million points

—

Outdoors, open park area with
little structure

TLS: angular resolution = 0.12◦ ;
7 scans, each scan contains
2.25 million points

—

SIFT operator [70] Outdoors, building object,
covers 27 × 12 × 18 m3.

TLS: angular resolution (h) = 0.0015◦ ;
angular resolution(v) = 0.0015◦ 0.02

Line-based
methods

Laplacian matrix
decomposition [88]

Outdoors, urban scene, covers
800 × 15,000 m2

ALS: density = 8 points/m2

TLS: density = 12 points/m2 0.37

Outdoors, urban scene, covers
11,000 × 12,000 m2

ALS: density = 5 points/m2

TLS: density = 20 points/m2 0.70

TIN-based [36] Outdoors, urban scene ALS: density = 2.24 points/m2;
accuracy (h) = 0.5 m; accuracy(v) = 0.15 m

0.007 (x) 2

0.004 (y)
0.004 (z)

Road networks & building
contours [46]

Outdoors, urban scene,
Olympic sports center, Nanjing,
China, covers 4000 × 4000 m2

ALS: density = 4 points/m2 ; accuracy
(h) = 0.30 m; accuracy (v) = 0.15 m
MLS: 360◦ scanning cope, surveying range
2–300 m, and point frequency
200,000 points/s

0.68(h)
0.41(v)

Surface-based
methods

Rodriguez matrix [99]

Outdoors, building
TLS: the scanning interval was roughly
2 cm, 4 stations were positioned about 25 m
away from the house. 0.0223 (x)

0.0030 (y)
0.0206 (z)

Outdoors, substation
TLS: the scanning interval was roughly
2 cm, the distance was less than 50 m
between the two stations.

Other
feature-based

methods

conjugate spatial curves [102] Indoors, No. 159 cave in the
Dunhuang Mogao Grottoes

TLS: the average span of points was 1 mm,
about 35–60% overlap between different
scans, and 76 scans consisted of
17.5 million points.

0.003

fitting of simple objects [103] Indoors, industrial site, the
room is about 8 × 4.5 × 4 m3.

TLS: 4 scan, each scan consisted of
1 million points. —

object detectors [106]
Outdoors, urban scene, streets
of New York, Paris, Rome, and
San Francisco.

MLS: each data set contains 300–500 M
points representing 50–100 city blocks
covering 2–4 km2.

—

Iterative
approximation

methods
point-to-plane [90]

Individual object, the Neil
Armstrong statue in
Purdue University

TLS: 8 scans, positioned at a distance of
5–10 m from the statue 0.0025

Random
sample

consensus
methods

SIFT features [136]
Outdoors, urban scene, the data
set is acquired at a district in
Hanover called Holzmarkt.

TLS: angular resolution = 0.12◦ ;
a measurement accuracy of 12 mm can
be expected.

0.015

iterative closest projected
point [137]

Outdoors, the Ronald
McDonald house in
Calgary, Canada.

TLS: 6 scans, the average overlap is
roughly 70%. —

Normal
distribution
transform
methods

2D NDT [145] Outdoors, urban scene, a street
in Hannover

TLS: scans, each scan requires about 4 min
and yields approximately
2,250,000 scanned points.

0.42

3D NDT [146]
Outdoors, 3 mine data sets,
which are collected in the
Kvarntorp mine, south of
Örebro in Sweden.

TLS: 2 scans from the end section of a
tunnel from the same pose, only
different resolution.

—

TLS: 2 scans were taken approximately 4 m
apart; each scans contain around
27,500 points

—

TLS:65 scans, each scans contain around
95,000 points —

1 h (v) represents the deviation in horizontal (vertical) direction. 2 x (y, z) represents the deviation in x (y, z) direction.
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7. Further Developments in LiDAR Data Registration

7.1. LiDAR Data Registration for Full Space

In order to obtain multi-phase comprehensive 3D spatial information on the Earth’s surface and
even the stars, the LiDAR system would need to be mountable on various platforms, and would need
to be able to acquire geospatial data at any time needed. The registration of LiDAR data will therefore
develop in two directions: micro-refinement and macro-globalization.

In micro-refinement, the development of LiDAR data registration will include indoor/outdoor
and ground/underground registration. Registration can be extended from exterior spaces to interior
spaces, and even to integrate both spaces. With the maturation of airborne and vehicle-borne LiDAR
detection technology, acquisition of 3D geographical information is becoming increasingly common.
More recently, with the development of miniaturized and mobile ground LiDAR scanners, fast scans of
indoor space have become possible. Global detection of outdoor and indoor 3D space can be achieved
through point cloud data registration, which can improve management of small indoor spaces. It will
be possible to obtain point cloud data of human living spaces by integrating point cloud data from
underground and underwater spaces.

At present, indoor LiDAR data registration is mainly focused on walls, celling, floor [156], or any
other key point descriptors [157]. Algorithms tried to improve not only accuracy but also efficiency,
which can reach the requirement of building reconstruction and real-time building information
acquirement. On the other hand, large scale outdoor LiDAR data registration has attracted lots
of attention, so that different scales of LiDAR data sets can work together to achieve applications such
as object extraction [22], change detection [158] and scene reconstruction [159]. Although there are
some different applications of indoor and outdoor data registration, the combination of indoor and
outdoor scenes is the full space of our living circle. The development of indoor/outdoor registration
may be located in indoor- outdoor interacted registration, that the full space is not only the target,
but also the rules to adjust the result of indoor or outdoor scenes.

Regarding macro-globalization, LiDAR data registration will continue to expand from regional to
global space, and even to interplanetary space. Development of point cloud integration technology,
as well as the gradual maturation of point cloud data acquisition technology using space-borne
stereo imagery, can overcome the large-spot and wide-spacing limitations of space-borne point cloud
data. Consequently, registration of satellite point cloud data and airborne, vehicular, and other
multi-platform LiDAR data becomes possible. By obtaining high-precision 3D detailed features,
we also gain the ability to solve large-scale problems and enhance resource assessment applications,
such as for macro-scale forest resource surveys. In addition, with the advancement of planetary
exploration, the development of point cloud registration methods that can be used beyond Earth
will be helpful for analysis of the spatial distribution of the landscapes of other planets, moons,
and asteroids.

7.2. New Types of LiDAR Data Registration

At present, the LiDAR systems used in most areas are small-spot discrete systems. Because the
signal received by these systems is discrete, single or multiple-pulse echo information, the ability to
characterize the vertical structure and physical characteristics of ground surface objects is reduced,
restricting application to other fields. With the development of improved LiDAR sensors, a new,
full-waveform LiDAR system came into being. Full-waveform LiDAR adds all-digital waveform
recording technology to traditional LiDAR, allowing real-time recording of all or part of the laser
reflection echo waveform. Mallet and Bretar [160] reviewed four aspects of full-waveform LiDAR:
system introduction, processing methods, quantitative analysis, and applications.

Full-waveform LiDAR systems have been mounted in satellites, aircraft, cars, and other platforms.
The obtained point cloud information contains all-digital waveform data on ground objects. It is
therefore possible to obtain richer quantitative parameters by performing laser signal processing
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and information mining directly from the waveform. A key element of processing is waveform
decomposition, including methods such as Gaussian decomposition, deconvolution, and empirical
models [161,162]. Relative to discrete LiDAR point clouds, a full-waveform radar has a stronger ability
to describe object structure, and has been widely used in the study of forests and urban areas. Forest
area studies include estimation of forest parameters [163–165] and modeling of forested areas [166,167].
In urban space, the use of full-waveform LiDAR to study the distribution and structure of urban
elements is still uncommon, mainly because multi-pulse signals only form when the laser beam reaches
the edge of a building. A small number of studies have focused on the distinction between different
materials and the classification of different ground objects [168–170].

At present, there are few studies on registration of full-waveform LiDAR; only two related
studies were found in the Scopus Database using the search terms “registrat *”, “full-waveform” and
“LiDAR”. Although the 3D spatial distribution of full-waveform LiDAR point clouds is similar to
that of traditional discrete LiDAR point clouds, further study is needed to allow full use of all-digital
waveform data and to achieve more accurate registration. This registration will take full advantage of
the characteristics of full-waveform LiDAR point clouds, such as their high density, strong stratification,
higher coordinate accuracy, and richer features, further accelerating the application of full-waveform
LiDAR to forests and urban space.

The development of new hardware, especially surface scan, line scan, active/passive laser,
and femtosecond LiDAR, also present opportunities for LiDAR data registration. The dual-band
LiDAR developed in recent years is based on the superposition of near-infrared band detection with
the blue-green band, which not only measures 3D information, but can simultaneously obtain water
depth and underwater terrain information, overcoming the problem of the incapability of the infrared
band to effectively penetrate water. The emerging face array LiDAR has advantages of large grid
density and long-distance rapid measurement, overcoming the limitation that LiDAR cannot be used
for long-range dynamic target imaging. However, there remain issues with low resolution and a poor
signal-to-noise ratio. Development of multi-spectral/hyperspectral LiDAR makes it possible to obtain
rich terrain spectral information while detecting 3D surface information.

7.3. Technical Development of LiDAR Data Registration

The presently-used methods of point cloud data registration are mainly coarse and fine registration
methods. It is likely that these two methods will still be widely used in future and that registration
accuracy will continue to improve. With increasing ability to obtain point cloud data from different
complex environments, it becomes necessary to test the sensitivity, robustness, and accuracy of different
registration methods with data of differing complexity. Furthermore, as point cloud registration
is moving in the direction of large-scale scenes, great attention must be focused on the efficiency
of point cloud registration for specific engineering applications. Current methods of improving
registration efficiency are mainly focused on point cloud storage and indexing; these include the use of
octree, quadtree, and R-tree, and the development of registration rules or extraction features. If an
effective combination of data mining technology and use of effective information can be integrated,
then registration efficiency can be greatly improved. Data mining is an integral part of the knowledge
discovery framework, which uses algorithms to search for hidden information in a large volume of
data and eventually construct a knowledge model. Data-mining techniques have been applied to
variation detection technologies based on remote sensing imagery, object classification, and other
research areas. If spatial data-mining technology is applied to point cloud data registration processes,
registration efficiency could be greatly improved while increasing registration accuracy. Such studies
may become common in future.

8. Summary

With improvements in spatial data acquisition capabilities, multi-platform and multi-angle data
have attracted more and more attention, and have been widely used in various fields. The application
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of integrated multi-platform, multi-angle LiDAR data in urban spaces, forest areas, and polar
environments has become an important area of research. This paper has presented a comprehensive
review of LiDAR data registration from the perspective of photogrammetry and remote sensing,
addressing a gap in the literature. LiDAR equipment can be used to obtain a wide range of 3D
surface information, but because the geographical environment is relatively complex and subject
to rapid changes, point clouds are very susceptible to the influence of noise. Given this, and the
discrete characteristics of point clouds, the point cloud registration process is relatively complex,
and consequently, most research has adopted a coarse-to-fine registration strategy, achieving good
registration outcomes.

In this paper, we focused on this coarse-to-fine strategy and categorized existing registration
methods into two major categories, namely coarse and fine LiDAR data registration methods. Based on
the feature used, coarse LiDAR data can be classified into point-based, line-based, surface-based,
and other methods. For fine registration, iterative approximation methods, random sample consensus
methods, normal distributions transform methods, and methods using auxiliary data are extensively
used. Classification based on methods allows in-depth understanding of their principles and
characteristics, so that an appropriate registration method can be selected based on different data
sources; this is also helpful for understanding whether the selected method is universal. Through an
effective combination of initial registration and fine registration, high-quality point cloud registration
can be achieved. With improvements in LiDAR equipment and expansion of the scope of access,
point cloud data scales have increased dramatically. In large-scale data registration, we must consider
the data structure of point clouds and storage methods. Especially when using a feature-based
approach for point cloud registration, favorable features should be selected to facilitate more efficient
registration. It is also necessary to avoid using all LiDAR point clouds as inputs for iterative
approximation and random sample consensus methods.

Although LiDAR point cloud registration technology is relatively mature, there is still a need for
an objective evaluation system to provide quantitative analysis of different methods and to promote
high-quality registration methods. The establishment of standard data sets and the development
of evaluation indicators and automatic evaluation platforms by relevant authoritative international
organizations in the fields of photogrammetry and remote sensing will promote further research into
point cloud registration. To improve point cloud computing efficiency, it is better to register LiDAR
point clouds on a large scale and verify the effectiveness and reliability of the registration method,
which will help in promoting application of LiDAR data and solving practical problems.
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