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Abstract

Landscape genetic studies based on neutral genetic markers have contributed to our under-

standing of the influence of landscape composition and configuration on gene flow and

genetic variation. However, the potential for species to adapt to changing landscapes will

depend on how natural selection influences adaptive genetic variation. We demonstrate

how landscape resistance models can be combined with genetic simulations incorporating

natural selection to explore how the spread of adaptive variation is affected by landscape

characteristics, using desert bighorn sheep (Ovis canadensis nelsoni) in three differing

regions of the southwestern United States as an example. We conducted genetic sampling

and least-cost path modeling to optimize landscape resistance models independently for

each region, and then simulated the spread of an adaptive allele favored by selection across

each region. Optimized landscape resistance models differed between regions with respect

to landscape variables included and their relationships to resistance, but the slope of terrain

and the presence of water barriers and major roads had the greatest impacts on gene flow.

Genetic simulations showed that differences among landscapes strongly influenced spread

of adaptive genetic variation, with faster spread (1) in landscapes with more continuously

distributed habitat and (2) when a pre-existing allele (i.e., standing genetic variation) rather

than a novel allele (i.e., mutation) served as the source of adaptive genetic variation. The

combination of landscape resistance models and genetic simulations has broad conserva-

tion applications and can facilitate comparisons of adaptive potential within and between

landscapes.

PLOS ONE | https://doi.org/10.1371/journal.pone.0176960 May 2, 2017 1 / 26

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Creech TG, Epps CW, Landguth EL,

Wehausen JD, Crowhurst RS, Holton B, et al.

(2017) Simulating the spread of selection-driven

genotypes using landscape resistance models for

desert bighorn sheep. PLoS ONE 12(5): e0176960.

https://doi.org/10.1371/journal.pone.0176960

Editor: Sam C. Banks, Australian National

University, AUSTRALIA

Received: January 15, 2017

Accepted: April 19, 2017

Published: May 2, 2017

Copyright: This is an open access article, free of all

copyright, and may be freely reproduced,

distributed, transmitted, modified, built upon, or

otherwise used by anyone for any lawful purpose.

The work is made available under the Creative

Commons CC0 public domain dedication.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: Research was supported by a grant to CE

and RM from the National Park Service’s Climate

Change Response Program (PMIS 162673).

Publication of this paper was supported by Oregon

State University’s Thomas G. Scott Publication

Fund. The funders had no role in study design, data

collection and analysis, decision to publish, or

preparation of the manuscript.

https://doi.org/10.1371/journal.pone.0176960
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0176960&domain=pdf&date_stamp=2017-05-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0176960&domain=pdf&date_stamp=2017-05-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0176960&domain=pdf&date_stamp=2017-05-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0176960&domain=pdf&date_stamp=2017-05-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0176960&domain=pdf&date_stamp=2017-05-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0176960&domain=pdf&date_stamp=2017-05-02
https://doi.org/10.1371/journal.pone.0176960
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/


Introduction

The field of landscape genetics has greatly enhanced our understanding of the influence of

landscape composition and configuration on gene flow and genetic variation of organisms [1].

The most common product of landscape genetic studies is the landscape resistance model,

which represents the cost of movement, reduction in survival, or willingness of an animal to

move through the environment as a function of landscape characteristics such as cover type,

topography, or degree of anthropogenic disturbance [2]. Landscape resistance models are

developed using neutral genetic markers, which are ideal for investigating demographic pro-

cesses such as gene flow, migration, and dispersal because neutral variation is not influenced

by selective forces that can lead to incorrect inferences about these processes [3]. However,

many of our most pressing questions about the effects of landscape characteristics on species

and populations concern adaptive genetic variation–the ultimate driver of evolutionary poten-

tial–and understanding how landscape characteristics affect the potential for spread of adap-

tive variation is a pressing need in landscape genetics [4, 5]. This need will only increase as

unprecedented rates of habitat modification [6] and climate change [7] force many species to

adapt to novel environmental conditions. Additionally, rapid advances in next-generation

sequencing technology are making it much easier to identify adaptive loci and explore geno-

type-environment associations (e.g., [8]).

Much of our understanding of how landscape characteristics could influence the spread of

adaptive variation comes from theoretical models, such as those that explore effects of popula-

tion subdivision on the rate or probability of fixation of a beneficial mutation. For instance,

beneficial mutations spread at a slower rate in structured populations [9] and reach fixation

faster when demes are two-dimensionally structured than one-dimensionally structured [10].

Yet, theoretical models tend to rely on simplifying assumptions about the spatial arrangement

of populations and the nature of migration between them (e.g., island, stepping-stone, or

lattice models of population structure) that are rarely borne out in real life. Characteristics of

the intervening landscape between individuals or populations (e.g., habitat configuration,

presence of dispersal barriers) are well known to limit animal movement and gene flow and

ultimately affect the amount and spatial pattern of genetic differentiation [11–14]; these char-

acteristics must be taken into account when assessing how real landscapes influence adaptive

variation.

Selection strength also plays a role in determining how adaptive variation spreads across

populations [15, 16]. Theoretical research suggests that an advantageous allele can spread rap-

idly through a subdivided population with very low gene flow if its selective advantage is strong

[9]. Selection coefficients for some quantitative trait loci in animals are believed to be suffi-

ciently high to allow for rapid spread of these traits and evolution at the species level [17].

Landscape resistance models based on neutral genetic variation can play an important role

by providing realistic, empirically-supported backdrops for simulating the spread of adaptive

genetic variation across landscapes. Individual-based, spatially-explicit genetic simulators now

allow us to incorporate natural selection in the simulation of gene flow and demographic pro-

cesses across resistant landscapes (e.g., [18, 19]). With many species widely distributed across

landscapes that vary dramatically with respect to landscape characteristics, simulation-based

comparisons within and among landscapes could help to identify portions of a species’ range

where adaptive alleles are likely to spread quickly and facilitate in-situ adaptation, or con-

versely, where spread of adaptive alleles is likely to be slow and assisted gene flow may be nec-

essary. Here, we apply this approach in a landscape genetic study of desert bighorn sheep (Ovis
canadensis nelsoni) in the southwestern United States. We genotyped >850 individuals at neu-

tral markers from three landscapes that vary with respect to habitat configuration and factors
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influencing gene flow, optimized landscape resistance models independently for these regions,

and used genetic simulations to determine how differences among landscapes affect the capac-

ity for spread of adaptive genetic variation within landscapes.

Desert bighorn sheep occupy some of the hottest and driest portions of the southwestern U.

S, and their distribution is strongly limited by availability of reliable surface water and steep

terrain to allow escape from predators [20]. Habitat configuration is highly variable across the

subspecies’ range–linear and relatively continuous in some areas, but patchy in other areas–

and presents an opportunity to explore the effects of habitat configuration on gene flow and

natural selection. Other landscape characteristics also vary substantially across the subspecies’

range, including climate, vegetation, degree of anthropogenic development, and presence of

major barriers to dispersal. Research on factors affecting gene flow or dispersal of desert big-

horn sheep has been largely limited to a portion of the subspecies’ range in southern California

and Nevada [14, 21], where landscape resistance models are currently being used to manage

risks to connectivity from renewable energy development [22, 23].

Climate projection models predict increases in temperature and aridity in the southwestern

U.S. in coming decades [24, 25], which could negatively impact bighorn sheep through

decreasing water and forage availability or increasing heat stress. Bighorn sheep populations in

the Mojave Desert have higher extinction probability [26] and lower genetic diversity [27] in

hotter, drier low-elevation habitat than in cooler, wetter high-elevation habitat. Unlike many

species that can respond to local climate change by shifting their spatial distribution either lati-

tudinally or altitudinally to remain within their “bioclimatic envelope” [28–30], desert bighorn

have limited ability to make such geographic shifts; they are habitat specialists that rely on

steep and visually open escape terrain that often comprises a small percentage of the landscape

that is discontinuously distributed, and they typically already occupy the most favorable (typi-

cally, wettest and coolest) portions of available habitat. Therefore, desert bighorn are likely to

be strongly dependent on in-situ adaptation to deal with an increasingly inhospitable climate.

In this study, we explored two scenarios under which adaptive genetic variation could arise

and spread throughout a region to facilitate climate change adaptation (hereafter, referred to

simply as “scenarios”). In the first, a novel allele favored by selection was introduced at one

location–for instance, via a mutation or the intentional translocation of individuals with a

novel genotype–and subsequently spread outward from this origin point (hereafter, the “novel

allele” scenario). In the second scenario, an allele that was already present throughout the

region at low frequency became favored by selection due to a change in environmental condi-

tions–for instance, a shift in climate regime–and subsequently increased in frequency through-

out the region (hereafter, the “pre-existing allele” scenario). We simulated each of these

scenarios (novel versus pre-existing allele) in three regions that differ with respect to habitat

configuration and factors influencing landscape resistance for bighorn sheep, and we com-

pared rates of adaptive allele spread among regions and scenarios while varying selection

strength. We hypothesized that the rate of spread would be faster (1) in regions with more con-

tinuously distributed habitat because gene flow would be less limited by the need for high-cost

dispersal between disjunct populations, (2) under the pre-existing allele scenario because local

populations would be more likely to initially contain the adaptive allele and thus be less reliant

on outside immigration to achieve adaptive allele spread locally, and (3) when selection for the

adaptive allele was stronger.

Materials and methods

Methods included the following major components: (1) collecting and genotyping DNA sam-

ples from individuals in three regions at 14–16 neutral microsatellite loci, (2) developing a
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suite of candidate landscape resistance models that describe how landscape variables influence

gene flow, (3) using genetic data and least-cost path modeling to test the fit of candidate resis-

tance models and identify an optimal model for each region, (4) simulating the spread of an

adaptive allele in each region during 100 years of gene flow influenced by landscape resistance,

with mate selection and dispersal determined as probabilistic functions of cumulative cost

across optimized regional resistance surfaces, and (5) comparing results among regions for

three selection strengths and two initial spatial distributions of the adaptive allele. We discuss

each component in detail below.

Study area

This study considers desert bighorn sheep populations in three regions of the southwestern U.

S. that differ substantially in habitat configuration. The southern Mojave Desert region (here-

after, MOJA) of southeastern California and southern Nevada contains bighorn sheep habitat

distributed in discrete mountain ranges within a matrix of less hospitable flats (Fig 1A). Popu-

lations in this region exhibit metapopulation structure, in which patches are linked by infre-

quent dispersal events [31, 32]. Human development within the region is limited, but three

major interstate highways fragment the metapopulation, and ongoing renewable energy devel-

opment threatens to further disrupt connectivity [33]. Two large protected areas, Mojave

National Preserve and Joshua Tree National Park, are located within the region and are mini-

mally impacted by human development.

The Grand Canyon region (hereafter, GRCA) in northern Arizona is dominated by the Col-

orado River flowing between Lake Mead and Lake Powell within Grand Canyon National Park

(Fig 1B). Bighorn sheep are confined to the rugged terrain within the Grand Canyon and side

canyons and avoid the surrounding plateau areas with poor escape terrain and visibility.

The Grand Canyon is 445 river km long and 16 km wide on average within Grand Canyon

National Park, so bighorn sheep habitat is relatively linear. GRCA is bordered by Glen Canyon

and Lake Mead National Recreation Areas and habitat is continuous, but for the purposes of

this analysis we consider only the GRCA section, which is more linear than adjacent habitat.

Preliminary genetic analyses indicate strong genetic differentiation of individuals on opposite

sides of the Colorado River, and weak differentiation within each side as a function of distance.

Very little human development and few anthropogenic dispersal barriers exist within GRCA.

The Death Valley region (hereafter, DEVA) of the northern Mojave Desert along the Cali-

fornia-Nevada border is centered on Death Valley National Park. Bighorn sheep populations

occupy habitat patches that are relatively discrete and separated by flat, arid valleys, but are

generally larger and more linear than in MOJA (Fig 1C); thus, DEVA represents an intermedi-

ate habitat configuration between MOJA and GRCA. Minimal human development and few

anthropogenic dispersal barriers are present in the DEVA region.

Genetic data

We obtained DNA mainly via non-invasive sampling of fecal pellets, and from a small number

of tissue and blood samples from live captures, hunter kills, or carcasses found in the field. We

used both newly-collected samples (2011–2013) from a larger project to assess genetic diversity

around ten national parks in the southwest U.S. [34], and samples collected for previous stud-

ies. MOJA samples were collected during 2000–2004 [14, 27], while DEVA samples were

collected in two phases: during 2003–2010 [35, 36] and during 2011–2013 to include areas

previously omitted. Sampling in MOJA and DEVA was conducted primarily around water

sources where bighorn sheep congregate during summer months. GRCA samples were col-

lected during 2011–2013, and most samples were collected along the Colorado River and
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associated side canyons, with additional samples collected along trails and at observation

points within the national park. UTM coordinates were recorded for all GRCA samples and

for DEVA and MOJA samples collected after 2010, but only approximate locations (e.g., the

name of a water source) were recorded for DEVA and MOJA samples from earlier sampling

Fig 1. Genetic sampling locations. Black dots show where unique genotypes were sampled in each of three study regions: (A) southern Mojave,

n = 378; (B) Grand Canyon, n = 252; (C) Death Valley, n = 225. Red and blue lines show major barriers to dispersal (highways and waterways,

respectively). Green polygons show occupied bighorn habitat within which individuals were randomly located for CDPOP simulations of gene flow.

Note that many black dots (individual locations) overlap at the scale of the map.

https://doi.org/10.1371/journal.pone.0176960.g001
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periods. We assigned coordinates to these earlier samples based on the geographic feature

where they were collected.

Samples were analyzed using similar protocols in three genetics labs, corresponding to the

three sampling periods: Oregon State University (OSU; 2011–2013), White Mountain

Research Station (WMRS; 2003–2010), and University of California, Berkeley (UCB; 2000–

2004). A total of 20 microsatellite loci were used across labs, but only 14–16 loci were used in

each lab, with 10 loci common to all three labs (S1 Table). Descriptions of genotyping proto-

cols for the two earlier periods (UCB and WMRS labs) can be found in Epps et al. [14] and Jae-

ger and Wehausen [35], respectively. We briefly describe the protocol for the most recent

period (OSU lab, 2011–2013) below, but provide a more detailed description of DNA extrac-

tion, polymerase chain reaction (PCR) conditions, genotype calling and screening, and locus

characteristics in S1 Appendix and S1 Table. We used a modified AquaGenomic Stool and Soil

protocol (MultiTarget Pharmaceuticals LLC, Colorado Springs, CO) to extract DNA from

material scraped from the surface of fecal pellets. We genotyped samples at 16 dinucleotide

microsatellite loci in three multiplex PCRs of 4–6 loci using a Qiagen Multiplex PCR kit (Qia-

gen, Valencia, CA). We used an ABI 3730 capillary sequencer (Applied Biosystems [ABI], Fos-

ter City, CA, USA) to visualize PCR products and GENEMAPPER (version 4.1; ABI) to score

genotypes. Each sample was amplified in at least three replicate PCRs to generate consensus

genotypes. We used CERVUS version 3.0.3 [37] to identify duplicate genotypes and GIMLET

version 1.3.3 [38] to estimate genotyping error rates (false allele occurrence rate and allelic

dropout rate). We used GENEPOP version 4.2 [39] to test for deviations from linkage equilib-

rium and Hardy-Weinberg equilibrium.

Genetic distances

We used the Bray-Curtis dissimilarity index (BC; [40]), equivalent to 1 minus the proportion

of alleles shared between individuals, as a measure of inter-individual genetic distance to use

in optimizing the landscape resistance models. BC is strongly correlated with and has provided

similar performance to other individual-level genetic distance metrics (e.g., Rousset’s ar, PCA-

based genetic distance) in previous studies [41–44]. We generated pairwise matrices of inter-

individual genetic distance for each study area using the ecodist package [45] in R [46].

Landscape variables

We considered seven variables that may affect bighorn sheep movement across the landscape

(see S2 Table for information on geospatial data sources): (1) Slope. Bighorn sheep prefer

steeper slopes that serve as escape terrain to evade predators [47]. (2) Normalized Difference
Vegetation Index (NDVI). This remotely-sensed measure of vegetation greenness is correlated

with bighorn sheep diet quality [48, 49], and individuals could be more likely to move through

areas offering better forage. We used a time-integrated NDVI (TIN) spatial dataset that esti-

mates the total photosynthetic activity during the annual growing season. (3) Anthropogenic
development. Bighorn sheep are intolerant of human activities in most cases [50] and may

avoid permanently developed areas [20], although they can become habituated to human

activities that are geographically predictable and non-threatening [51, 52]. (4) Major roads.
Roads can be strong barriers to bighorn dispersal [14]. Genetic analyses [14, 21] and anecdotal

evidence suggest that four-lane and fenced highways are rarely crossed by bighorn, while

smaller, unfenced highways and roads are crossed frequently; thus, we considered only four-

lane or fenced highways to be major roads. (5) Distance to water. The availability of permanent

water sources is a key limiting factor for bighorn sheep populations [20] and may influence

individuals’ ability or willingness to disperse through arid environments. We identified reliable
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water sources for bighorn sheep, including perennial streams, springs, seeps, lakes, reservoirs,

and artificial guzzlers, and calculated the distance from each landscape cell to the nearest

source. (6) Forested areas. Forested areas limit visibility and increase predation risk for bighorn

sheep [53]. (7) Water barriers. Larger water features may serve as barriers to movement, as big-

horn are thought to rarely cross high-volume rivers or reservoirs (e.g., Colorado River, Lake

Powell). We used a combination of expert opinion, evidence from unpublished radio telemetry

studies by NPS biologists, and a previous genetic study [35] to identify water barriers in the

region. We did not include the major roads variable in our analysis for the DEVA or GRCA

regions, or the water barriers variable in our analysis for the DEVA region, because these fea-

tures were not present in these regions, respectively.

Geospatial data layers ranged in spatial resolution from 30 m to 250 m cells, but needed to

be combined in a single-resolution, multivariate resistance layer. We used the raster package

[54] in R to resample all layers to 3-arcsecond (approximately 100 m) cell resolution in order

to meet computational limitations when calculating cost distances. Vector data layers were

converted to raster using ArcGIS 10.1 [55].

Candidate univariate surfaces

We used a combination of expert opinion and previous modeling studies to develop plausible

alternative resistance parameterizations for each landscape variable to be tested with the

genetic data. We included a large range of parameterizations to maximize the probability of

bracketing the true resistance value. For continuous variables (slope, NDVI, distance to

water), we modeled several possible relationships with landscape resistance (S2 Appendix),

including linear relationships and concave-up and concave-down non-linear relationships

(i.e., monotonic relationships in which the rate of change in resistance varies across the range

of landscape variable values; S1 Fig). For slope, we also included Gaussian relationships (e.g.,

[44]) in which resistance was lowest at some intermediate slope value and increased as the

slope value moved away from the optimum (S2 Fig), and breakpoint relationships in which

slopes within an intermediate range were assigned a resistance value of 1, while slopes outside

this range were assigned a single, higher resistance value. These relationships are plausible

because shallow slopes may increase predation risk and very steep slopes could be too difficult

for bighorn sheep to negotiate. For binary variables (anthropogenic development, major

roads, forested areas, water barriers), we considered several possible ratios of resistance for the

two types of cells (e.g., natural versus converted, or forested versus non-forested) by assigning

the less resistant cell type a resistance value of 1 and assigning a range of resistance values for

the more resistant cell type based on expert opinion. Additional detail on alternative parame-

terizations for continuous and categorical variables are in S3 Table and S4 Table, respectively.

Cost distances

For each resistance surface (i.e., unique parameterization of a single landscape variable;

n = 100 for DEVA, 110 for GRCA, 119 for MOJA), we used the gdistance package [56] in R to

generate a pairwise matrix of inter-individual cost distances, calculated as the accumulated

cost along the least-cost path [57] between sample locations for pairs of individuals. We used

an individual-based rather than population-based approach for relating genetic distance and

cost distance because it did not require defining populations a priori, and was therefore more

appropriate in areas where bighorn sheep were continuously distributed (e.g., Grand Canyon).

Recent studies have supported the use of individual-based approaches in landscape genetics

[58, 59], even in cases where discrete populations exist [60].
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Resistance surface optimization

Mantel tests have been the standard approach for evaluating competing resistance surfaces in

landscape genetic studies [5], but there is mounting evidence that they may not be appropriate

or reliable for such applications [61–65]. We relied on an alternative approach that fits linear

regression models using bootstrap sampling of independent pairs of individuals and has been

successfully applied in several recent landscape genetic studies [66–70]. We used a two-phased

approach [41] to optimize landscape resistance surfaces for each region: in the first phase, we

tested sets of candidate resistance surfaces representing different resistance parameterizations

of a single landscape variable and identified optimal univariate surfaces; in the second phase,

we tested candidate multivariate surfaces including various subsets of the optimal univariate

surfaces, as well as variants of the optimal univariate surfaces rescaled to have different maxi-

mum resistance values, and identified an optimal multivariate surface. This process was per-

formed independently for each region, and we describe both phases in further detail below.

Univariate optimization. We first used a Mantel correlogram to estimate the Euclidean

distance beyond which genetic distance and Euclidean distance were no longer correlated in

each study region, and excluded all pairs separated by distances greater than this cutoff from

our analysis; the purpose of this step was to remove pairwise comparisons that did not contrib-

ute useful information on the relationship between gene flow and environmental characteris-

tics because of very long distances between individuals. Next, we used a pseudo-bootstrapping

approach [66] to compare candidate resistance surfaces. This approach was similar to tradi-

tional linear regression, but accounted for the non-independence of pairwise data (in this case,

genetic and cost distance matrices) by repeatedly selecting a random and independent subset

of pairs from the dataset (i.e., each individual represented in only a single pairwise value). The

maximum number of independent pairs that could be subsetted for each region was N/2,

(where N was the number of individuals sampled in that region) because each individual could

only be represented in one pairwise data point while maintaining statistical independence. In

practice, the number of randomly sampled pairs was often slightly smaller than N/2 because

some pairs were ineligible for selection due to the Euclidean distance threshold we imposed.

For each random subset, we fitted a linear regression model of genetic distance as a func-

tion of cost distance for each candidate resistance surface and calculated Akaike Information

Criterion (AIC). We performed 10,000 iterations of this procedure, fitting all candidate models

to the same random subset of pairwise data in each iteration and compared models using

Akaike weight (the relative likelihood of a model, exp[-0.5�ΔAIC], divided by the sum of rela-

tive likelihoods of all models). We selected a top model from the candidate set using the

median Akaike weight across iterations as our model selection criterion. A simple Euclidean

distance surface (i.e., resistance surface with all cells having resistance value of 1) was included

in the set of candidate surfaces for each variable to serve as a null model of isolation by distance

(IBD). Because previous research has suggested that log-transforming cost-distances may

improve linearity [64, 65, 71], we fit each model with both unlogged and log-transformed cost

distances, and retained the version with the higher model R2.

Multivariate optimization. We generated a candidate set of multivariate resistance mod-

els by summing resistance values (on a cell-wise basis) for all possible combinations of land-

scape variables, using the optimized univariate resistance surface for each variable. Any

variable for which the optimized univariate surface did not perform better than IBD (i.e., did

not have higher median Akaike weight) was excluded from all candidate multivariate resis-

tance surfaces. To allow for the possibility of interactions between variables (i.e., changes in

the optimal resistance model for one landscape variable when effects of other landscape vari-

ables are included in a multivariate resistance model), we also created candidate multivariate
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models using univariate surfaces with the same shape of resistance curve as the best univariate

surface, but with a different maximum resistance value. For instance, if the optimized univari-

ate surface for the NDVI variable indicated a concave-down, negative relationship with a max-

imum resistance value of 50, we also created multivariate surfaces including concave-down,

negative relationships with maximum resistance values of 10 and 100 for NDVI. We could not

test all possible combinations of univariate models because allowing all univariate model

parameters to vary for each landscape variable in multivariate models would have resulted in

an excessive number of multivariate models. Other methods have been proposed to maximize

the amount of the multivariate hypothesis space explored (e.g., Shirk et al. 2010), but all meth-

ods are constrained to some extent by computational limitations. We compared multivariate

surfaces using the bootstrap AIC approach described above. Because four or fewer landscape

variables were more informative than the null model of IBD in each region, the number of

multivariate models remained reasonable.

Simulation of adaptive allele spread

After identifying the best landscape resistance model for each study region using landscape

genetic analysis of neutral markers, we used the computer program CDPOP v1.2 [72] to simu-

late gene flow and natural selection in each of our study regions. CDPOP simulates dispersal

and mating of individuals across a landscape resistance surface, allowing the user to define the

initial genetic structure, spatial distribution of individuals, dispersal characteristics, and life

history traits of the population. Natural selection is incorporated by allowing offspring mortal-

ity rate to vary as a function of individual genotype linked to environmental associations. We

simulated selection at a single biallelic locus with an adaptive allele A and a neutral allele a. We

tested three different strengths of selection for the adaptive allele: a 10 percent (“weak selec-

tion”), 20 percent (“moderate selection”), or 30 percent (“strong selection”) increase in off-

spring survival of the AA genotype relative to the aa genotype. We assumed additive

dominance, whereby survival of the Aa genotype was intermediate (h = 0.5) to the two

homozygotes.

Initializing individual locations and genotypes for simulation. We used maps of occu-

pied desert bighorn sheep habitat provided by state wildlife agencies to assign individual loca-

tions, which remain fixed throughout simulations in CDPOP. Individuals were randomly

placed within occupied habitat at a constant density of 0.2 individuals/km2 in each region,

resulting in 1,684 individuals for DEVA, 624 for GRCA, and 1,576 simulated individuals for

MOJA. We arrived at this density by summing population size estimates for the MOJA and

DEVA regions (based on the most recent available information, e.g., Epps et al. 2003) and

dividing by the total area of occupied habitat within these two regions; a population estimate

was unavailable for GRCA, so we assumed that the average bighorn sheep density in the other

regions was a suitable estimate for GRCA. The assumption of constant density of individuals

within and across regions was preferable to using actual population sizes because (1) popula-

tion information was unavailable or outdated in many areas; (2) bighorn sheep population

sizes can change dramatically over short time scales, especially in metapopulation systems

such as the Mojave Desert, or in the event of a disease outbreak; thus, current population esti-

mates may only remain accurate for a short portion of the simulation time frame; and (3) we

wanted to investigate the effects of differences in landscape configuration and resistance

among regions without the variation introduced by differences in local population density.

For the novel allele scenario, we initialized genotypes with allele frequencies of 0.01 and

0.99 for the adaptive (A) and neutral (a) alleles, respectively, in each regional population. We

selected a single individual near the center of each region and identified the closest two percent
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of neighboring individuals in the landscape, based on cost distance. Among this subset of indi-

viduals, we randomly assigned half of the pooled alleles to be the A allele, and all remaining

alleles within the region to be the a allele, creating a small cluster of AA, Aa and aa genotypes

at Hardy-Weinberg equilibrium frequencies within a regional population that was otherwise

homozygous for the aa genotype. These clusters of adaptive alleles were approximately 15 km

in diameter in all three regions, and spanned portions of two populations each in DEVA and

MOJA, and a small portion of the single continuous population in GRCA. We used this cluster

strategy rather than initializing simulations with a single copy of an adaptive allele, as would

occur immediately following a mutation, because a single allele would quickly be removed

from the population by genetic drift in most cases, even when selection was strong. Thus, this

scenario might exemplify examining spread of a local adaptation or variant. For the pre-exist-

ing allele scenario, simulating a change in selective coefficient for an allele already present at

some frequency across the region, we initialized genotypes with regional allele frequencies of

0.05 and 0.95 for the A and a alleles, respectively, and each allele randomly distributed among

individuals in the region.

Simulation parameters. We simulated gene flow for 100 years following the initiation of

genotypes, with 50 Monte Carlo replicates for each combination of selection strength (none,

weak, moderate, strong) and scenario (novel allele or pre-existing allele). Mating and dispersal

movements followed an inverse-square function of cost distance. Although bighorn sheep

exhibit sex-biased dispersal [47], preliminary simulations using smaller dispersal thresholds

for females caused populations to decline across the study area over the simulation period;

thus, to achieve relatively stable population dynamics necessary to examine how adaptive allele

spread varied among regions, we used the same dispersal thresholds for males and females. To

standardize cost distances among regions, we added 2 to each cell value in the optimized

DEVA resistance surface so that the cost value of the least resistant cell type was constant

across regions; this was necessary because multivariate surfaces were created by summing

three univariate surfaces with a minimum value of 1 for GRCA and MOJA, but only a single

univariate surface for DEVA.

We first ran simulations with a maximum dispersal threshold of 534,861 cost units, the cost

distance beyond which genetic distance and cost distance were no longer correlated within the

GRCA region; this was the smallest of such estimates for the three regions, using the best mul-

tivariate resistance models to estimate cost distance. Because maximum dispersal distance of

bighorn sheep has not been precisely estimated and could influence the relative rate of spread

of adaptive alleles, we repeated all simulations at ½ the original dispersal threshold (267,430

cost-units) and at twice the original dispersal threshold (1,069,722 cost units) to bracket a

range of likely dispersal thresholds; we hereafter refer to these threshold values as “low”,

“medium”, and “high” dispersal thresholds. These cost distance thresholds correspond to

Euclidean distances ranging between 2.4 and 13.6 km if individuals traveled through average-

resistance terrain in each region; however, actual distances traveled in simulations could be

much further than this because we assumed individuals traveled along least-cost paths. We

allowed males but not females to mate with replacement in order to approximate the polygy-

nous mating system of bighorn sheep. The population included 17 annual age classes, with

age-specific mortality and fecundity rates estimated from the literature [20, 47, 73–75]. Each

mating event resulted in a single offspring, as twinning is rare in bighorn sheep [76]. We set

mutation rate to zero, given the short time frame of the simulations (<15 generations).

Quantifying adaptive allele spread. We calculated the mean adaptive allele frequency

(hereafter, fA) at every year by averaging results from the 50 MC replicates for each combina-

tion of selection strength and scenario. We plotted 95% confidence bands for fA in each region
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as a function of time and compared confidence bands for differences in the rate of adaptive

allele spread among regions.

Results

Genetic data

We genotyped 225 unique individuals from DEVA, 252 from GRCA, and 378 from MOJA.

False allele occurrence rate was zero in all regions, and allelic dropout rate averaged 4.1 percent

across loci and regions. We observed deviations from Hardy-Weinberg equilibrium or linkage

equilibrium in a number of populations within the three regions; however, no locus (for

HWE) or pair of loci (for LE) was consistently out of equilibrium across populations, suggest-

ing that these deviations most likely resulted from population substructure rather than non-

neutral loci or non-independent loci. We therefore retained all loci in subsequent analyses.

Univariate optimization

The number of randomly sampled pairs ranged among iterations from 109 to 112 for DEVA,

123 to 125 for GRCA, and 185 to 188 for MOJA. Landscape variables that were supported by

univariate optimization (i.e., that had higher Akaike weight than the null model of isolation by

Euclidean distance) differed among regions (Table 1). Slope was supported in all three regions,

and was the strongest univariate predictor in DEVA and MOJA, as indicated by median R2. A

Gaussian slope model was preferred over a linear model or break-point model, although the

parameters of the Gaussian model (optimal slope, maximum resistance value) differed

between regions. Presence of water barriers was associated with increased resistance to gene

flow and was the variable with the greatest explanatory power in GRCA, but was not supported

in the remaining two regions. Similarly, presence of major roads was associated with increased

resistance and was an important variable in MOJA but not in DEVA or GRCA. Distance to

water (positively associated with resistance) was supported in DEVA and GRCA, and NDVI

(negatively associated with resistance) was supported in DEVA and MOJA, but these variables

only explained slightly more variation than Euclidean distance in these regions. Forested areas

and anthropogenic development were not supported in any region and were excluded from

multivariate optimization. Models with unlogged cost distances were preferred for all variables

in all regions, with the exception of the isolation by distance model in GRCA.

Multivariate optimization

The optimized multivariate model for GRCA included slope, water barriers, and distance to

water. For MOJA, the optimized multivariate model included slope, roads, and NDVI. The

univariate slope model was preferred over all multivariate models for DEVA. Table 2 provides

details on the relationships between each variable and resistance to gene flow for the optimized

multivariate model in each region. Resistance values associated with variables in optimized

univariate models sometimes differed from those in optimized multivariate models; for

instance, water barriers were assigned a resistance of 1,000 in the best univariate model for

GRCA, but a value of 5,000 in the best multivariate model.

Explanatory power of optimized multivariate models was relatively low as measured by

model R2: cost distances explained less than a quarter of the variation in genetic distances in all

regions. The multivariate models for GRCA and MOJA represented only a modest increase in

explanatory power over the best univariate model. In the DEVA and MOJA regions, Euclidean

distance alone explained at least two thirds as much variation as the best multivariate resis-

tance model. However, distance was a less powerful predictor of genetic differentiation in
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GRCA, where the barrier effect of the Colorado River explained the majority of variation in

genetic distances (Tables 1 and 2).

Simulations

Genetic simulations revealed differences in the spread of adaptive genetic variation among

regions for many combinations of selection strength, dispersal threshold, and scenario. Under

moderate to strong selection, we observed higher frequencies of the adaptive allele in the

GRCA region, which had the most continuous distribution of habitat, than in MOJA or

DEVA, which had low to intermediate habitat continuity relative to GRCA. Under most com-

binations of selection strength, dispersal threshold, and scenario that we tested, differences in

fA that emerged between DEVA and MOJA were also consistent with our hypothesis of faster

spread of adaptive alleles in more continuous landscapes; however, because DEVA and MOJA

Table 1. Optimized univariate resistance models for each region.

Region Landscape variablea Optimal resistance surface Median R2

DEVA

Slope Gaussian (rmax = 100, xopt = 50, xsd = 20) 0.151

Distance to water Monotonic positive (rmax = 50, rexp = 4) 0.132

NDVI Monotonic negative (rmax = 10, rexp = 0.25) 0.130

Euclidean distance — 0.129

GRCA

Water barriers Ratio (1,000) 0.173

Slope Gaussian (rmax = 10, xopt = 50, xsd = 20) 0.062

Distance to water Monotonic positive (rmax = 50, rexp = 1) 0.063

Euclidean distanceb — 0.050

MOJA

Major roads Ratio (100) 0.227

Slope Gaussian (rmax = 10, xopt = 40, xsd = 20) 0.200

NDVI Monotonic negative (rmax = 100, rexp = 0.25) 0.186

Euclidean distance — 0.173

a Variables not included in the table did not outperform the null model of isolation by distance (i.e., had lower median Akaike weight) and were excluded from

further analysis.
b Cost distance was log-transformed only for the GRCA Euclidean distance model because untransformed cost distances produced higher model R2 for all

other resistance models.

https://doi.org/10.1371/journal.pone.0176960.t001

Table 2. Optimized multivariate resistance model for each region.

Region Model Median R2

DEVAa slope (Gaussian: rmax = 100, xopt = 50, xsd = 20) 0.152

water barriers (ratio = 5,000) +

GRCA slope (Gaussian: rmax = 10, xopt = 50, xsd = 20) + 0.177

distance to water (positive: rmax = 100, rexp = 1)

roads (ratio = 5,000) +

MOJA slope (Gaussian: rmax = 50, xopt = 40, xsd = 20) + 0.259

NDVI (negative: rmax = 10, rexp = 0.25)

a The univariate slope model outperformed all multivariate models in the DEVA region.

https://doi.org/10.1371/journal.pone.0176960.t002
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were much more similar with respect to habitat continuity than either was to GRCA, differ-

ences between DEVA and MOJA were relatively small.

Adaptive allele frequency (fA) was positively associated with selection strength and dispersal

threshold in both simulation scenarios. We observed greater increase in fA in landscapes with

more continuously distributed habitat under both scenarios. Relative differences in fA among

regions (i.e., the ratio of fA for two regions at a given point in time) tended to be larger under

the novel allele scenario.

Novel allele scenario. Under the novel allele scenario, relatively small increases in fA were

observed over the simulation period (Fig 2). Even under strong selection, fA remained below

0.12 after 100 years. The effect of landscape (i.e., difference in fA among regions) was slow to

emerge (25–50 years under most conditions) and was more pronounced when selection was

stronger and maximum dispersal threshold was larger. GRCA clearly exhibited higher fA than

DEVA and MOJA for all dispersal thresholds when selection was moderate or strong. Differ-

ences in fA among DEVA and MOJA were only evident when the high dispersal threshold was

used and selection was moderate or strong; for all other combinations of dispersal threshold

and selection strength, there was no appreciable difference in fA between DEVA and MOJA.

Where differences were evident, fA tended to be higher for DEVA than for MOJA, consistent

with our hypothesis of faster spread of the adaptive allele in regions with more continuously

distributed habitat.

Pre-existing allele scenario. We observed much greater increases in fA over time under

the pre-existing allele scenario than the novel allele scenario, with fA reaching nearly 0.35 by

year 100 under some conditions (Fig 3). For all combinations of selection strength and dis-

persal threshold that produced differences among regions, fA was higher for GRCA than the

other regions. When selection was weak to moderate, DEVA and MOJA exhibited similar

increases in fA. However, when selection was strong, the effect of landscape depended on dis-

persal threshold: with the low dispersal threshold, fA was actually higher in MOJA than DEVA,

while fA was approximately equal for the two regions with the medium or high dispersal

threshold.

Discussion

We developed landscape resistance models for desert bighorn sheep in three regions with dif-

ferent habitat configuration and factors affecting resistance to gene flow, and found that these

differences among landscapes influenced the spread of adaptive genetic variation in subse-

quent genetic simulations. However, not all combinations of selection strength and dispersal

threshold resulted in clear differences among landscapes with respect to adaptive allele spread.

Observed differences among regions in adaptive allele spread were generally consistent with

expectations of faster spread when landscapes exhibited more continuously distributed habitat

and when a pre-existing allele (i.e., standing genetic variation) rather than a novel allele (i.e.,

mutation) served as the source of adaptive genetic variation.

Resistance modeling

Our resistance model optimization suggested that slope and strong dispersal barriers, includ-

ing major water bodies and interstate highways, were the dominant landscape factors influenc-

ing gene flow for desert bighorn sheep. These results are consistent with previous research

demonstrating strong effects of slope and highways on bighorn gene flow in the Mojave Desert

[14, 21], and also complement earlier analyses suggesting that that major water barriers (i.e.,

the Colorado River) currently limit gene flow for bighorn sheep [35]. A Gaussian model in

which both very low and very high slopes have high resistance was supported, suggesting that
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Fig 2. Simulated change in adaptive allele frequency through time under the novel allele scenario. Results are shown for multiple

selection strengths and dispersal thresholds in the DEVA, GRCA, and MOJA regions. Simulations were initiated with a small cluster of adaptive

alleles at the center of each region. Rows and columns correspond to selection strengths and dispersal thresholds, respectively. Solid and

dashed lines represent means and 95 percent confidence limits, respectively, from 50 MC replicates per region.

https://doi.org/10.1371/journal.pone.0176960.g002

Simulating adaptive allele spread across resistant landscapes

PLOS ONE | https://doi.org/10.1371/journal.pone.0176960 May 2, 2017 14 / 26

https://doi.org/10.1371/journal.pone.0176960.g002
https://doi.org/10.1371/journal.pone.0176960


Fig 3. Simulated change in adaptive allele frequency through time under the pre-existing allele scenario. Results are shown for multiple

selection strengths and dispersal thresholds in the DEVA, GRCA, and MOJA regions. Simulations were initiated with the adaptive allele

randomly distributed throughout each region at 5 percent frequency. Rows and columns correspond to selection strengths and dispersal

thresholds, respectively. Solid and dashed lines represent means and 95 percent confidence limits, respectively, from 50 MC replicates per

region.

https://doi.org/10.1371/journal.pone.0176960.g003
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some areas of our study regions are actually steep enough to prevent movement by bighorn

sheep. Interestingly, the effect of slope appeared to vary by region with respect to the optimal

slope and the maximum resistance associated with slope; for instance, slope was assigned a

maximum resistance of 100 in DEVA but only 10 in GRCA. It is not clear why sub-optimal

slopes would have presented a greater obstacle to bighorn sheep in DEVA than GRCA, but the

distribution of favorably sloped terrain within each region may have influenced this result.

Habitat in GRCA comprises one highly continuous patch of favorably-sloped terrain, the

Grand Canyon, allowing bighorn sheep to travel long distances with limited exposure to highly

resistant slopes (with the exception of some near-vertical canyon walls that cannot be tra-

versed); in contrast, even short-distance travel between neighboring patches in MOJA typically

requires traversing low-slope, high-resistance areas. Thus, the effect of slope may appear to be

weaker in GRCA simply because dispersal is less limited by slope, at least for horizontal move-

ments within the canyon.

This example illustrates an important and well-known limitation in landscape genetic anal-

yses: features that influence gene flow, but are not highly variable within the landscape, are

often not supported in landscape resistance models [77]. This limitation may also explain why

we failed to detect an effect of some landscape variables that are known to strongly influence

movement behavior of bighorn sheep (e.g., forested areas, anthropogenic development). The

vast majority of each region we examined comprised natural cover types, with anthropogenic

development limited to a few peripheral areas, so it may not have been possible to detect an

effect of development, even if it strongly influenced dispersal for those few individuals that

occupy habitat close to development. Landscape genetic effects are also difficult to detect in

highly connected landscapes [65, 78], where individuals are largely able to avoid traversing

through resistant features. This scenario may apply, for instance, to forested areas in the

GRCA region, which occur almost exclusively on plateaus surrounding the Grand Canyon–

that is, in areas of low slope that are poor bighorn sheep habitat and can be avoided by travel-

ing within the canyon. These examples suggest that spatial extrapolation of locally-developed

resistance models could lead to omission of important factors affecting dispersal and gene

flow, and researchers wishing to apply resistance models in new areas should recognize this

limitation.

Euclidean distance explained at least two thirds as much of the genetic differentiation

among individuals as the final optimized model in DEVA and MOJA, suggesting that isolation

by distance is strong in these regions. However, distance was a relatively poor predictor of

genetic differentiation in GRCA, which was likely driven by the unique juxtaposition of suit-

able habitat and a major barrier in GRCA: the steeply sloped Grand Canyon provides a long,

narrow, and continuous habitat patch for bighorn sheep, but is bisected by the Colorado River

running through the bottom of the canyon and serving as a strong barrier to movement. Thus,

two individuals on opposite sides of the river that were sampled only hundreds of meters apart

may have less chance of mating than two individual on the same side of the river that were

sampled tens to hundreds of kilometers apart.

Simulating selection

The simulated rates of spread of adaptive genetic variation in our three study regions largely

supported our expectation of faster spread in landscapes with more continuously distributed

habitat. In fact, our results may actually underestimate differences among the regions because

population density was assumed to be constant through time and between habitat patches in

CDPOP simulations, but densities tend to fluctuate in space and time in real populations. Such

fluctuations are likely to be most dramatic in patchy landscapes like the MOJA region that
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exhibit metapopulation dynamics [31, 32]. Theoretical models suggest that extinction and

recolonization reduce fixation probability for beneficial alleles [79, 80], and that probability of

fixation of beneficial alleles decreases when reproductive success varies among demes [81].

These effects should be stronger in patchier systems and reinforce the differences we observed

between regions.

The effects of selection strength and dispersal threshold on fA were generally consistent

with our expectations: fA increased faster when selection was stronger or dispersal threshold

was larger. The effect of dispersal distance on fA values was much smaller than the effect of

selection in most cases. Our high dispersal threshold was four times larger than our low thresh-

old, but fA values tended to be only marginally higher using the high threshold. We suspect

that this is because we used an inverse square dispersal function resulting in very common

short-distance movements and very rare long-distance movements, such that increasing the

maximum dispersal distance may have had only a small influence on the average distance

moved by an individual. Exploring dispersal functions was beyond the scope of this study and

should be left for future theoretical work.

In some cases, we observed interesting interactions between selection strength and dispersal

threshold. The degree to which differences among regions arose during simulations depended

on the combination of selection strength and dispersal threshold considered, with regional dif-

ferences quite pronounced for some combinations and minimal for others. In a few cases, the

choice of dispersal threshold even reversed the conclusion regarding the relative spread of an

adaptive allele in the two relatively patchy regions; for instance, under strong selection in the

pre-existing allele scenario, fA increased faster for DEVA than MOJA with the medium dis-

persal threshold, but the opposite was true with the low dispersal threshold. This interplay

between dispersal threshold and selection strength is a potentially complex topic that warrants

further investigation.

We observed large differences in the trajectory of fA under the novel allele and pre-existing

allele scenarios. This may be partially due to the fact that initial allele frequencies differed

between the scenarios (0.01 versus 0.05), as they were intended to simulate different processes

by which adaptive alleles could be introduced and spread throughout a landscape. However,

examination of the spatial spread of the adaptive allele under each scenario suggests limitations

on inter-patch dispersal imposed by landscape resistance were also likely responsible for the

difference between scenarios. As an example, Fig 4 shows the spread of the adaptive allele

across each region by year 100 under strong selection and moderate dispersal threshold for

both scenarios. Under the novel allele scenario, where the adaptive allele was initially present

in only one location, spread was limited to nearby patches in DEVA and MOJA, although fA
within those patches was close to 1. This reflects the presence of high-resistance terrain (e.g.,

desert flats, possibly with roads) separating patches and making inter-patch dispersal events

rare. GRCA, with its highly continuous habitat, exhibited much greater geographic spread,

although limited to the side of the Colorado River on which the adaptive allele was initially

present. Under the pre-existing allele scenario, however, spread of the adaptive allele was

much more extensive in all three regions. This occurred because the adaptive allele was initially

present in all patches within each region, and thus increases in fA could occur solely through

intra-patch dispersal that did not require traversing high-resistance terrain. This also explains

why regional differences in fA were much smaller under the pre-existing allele scenario: habitat

patchiness played much less of a limiting role when inter-patch dispersal was not needed to

introduce the adaptive allele to new populations.

Given the major differences between the two scenarios, it is helpful to consider the circum-

stances that could lead to each scenario and the implications of each for adaptation. Novel

alleles arise naturally in populations through mutation, but the likelihood of such a mutation
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Fig 4. Simulated spatial spread of adaptive allele in different regions over 100 years. Colored dots represent individual locations,

and black polygons represent national park boundaries. Color gradient reflects proportion of MC replicates in which adaptive allele is

present (�1 copy) in each individual location at year 100 for each region and each scenario, assuming strong selection and medium

dispersal threshold.

https://doi.org/10.1371/journal.pone.0176960.g004
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giving rise to regional adaptation to climate change or some other stressor is probably low

because (1) mutation rates are generally small, so novel alleles should arise infrequently [82],

especially in large mammals with long generation times; (2) most mutations are selectively

neutral or deleterious [83]; and (3) even those mutations that are favored by selection are often

lost through genetic drift [84], particularly in small populations or metapopulations with high

turnover rates (e.g., bighorn sheep in patchier landscapes). Therefore, a more likely source of

novel alleles is the intentional translocation of one or more individuals from another region

that are known to possess favorable traits that could improve survival or reproduction in the

target area; for instance, individuals adapted to hotter, drier conditions in a different part of a

species’ range, or those found to have disease-resistant genotypes, could be translocated. In

contrast, the pre-existing allele scenario presupposes that standing genetic variation can pro-

vide the source material for adaptation; that is, alleles that exist at low frequency in the popula-

tion and are maintained by a balance of recurrent mutation, selection, and drift become more

favorable as biotic or abiotic environmental conditions change [85]. Standing genetic variation

should lead to faster evolution than is possible with novel mutations, as well as fixation of

more alleles with smaller effect and spread of more recessive alleles [85]; recent case studies

(e.g., [86]) have demonstrated that standing genetic variation can facilitate rapid adaptation to

novel conditions. We initialized pre-existing adaptive alleles randomly across each region in

our simulations, but it may be more realistic to think of clinal variation associated with an

environmental gradient (e.g., temperature or precipitation), or variation that is distributed

unevenly across populations due to differences in connectivity or population size.

We limited our simulations to 100 years because we sought to explore adaptive changes

occurring on a temporal scale relevant to conservation and management. Previous research in

our study system showed that the effects of barrier construction changed genetic population

structure in fewer than 50 years [14]. A brief investigation of changes in allele frequency over a

longer time frame (1,000 years) suggested that the patterns that begin emerging by year 100

continue to manifest over longer time periods, and that the shorter simulations appear to cap-

ture the differences in trends that lead toward different asymptotic allele frequencies (S3 Fig).

However, simulations over longer time frames may reveal additional insights into landscape

effects on patterns of adaptive variation.

We explored a very simplistic selection model in which fitness was dependent upon an indi-

vidual’s genotype at a single locus exhibiting additive dominance. However, most quantitative

traits are determined by multiple genes [87, 88], and fitness may depend on non-additive

effects of alleles at multiple loci (i.e., epistatic effects; [89]). In addition, we assumed that the

adaptive allele in our simulations was universally favored, independent of the environmental

characteristics experienced by each individual (i.e., flat selection surfaces). This may be appro-

priate for some types of adaptive variation (e.g., genes linked with pathogen resistance), but

many genes control traits that are directly linked to environmental characteristics (e.g., ther-

mal tolerance limits), and selection will not act in a spatially homogeneous manner if the land-

scape is heterogeneous with respect to the environmental characteristic of interest. Simulation

studies with more realistic selection models will be necessary to fully understand how differ-

ences among landscapes contribute to the spatial distribution of adaptive genetic variation.

Nevertheless, we have demonstrated an approach that can serve as a starting point for future

work incorporating greater ecological and evolutionary complexity and realism.

Implications for conservation and management

The results of our resistance modeling have important implications for management of con-

nectivity among desert bighorn sheep populations. Beyond the simple distance between
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individuals, slope and major dispersal barriers (highways and large waterways) were the pri-

mary determinants of landscape connectivity. From a conservation perspective, this may be

encouraging because the slope of terrain should be negligibly influenced by climate change or

anthropogenic development, and barriers to bighorn sheep dispersal can often be mitigated

through construction of crossing structures (e.g., [90]). NDVI and distance to water were also

included in one regional multivariate model and may be more strongly linked to climate

change, as forecasted increases in aridity in the southwest U.S. could result in loss of surface

water sources and reduction in forage quantity or quality; however, these variables explained a

much smaller proportion of the variation in inter-individual genetic distance than did slope

and barriers. It is possible that the effects of these variables on gene flow could increase in the

future as climatic conditions change, particularly if threshold values not currently observed in

our study regions are exceeded.

Our gene flow simulations suggested that the spread of adaptive genetic variation is likely

to occur slowly for desert bighorn sheep, even in places where connectivity has not been com-

promised and natural selection strongly favors an adaptive allele. In patchy systems like the

MOJA region (and to a lesser extent, the DEVA region) where many populations are small,

genetic drift can overwhelm selection [91, 92]. The spread of adaptive variation was especially

slow for the novel allele scenario, where even an allele that was strongly favored by selection

and already present throughout a region at low frequency took 25–50 years to noticeably

increase in frequency. Increase in fA was considerably faster for the pre-existing allele scenario,

but even after 50 years of strong selection, fA remained below 0.2 in all regions. Furthermore,

this was probably optimistic because we initialized the pre-existing allele scenario assuming

that the adaptive allele was already distributed across the entire region and present in all popu-

lations, which is unlikely to be true in real-life situations. These results highlight the need to

maintain standing genetic diversity through conservation measures that promote stable, well

connected populations. The GRCA region may be particularly important in this regard

because of its large population size and continuously distributed habitat, which could allow for

both the maintenance of pre-existing diversity and the rapid spread of adaptive alleles.

Using equal movement thresholds for males and females was necessary to achieve stable

population dynamics in our simulations, but was not biologically realistic because bighorn

populations tend to exhibit sex-biased dispersal [47]. Our estimated distance thresholds were

based on observed relationships between cost distance and genetic distance, and likely re-

flected dispersal (and subsequent gene flow) of males over longer distances. Using equal dis-

tance thresholds for the sexes may therefore have led to unrealistically long dispersal events by

females relative to males in our simulations. However, we believe this discrepancy between

simulated and real-life movement behavior had limited effect on our main conclusions be-

cause any resulting biases would have applied equally to the three study regions, and we also

explored the sensitivity of our results to changes in dispersal threshold. We observed generally

slow rates of adaptive allele spread in our simulations, and with shorter female movements, the

rate of spread could be even slower.

The slow pace of selection is partly a reflection of the relatively long generation time of big-

horn sheep; the 100-year period of our simulations may seem long from a wildlife conservation

and management perspective, but is exceedingly short from an evolutionary perspective, rep-

resenting fewer than 20 bighorn sheep generations. This has two important ramifications.

First, relying on existing genetic variation and natural gene flow to promote adaptation to cli-

mate change by desert bighorn sheep may not be a realistic conservation option given the

rapid forecasted rate of change. Second, if the introduction of novel adaptive alleles to a region

via translocation is desired, in may be necessary to target multiple locations, particularly in
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areas such as MOJA and DEVA with distinct subpopulations, to achieve sufficient regional

spread within a time frame relevant to conservation.

Our genetic simulations assumed that habitat configuration did not change during the sim-

ulation period. Because bighorn sheep habitat is strongly limited by topography and surface

water availability, major geographic shifts in response to climate change are unlikely. However,

if forage quality declines or water sources dry up due to increasingly arid climate conditions,

currently occupied habitat could become unsuitable in some areas. Future research could

explore how projected climatic changes are likely to affect habitat configuration and the poten-

tial for adaptive allele spread in the study regions.

Applications

The framework we have presented here–combining optimization of resistance models and

genetic simulations–could be applied by conservationists and managers in a number of ways

to help species cope with climate change and other threats to population persistence. It could

be used to identify the most effective locations in a region to translocate individuals possessing

favorable genotypes with respect to traits such as thermal tolerance or disease resistance, with

the goal of maximizing the subsequent spread of adaptive alleles. This approach should not

necessarily be limited to large mammals, or even animals; for instance, outplanting resistant

tree stock has become a standard practice for restoring forests affected by introduced pests and

pathogens [93], and our approach could potentially improve the efficiency of outplanting pro-

grams that can target only a limited number of areas. As our understanding of climate-linked

genetic variation improves through advances in population genetics methods and technology

[94], so too should our ability to accurately model and predict the spread of adaptive diversity.
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