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Abstract

This study investigates quality prediction methods for synthesized speech using EEG.

Training a predictive model using EEG is challenging due to a small number of training trials,

a low signal-to-noise ratio, and a high correlation among independent variables. When a

predictive model is trained with a machine learning algorithm, the features extracted from

multi-channel EEG signals are usually organized as a vector and their structures are ignored

even though they are highly structured signals. This study predicts the subjective rating

scores of synthesized speeches, including their overall impression, valence, and arousal, by

creating tensor structured features instead of vectorized ones to exploit the structure of the

features. We extracted various features to construct a tensor feature that maintained their

structure. Vectorized and tensorial features were used to predict the rating scales, and the

experimental result showed that prediction with tensorial features achieved the better pre-

dictive performance. Among the features, the alpha and beta bands are particularly more

effective for predictions than other features, which agrees with previous neurophysiological

studies.

Introduction

Text-to-Speech (TTS) systems, which convert a written text into speech, and are becoming

more widely implemented in mobile phones, car navigation systems, and other consumer elec-

tronics. Such systems play a critical role in many applications because speech is the most fun-

damental and easiest communication tool for human beings. Therefore, synthesized speeches

must sound natural for good machine-to-human communications.

The research of TTS systems needs reasonable criteria that evaluate the qualities of synthe-

sized speeches. Several current evaluation methods have their own advantages and disadvan-

tages: (1) subjective ratings [1–3], (2) analyzing a speech signal itself [4–6], and (3) measuring

the physiological responses of listeners to speech [7–14].

In the first approach, the two most common aspects for quality judgment are naturalness

and intelligibility. Naturalness describes how close synthesized speech is to human speech, and

intelligibility reflects how well the speech content can be heard. The former is usually mea-

sured by a mean opinion score (MOS) test [1], and the latter is gauged by semantically unpre-

dictable sentences (SUS) [3]. In addition, valence and arousal are often used to evaluate the
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subjective impressions of speech [11, 13, 15, 16] and to model emotions [17–20]. Valence

reflects a positive or a negative emotion. Arousal reflects the degree of intensity or activation.

In a MOS test, subjects listen to speech and rate its relative perceived quality on some kind of a

scale, for example, “excellent,” “good,” “fair,” “poor,” “bad.” Then the scores are averaged

across subjects. This is well established method for which references on how to perform it are

available [2], making it the only standard way to evaluate the naturalness quality of synthesized

speech. However, their appropriateness has not been fully proven because high inter- and

intra-subject inconsistencies are often observed in the ratings, resulting in poor reproductivity

[21].

In the second approach, speech quality is automatically evaluated at its signal level by soft-

ware that inputs a speech file and outputs the estimated speech quality. Advantages of these

methods include complete reproductivity and less time consumption after such software is

developed. However, appropriateness is difficult to prove because the exact relationship

between the acoustic features and the perceived quality of speech by a listener is not well

understood [21]. In fact, speech quality must be evaluated not only physically but also psycho-

logically because it is commonly defined as an assessment result within which a listener com-

pares his/her perceptions with expectations [22, 23].

Last, quality estimation methods are emerging that measure the physiological responses of

a listener [24]. Even though these methods have not been established yet, they are worth inves-

tigating because physiological signals can be recorded automatically and continuously to pro-

vide insight about listener’s cognitive states without interruptions caused by directly asking

him/her to answer questions. Among existing non-invasive physiological response measures,

electroencephalography (EEG) has especially great potential to estimate a listener’s perceived

speech qualities for the following reasons. EEGs can be recorded at a higher temporal resolu-

tion, e.g., a millisecond range, than hemodynamic measures, including functional magnetic

resonance imaging (fMRI) and functional near-infrared spectroscopy (fNIRS), both of which

analyze the changes in blood flow that inherently take a few seconds until a brain response can

be recorded. Temporal resolution is important to evaluate speech quality since the temporal

structure of speech largely affects its perceived quality. In addition, an EEG recording equip-

ment is relatively small, less expensive than other brain recording equipments, and can be

even wireless, which allows us to use it in daily environments, whereas fMRI and magnetoen-

cephalography (MEG) can only be used in experimental rooms because of the lack of portab-

ity. Measuring physiological responses to speech in daily environments is critical because

speech is everywhere. Despite the above advantages, the main disadvantage of physiological

measures is the difficulty of data gathering. The amount of data that can be collected from a

subject is limited for practical and ethical reasons. Conducting experiments is usually time-

consuming and labor-intensive. In addition, physiological data are generally noisy and easily

contaminated by artifacts. Furthermore, multi-channel EEG signals are usually highly corre-

lated to each other, which makes the features extracted from them less informative compared

to the height of their dimensions. These aspects of EEG (limited amount of data, noise, and

high correlation and dimension) complicate training a predictive model with EEG data and

require a sophisticated dimension reduction or regularization techniques [25].

Existing researches have analyzed EEG responses to speech stimuli using event-related

potentials (ERP), which are time-locked responses to external or internal events in terms of a

voltage change that are usually visualized and quantified after synchronous averaging of multi-

ple epochs [7–9]. Due to its definition, measuring ERP need the instantaneous time-locking

points at which an event occurs, complicating the use of ERP if stimuli onsets are gradual or

unclear [26]. Therefore, ERP is not suitable for our purpose of the predicting perceived quality

of speech whose length exceeds a second because it is usually unclear which time points affect
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a listener’s perceived quality. Other research used power spectral density [14, 27] and their dif-

ference between EEG channels [11, 13] at multiple frequency bands. Neuroscience studies

reported that EEG spectral changes in distinct regions and between hemispheres are related to

emotions [28–31]. Other studies used EEG phase synchronization between EEG channel pairs

and found a correlation to emotions [32, 33].

The purpose of this research is to predict the perceived qualities of synthesized speeches

using only EEG. Interest is growing in the development of a machine learning algorithm that

uses an input/output data structure as tensor formats [34–36]. Such tensor structured features

were investigated in this study because EEG signals can have structures in time, frequency,

space, experimental condition, and other modalities.

Materials

We used the PhySyQX data set [10], which consists of speech files, their subjective rating

scores from 21 subjects, and EEG signals from the same subjects recorded while they listened

to the speech. The data recording protocol was approved by the INRS Research Ethics Office,

and participants gave informed consent for their participation and to make their data anony-

mous and freely available online. The details of the data set and the experimental procedures

are available in [10]. We obtained it by an e-mail request.

Speech stimuli

The speech stimuli presented to the subjects in the data set consist of speech collected from

four humans and seven commercially available TTS systems. From each human and each TTS

system, four English sentences were collected, whose durations ranged from 13 to 22 seconds.

The 44 human and synthesized speeches were presented to each subject in random order.

Experimental procedure

The experiment’s timeline is shown in Fig 1. A 15-second rest period was provided before each

stimulus presentation. It is followed by a subjective rating period during which the subjects

evaluated the speech to which they had just listened. The subjective rating scales used in this

study are shown in Table 1 and include overall impression (MOS), valence (VAL), and arousal

(ARL). MOS was evaluated with a 5-scale rating and the others with a 9-scale using self-assess-

ment manikin [37].

EEG recording and preprocess. EEG data were recorded throughout the experiment

with 64 scalp channels. The sampling rate was 512 Hz, which was down-sampled to 256 Hz.

All the channels were placed on scalp according to the modified 10/20 system [38]. Some chan-

nels were removed from further analysis because they were noisy. A band-pass filter was

Fig 1. Timeline of EEG and subjective evaluation data recording experiment.

https://doi.org/10.1371/journal.pone.0193521.g001
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applied to all the data between 0.5–50 Hz and applied an independent component analysis

based semi-artifact removal technique using the ADJUST toolbox [39]. After these preprocess-

ing, the EEG signal of each subject was cut into 44 epochs corresponding to the stimuli listen-

ing periods.

Methods

Feature extraction

All features were extracted at five frequency bands from a channel or a channel pair. The fre-

quency bands include delta (δ: 1–4 Hz), theta (θ: 4–8 Hz), alpha (α: 8–12 Hz), beta (β: 12–30

Hz), and gamma (γ: 30–45 Hz). Let us denote the Fourier transformation at the frequency of fk
of the n-th trial recorded by the m-th channel by xn,m(fk). An estimator of the power spectrum

density and a phase spectrum denoted by pk and hk can be calculated using the periodogram

method as follows:

pn;mðfkÞ ¼
1

T
jxn;mðfkÞj

2 ð1Þ

hn;mðfkÞ ¼ angleðxn;mðfkÞÞ; ð2Þ

where T is the number of time samples within a trial. Then, we averaged the power spectrum

density over the frequency bins within the range of each frequency band to define channel-

based features PSDn(m, f) as follows:

PSDnðm; f Þ ¼
1

jDf j

X

fk2Df

pn;mðfkÞ; ð3Þ

where Df is the index set of the frequency bins included in the range of the f-th frequency band

and |Df| is the number of the elements in Df. The channel-pair-based features are also defined

using the averaged power spectrum density and the phase spectrum as follows:

PWDnðm1;m2; f Þ ¼ PSDðm1; f Þ � PSDnðm2; f Þ ð4Þ

PHDnðm1;m2; f Þ ¼
1

jDf j

X

fk2Df

hn;m1
ðfkÞ � hn;m2

ðfkÞ: ð5Þ

If M EEG channels and F frequency bands are used (F = 5 in this study), I = F(M(M − 1) +

M) features are calculated. The feature matrix X can be expressed as:

X ¼ xð1Þ; xð2Þ; . . . ; xðNÞð Þ
>
2 RN�I; ð6Þ

where N is the number of training trials and x(n) is a feature vector of the n-th trial and has all

the features PSDn, PWDn, and PHDn.

Table 1. Subjective rating scales.

Rating Scale Abbreviation Description

Overall Impression MOS 1 (Bad) to 5 (Excellent)

Valence VAL 1 (Negative) to 9(Positive)

Arousal ARL 1 (Unexcited) to 9 (Excited)

https://doi.org/10.1371/journal.pone.0193521.t001
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To exploit structures of the features, we organized the features as a tensor X 2 RN�M�M�F as

follows:

Xðn;m1;m2; f Þ ¼

PWDnðm1; m2; f Þ ðm1 > m2Þ

PHDnðm1; m2; f Þ ðm1 < m2Þ

PSDnðm1; f Þ ðm1 ¼ m2Þ

8
>>><

>>>:

ð7Þ

The feature matrix and tensor are depicted in Fig 2.

Regression analysis

Higher order partial least square (HOPLS) [34] and standard partial least square (PLS) [40, 41]

simultaneously perform dimension reduction and regression, which were used in this study.

The former is a natural extension of the latter so that tensor-format features can be used.

Let us denote the response matrix by Y that has all the response variables of all training tri-

als:

Y ¼ ðyð1Þ; yð2Þ; . . . ; yðNÞÞ> 2 RN�J ; ð8Þ

where y(n) is the J = 3 dimensional response vector of the n-th trial. All response variables

were normalized to have zero mean and unit variance.

Fig 2. Schematic image of vectorized and tensorial features. (a) Vectorized feature is included in a matrix whose first

and second modes are trials and features. PWD, PHD, and PSD at each frequency band are lined as a vector in each

trial. (b) Tensor structured dependent variable with four modes: trials, channel-1, channel-2, and frequency bands.

Tensor elements with a larger channel-1 index than channel-2 are PWD, and a smaller channel-1 index than channel-2

are PHD, and identical channel indexes are PSD.

https://doi.org/10.1371/journal.pone.0193521.g002
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PLS performs a simultaneous decomposition of X and Y to find common latent variables

tr 2 R
N as:

X ¼
XR1

r¼1

trp
>

r þ E ð9Þ

Y ¼
XR1

r¼1

trq
>

r þ F; ð10Þ

where E and F are the residual matrices, and R1 is called the number of the components.

On the other hand, HOPLS can be similarly formulated as the problem to find latent vari-

ables as follows:

X ¼
XR2

r¼1

Gr�1tr�2Pð1Þr �3Pð2Þr �4Pð3Þr þ E ð11Þ

Gr 2 R
1�M�M�F; PðkÞr 2

RM�Lk ðk ¼ 1; 2Þ

RF�Lk ðk ¼ 3Þ

8
<

:
ð12Þ

Y ¼
XR2

r¼1

trq
>

r þ V; ð13Þ

where Gr is called the core tensor, E and V are the residuals, R2 is the number of the compo-

nents, and ×k denotes the k-mode product [42]. PðnÞr is called the loading matrix of the r-th

component, and Lk is called the number of the k-mode loadings.

If data are plentiful, which is rare in EEG studies, the best approach for training and evalu-

ating the performance of a predictive model is to randomly divide the dataset into three parts:

training, validation, and test sets, which are respectively used to train a model, tune hyper-

parameters or select a model, and evaluate the generalization error [43]. However, since the

amount of data in this study is too small to exploit such an ideal protocol, we instead used

leave-one-out cross-validation for each subject. The hyper-parameter R1 of PLS varied from 1

to 43, loadings of the channel-1 L1 and the channel-2 L2 ranged from 1 to 7. The loading gs of

the frequency band L3 and the number of components R2 of HOPLS ranged from 1 to 5. The

result of the models that achieved the best performance was reported in Results.

Evaluation metrics

Root mean squared error (RMSE) was used to quantify the predictability of the regression

models for each subject, which are formulated as:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1

ðŷ i � yiÞ
2

s

; ð14Þ

where N is the number of test samples, ŷ i is the predicted value for the i-th test data, and yi is

the actual value.

Quality prediction of synthesized speech with EEG

PLOS ONE | https://doi.org/10.1371/journal.pone.0193521 June 14, 2018 6 / 13

https://doi.org/10.1371/journal.pone.0193521


Results

Table 2 summarizes RMSE, and the numbers of latent factors identified by PLS and HOPLS,

respectively. Predictions with tensorial features generally made smaller errors than the vector-

ized ones for all the rating scales. Fig 3 reports the one hundred features that contributed to

the prediction the most greatly, where feature contributions were calculated by taking the

Table 2. Prediction results and the number of latent factors.

subject RMSE (vector) RMSE (tensor) R1 L1 L2 L3 R2

MOS VAL ARL MOS VAL ARL

1 1.091 1.090 1.086 0.961 0.957 0.962 1 3 4 5 3

2 1.042 1.057 1.058 0.987 0.958 0.975 1 4 4 4 3

3 0.997 1.018 1.020 0.907 0.936 0.931 2 7 3 4 2

4 1.148 1.110 1.043 0.949 0.944 0.994 2 7 5 2 2

5 1.187 1.225 1.229 1.082 1.177 1.150 1 6 7 4 5

6 1.260 1.292 1.151 1.000 2.176 1.941 4 7 4 4 4

7 0.979 0.981 1.007 0.869 0.935 1.167 1 2 3 5 5

8 1.155 1.186 1.125 0.970 0.989 1.017 1 1 5 1 1

9 1.215 1.221 1.160 0.996 0.994 1.023 2 7 7 1 2

10 1.111 1.112 1.022 0.957 0.985 1.144 1 5 4 3 4

11 1.125 1.243 1.0.19 1.013 1.047 0.920 3 7 7 1 1

12 0.996 1.193 1.177 0.641 0.912 0.680 29 4 2 3 4

13 1.258 1.227 1.234 1.051 1.050 1.035 3 4 2 5 4

14 0.991 1.102 1.040 0.940 0.980 0.929 12 7 1 2 3

15 1.022 0.989 0.969 0.965 0.927 0.934 1 7 3 2 5

16 1.196 1.206 1.087 1.058 1.047 1.027 4 7 6 2 5

17 1.021 1.083 1.087 0.884 0.886 0.924 3 4 7 4 3

18 1.055 1.027 1.092 0.915 0.920 0.969 2 1 3 4 4

19 1.130 1.142 1.126 1.021 1.081 1.020 1 5 1 5 4

20 0.995 1.028 0.944 0.887 0.990 1.057 1 4 5 2 5

21 1.121 1.157 1.103 0.900 0.969 0.997 1 1 1 4 2

https://doi.org/10.1371/journal.pone.0193521.t002

Fig 3. Contribution of features. Feature contributions were calculated by taking magnitude of their regression coefficients. (Left)

Numbers of PWD, PHD, and PSD among the one hundred features that most greatly contributed to the prediction of each rating

scale among all features. (Right) Number of features of each frequency band among the one hundred features that most greatly

contributed to each rating scale.

https://doi.org/10.1371/journal.pone.0193521.g003
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magnitude of the regression coefficients and PSD, PWD, and PHD are separately shown. PSD

rarely appeared in the list of the top one hundred features list for all of the rating scales.

Among the five frequency bands, the alpha band contributed the most to the MOS prediction,

followed by the beta band. For the VAL and the ARL predictions, the beta band contributed

the most, followed by the alpha band. The top ten channel pairs, which contributed the most

to the MOS prediction extracted from subjects 1, 2, 3, and 4, are shown in Fig 4.

Fig 4. Contribution of channel pairs. Top ten channel pairs that contributed the most to MOS predictions of subjects 1, 2, 3, and 4. This figure was made by

modifying the original one, which is distributed under the public domain dedication [44].

https://doi.org/10.1371/journal.pone.0193521.g004
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Discussion

Channel-pair-based features (PWD and PHD) contributed more to the predictions than chan-

nel-based ones (PSD), which agrees with a previous study [31] and suggests the importance of

considering scalp EEG dynamics between brain regions, and that graph theory based features

or functional connectivity analysis can be effective [45, 46]. The importance of spectral differ-

ences in caudality (DCAU) between the anterior and posterior [12, 47] or the front-posterior

brain regions [31] as well as the lateral (left-right) spectral difference (DLAT) have been docu-

mented [28, 30]. In this study, both of DLAT and DCAU contributed to the predictions (Fig 4)

although their effectiveness was dependent on the subjects.

Quality prediction models were independently trained for each subject in this study because

emotion regulation is reportedly dependent on individuals [48]. The commonality of the chan-

nels/channel pairs, which greatly contributed to the predictions, was actually rather small (Fig

4). Therefore, creating subject-independent features is an interesting future work. However,

note that the alpha and beta bands commonly contributed to the predictions, whereas the

effective channels/channel pairs differed depending on the subjects. The alpha and beta bands

contributed more largely to the predictions than the other frequency bands, which is in line

with previous neurophysiological studies. The relationship between alpha band asymmetry

and the withdrawal or disengagement from a stimulus or negative valence has been well docu-

mented in response to a variety of stimuli, including pictures [49, 50], music [31, 47, 51], mov-

ies [52], and speech [11, 13]. The beta band, which contributed the most to the ARL

predictions, is reportedly associated with arousal and emotional experiences [53, 54].

Gupta et al. [13] predicted MOS values using the same data set that we used in this study.

Their study used a simple linear regression model with not only EEG but also speech features.

They reported the RMSE of their model was 0.117, which is much lower than our model, and

suggests that speech features are much more informative than EEG features to predict subjec-

tive quality ratings.

Although we predicted the response values of MOS, VAL, and ARL, other perpetual dimen-

sions were also proposed recently to model emotions or perceived quality-of-experiences [55,

56], which should be investigated in future research.

Neither previous work nor our current study advocate that physiological assessment meth-

ods of speech quality should replace subjective rating methods or signal analysis methods

because, as stated in Introduction, each method has its own advantages and disadvantages and

they can complement each other.

Several open questions remain. First, features were extracted and constructed as tensors as

described in Feature Extraction and Regression Analysis, but other features and construction

ways are also possible. For example, if time-frequency analysis is employed, times frames can

be treated as one of the tensor modes. Second, this study analyzed the overall quality of each

speech stimulus longer than ten seconds. However, parts of speech can affect much more

largely its overall perceived quality. Therefore, analysis methods to specify such parts need to

be studied.

Conclusion

This study predicted the subjective quality ratings of synthesized speech solely based on EEG.

We created vectorized and tensorial features for the regression that include channel-based and

channel-pair-based features at multiple frequency bands. The experimental result showed that

tensorial features more effectively predicted the subjective ratings than the other, and the

trained predictive models were neurophysiologically plausible.
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9. Antons J N, Blankertz B, Curio G, Möller S, Porbadnigk A K, Schleicher R. Subjective Listening Tests

and Neural Correlates of Speech Degradation in Case of Signal-Correlated Noise. Audio Engineering

Society Convention 129. 2010.

10. Gupta R, Banville H J, Falk T H. PhySyQX: A database for physiological evaluation of synthesised

speech quality-of-experience. Proceedings of IEEE Workshop on Applications of Signal Processing to

Audio and Acoustics. 2015;1–5.

11. Gupta R, Laghari K, Banville H, Falk T. H. Using affective brain-computer interfaces to characterize

human influential factors for speech quality-of-experience perception modeling. Human-centric Com-

puting and Information Sciences. 2016; 6(5).

12. Sarlo M, Buodo G, Poli S, Palomba D. Changes in EEG alpha power to different disgust elicitors: the

specificity of mutilations. Neuroscience Letters. 2005; 382(3): 291–296. https://doi.org/10.1016/j.neulet.

2005.03.037 PMID: 15925105

Quality prediction of synthesized speech with EEG

PLOS ONE | https://doi.org/10.1371/journal.pone.0193521 June 14, 2018 10 / 13

https://doi.org/10.1016/0167-6393(96)00026-X
https://doi.org/10.1016/j.specom.2014.06.003
https://doi.org/10.1016/j.specom.2014.06.003
https://doi.org/10.1109/JSTSP.2012.2191936
https://doi.org/10.1016/j.neulet.2005.03.037
https://doi.org/10.1016/j.neulet.2005.03.037
http://www.ncbi.nlm.nih.gov/pubmed/15925105
https://doi.org/10.1371/journal.pone.0193521
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