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alterations of the gut
microbiome in individuals with
different serum uric acid levels
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Background:We aimed to assess the differences in the gut microbiome among

participants with different uric acid levels (hyperuricemia [HUA] patients, low

serum uric acid [LSU] patients, and controls with normal levels) and to develop

a model to predict HUA based on microbial biomarkers.

Methods: We sequenced the V3-V4 variable region of the 16S rDNA gene in

168 fecal samples from HUA patients (n=50), LSU patients (n=61), and controls

(n=57). We then analyzed the differences in the gut microbiome between these

groups. To identify gut microbial biomarkers, the 107 HUA patients and

controls were randomly divided (2:1) into development and validation groups

and 10-fold cross-validation of a random forest model was performed. We

then established three diagnostic models: a clinical model, microbial biomarker

model, and combined model.

Results: The gut microbial a diversity, in terms of the Shannon and Simpson

indices, was decreased in LSU and HUA patients compared to controls, but only

the decreases in the HUA group were significant (P=0.0029 and P=0.013,

respectively). The phylum Proteobacteria (P<0.001) and genus Bacteroides

(P=0.02) were significantly increased in HUA patients compared to controls,

while the genus Ruminococcaceae_Ruminococcus was decreased (P=0.02).

Twelve microbial biomarkers were identified. The area under the curve (AUC)

for these biomarkers in the development group was 84.9% (P<0.001). Notably,
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an AUC of 89.1% (P<0.001) was achieved by combining the microbial

biomarkers and clinical factors.

Conclusions: The combinedmodel is a reliable tool for predicting HUA and could

be used to assist in the clinical evaluation of patients and prevention of HUA.
KEYWORDS

gut microbiome, uric acid, hyperuricemia, diagnostic model, nomogram,
Introduction

Uric acid is the end product of purine metabolism. The body

excretes uric acid in two main ways: approximately 70% is

excreted in urine via the kidneys and approximately 30% is

transported by intestinal epithelial cells to the lumen for direct

excretion or decomposition by gut microbes (1). Generally, uric

acid metabolism is in a dynamic balance, but with changes in

lifestyle, along with the influence of genetic factors, serum uric

acid levels can become too high or too low.

Hyperuricemia (HUA) is diagnosed if the fasting blood uric

acid level is >7 mg/dL in men and >6 mg/dL in women (2).

Research has confirmed that HUA can cause kidney,

cardiovascular, liver, and soft tissue damage (3). The main

mechanism involves activating the oxidative stress response

and promoting the release of inflammatory factors (4).

Accordingly, the incidences of dyslipidemia, type 2 diabetes,

and cardiovascular disease are higher in HUA patients than in

healthy subjects (5–8). HUA is also a prerequisite for gout;

continuously elevated serum uric acid can cause sodium urate

crystal precipitation due to oversaturated urate, leading to gout.

The cumulative incidence of gout increases with serum uric acid

levels (9, 10).

Furthermore, low serum uric acid (LSU) is often

overlooked. Some studies have shown that LSU (male <3.5

mg/dl and female <2.5 mg/dl) is associated with all-cause

mortality and gender-specific cardiovascular mortality (11),

but the overall relationship between cardiovascular disease risk

and mortality are not clear. The harm of LSU may be related to

the antioxidant properties of uric acid (11, 12).

The gut microbiota is a huge microbial population that

colonizes the intestine and is symbiotic with the host. It plays an

important role in functional metabolism and immune regulation.

Many studies have found that it is related to uric acid metabolism

disorders. Shao et al. (13) found that the diversity of the intestinal

microbiota decreased in patients with gout, with increases in the

opportunistic pathogens Bacteroides spp., Porphyromonadaceae,

Rhodococcus, Erysipelatoclostridium spp., and Anaerolineaceae and

decreases in Lachnospiraceae and Ruminococcaceae. In contrast,
02
other gut microbes are capable of reducing intestinal uric acid

production and/or increasing uric acid excretion. For example,

Lactobacillus gasseri PA3 reduces exogenous purine absorption,

including inosine 5-phosphate (IMP), inosine, hypoxanthine,

guanosine 5-phosphate (GMP), and guanine nucleoside (14).

Furthermore, Lactobacillus DM9218 isolated from pickles can

degrade inosine and guanosine (two critical intermediates in

purine metabolism), reduce the production of uric acid

precursors, and effectively reduce serum uric acid levels (15). In

summary, in the intestinal tract, which is an important site for uric

acid excretion, the microbiome plays an indispensable role. It may

be feasible to use the gut microbiome as a predictor of uric acid

metabolic disorders.

The utility of using traditional clinical factors for predicting

HUA, to better evaluate HUA occurrence and development, is

limited. In current clinical practice, the serum uric acid level is

still used to diagnose HUA, but the occurrence and development

of HUA cannot be easily pre-empted. Therefore, it is important

to establish a new diagnostic model involving both traditional

clinical factors and gut microbial biomarkers. Controlling daily

purine intake is an effective means to prevent HUA, but this is

often disregarded at present; if cases of HUA could be effectively

predicted, controlling daily purine intake may be a highly

useful intervention.

To establish a new diagnostic model, we aimed to analyze the

gut microbiota in participants with different uric acid levels by

high-throughput sequencing. Using gut microbial biomarkers

and clinical factors, we developed a novel diagnostic model for

HUA and used decision curve analysis (DCA) to assess its

clinical value.
Methods

Study participants

The study participants were aged 20–60 years old and were

recruited from Balikun County Hospital, Xinjiang Province of

China, from October 2019 to August 2021. All participants
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underwent physical examination in Balikun County Hospital.

Height, weight, body mass index (BMI), blood pressure (BP),

genetic and disease history, and drug use history were recorded.

The study cohort was divided into the following three groups

according to mean serum uric acid levels (measured on 2 days):

LSU group (males: <3.5 mg/dL; females: <2.5 mg/dL; n=61) (11),

control group (n=57), and HUA group (males: >7 mg/dL;

females: >6 mg/dL; n=50) (2).The exclusion criteria were

gastrointestinal diseases, tumors, hematological diseases, severe

liver or kidney dysfunction, and the use of antibiotics or

microecological regulators that affect the gut microbiota within

1 month of the study.

The study was approved by the Ethics Committee of the First

Affiliated Hospital of Xinjiang Medical University (Xinjiang,

China). The sampling and other methods were carried out

according to the approved guidelines. Each participant was

informed about the study before study commencement, and

they signed an informed consent form.
Fecal sample collection, DNA extraction,
and sequencing

We provided each participant with a sterile container for

stool sample collection and training on sample collection. After

stool sample collection, 0.2 g fresh fecal sample from each

participant was quickly placed into five sterile centrifuge tubes

and rapidly transported to the laboratory for freezing at -80°C.

The bacterial DNA was extracted from the samples using the

bead-beating method. The quality of DNA was assessed using

0.8% agarose gel electrophoresis (16). The DNA was used as the

template to amplify the V3-V4 region of the bacterial 16S rDNA

gene. The DNA extraction and Illumina NovaSeq sequencing

were performed by Shanghai Pisenno Biotechnology Co., Ltd.

(Shanghai, China; http://www.personalbio.cn).
Gut microbiome analyses

Operational taxonomic unit (OTU) clustering analysis was

performed on all sequences. The Ribosomal Database Project

(RDP) Bayesian classifier was used to classify the representative

OTU sequences at the 97% similarity level. The community

composition of each sample was assessed according to various

classification levels (phylum, class, order, family, and genus),

and the community composition was statistically compared

between groups at each classification level. We used the

heatmap R package to present clustering results at phylum and

genus levels in heatmaps.

a diversity analyses were used to assess the abundance and

diversity (Shannon and Simpson indices) of microbial

communities in the three uric acid-related groups. Using

principal coordinates analysis (PCoA) of UniFrac distances
Frontiers in Endocrinology 03
and nonparametric analysis of similarities (ANOSIM), we

assessed the similarity between the three uric acid-related

groups. Additionally, we used linear discriminant analysis

(LDA) effect size (LEfSe) to determine the specific gut

microbes related to HUA.
Laboratory assessment

Peripheral venous blood samples of all participants were

obtained after 12 h of fasting. Laboratory data, including serum

biochemical indexes, liver function indexes, renal function

indexes, and lipid results, were examined in the Balikun

County Hospital as described previously.
Statistical analysis

We established three diagnostic models: a clinical model,

microbial biomarker model, and combined model. To establish

the clinical model, we used univariate logistic regression analyses

to identify significant clinical factors for predicting HUA

followed by a receiver operating characteristic (ROC) curve

analysis of each factor to select the most valuable factors for

predicting HUA, based on the area under the ROC curve (AUC)

values. Next, using the significant variables with AUC value >0.5,

we used least absolute shrinkage and selection operator (LASSO)

regression to determine the independent risk factors for HUA.

The available clinical factors included blood pressure, blood urea

nitrogen (BUN), creatinine, blood glucose, alanine

aminotransferase, aspartate aminotransferase, triglyceride

(TG), total cholesterol (TC), high-density lipoprotein

cholesterol (HDL-C), and low-density lipoprotein cholesterol

(LDL-C).

To establish the microbial biomarker model, we used 10-fold

cross-validation of a random forest model to ensure the

reliability of the gut biomarkers. We randomly divided (2:1

ratio) the 107 volunteers in the HUA and control groups into the

development and validation groups, and the former was used to

construct the microbial biomarker model, while the latter was

used to assess model reliability. The probability of disease (POD)

index in the HUA and control samples in the development and

validation groups was used to determine the diagnostic value of

the gut microbial biomarkers. It was defined as the ratio between

the number of decision trees that predicted “HUA” and the total

number of sampling trees (in the development or validation

group, nvotes/ntrees).

All variables from the other two models were included in the

combined model. The combined model was visualized by

constructing a nomogram using the rms R package. DCA was

used to assess the clinical value of the combined model.

Additionally, calibration curves comparing the model predictions

and actual observations were used for graphical evaluation.
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Statistical analysis was performed using SPSS software

(version 21.0; IBM Corp., Armonk, NY, USA) and R software

(version 4.0.4; R Foundation for Statistical Computing, Vienna,

Austria). The normally and non-normally distributed

continuous variables are expressed as mean ± standard

deviation (mean ± SD) and median, respectively. The

categorical variables are presented as percentages. Regarding

normally distributed continuous variables, the three uric acid-

related groups were compared using a one-way analysis of

variance (ANOVA). Differences between the HUA and control

groups were determined using t tests for normally distributed

continuous variables and Wilcoxon rank-sum test for non-

normally distributed continuous variables. Regarding

categorical variables, groups were compared using the Chi-

square test. P<0.05 was considered statistically significant.
Results

Participant characteristics

The study cohort comprised 168 Chinese adults, and it was

divided into the LSU, control, and HUA groups (Figure 1).

There were no significant differences in age, gender, or body

mass index among the three groups, but there were significant

differences in uric acid, BUN, creatinine, blood glucose, alanine

aminotransferase, TG, HDL-C, and LDL-C (Table 1). The mean
Frontiers in Endocrinology 04
BUN, creatinine, blood glucose, TG, and LDL-C were higher in

the HUA group and lower in the LSU group relative to the

control group. These results show that the level of uric acid is

associated with glucose and lipid metabolism, and HUA patients

may be more prone to glucose and lipid metabolism disorders

and related diseases. Therefore, predicting HUA occurrence and

development should involve these clinical biochemical factors, to

ensure a comprehensive evaluation.
Alterations in the gut microbiome by
serum uric acid level

The Simpson and Shannon indices (representing gut

microbial a diversity) were significantly lower in the LSU and

HUA groups than in the control group, but only the decreases in

the HUA group were significant (P=0.0029 and P=0.013,

respectively, Figure 2A), indicating that alterations in serum

uric acid level were related to lower gut microbial a diversity.

In addition, based on principal coordinates analysis (PCoA)

of UniFrac distances, there were significant separations between

the HUA group and the other two groups (Figures 2B, C), but

there was no significant separation between the LSU and control

groups (Figure 2D). These results showed that the gut microbial

community structure in the HUA group was significantly altered

(Figure 2B). Furthermore, nonparametric analysis of similarities

(ANOSIM) also showed that the distribution and composition of
FIGURE 1

Flow chart of the data screening.
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gut microbial communities differed with uric acid level

(Figure 2E and Table S1).
Gut microbes in HUA

We presented the clustering results at phylum and genus

levels in heatmaps. Firmicutes, Actinobacteria, Bacteroidetes,

Proteobacteria, and Verrucomicrobia were the dominant phyla

in the HUA group (Figure 3A). Proteobacteria was significantly

increased in the HUA group compared to the control group

(P<0.001, Figure 3B). At the genus level (Figure 3C), Bacteroides

was higher in the HUA group than the control group (P=0.02,

Figure 3D), while Ruminococcaceae_Ruminococcus was lower

(P=0.04, Figure 3E).

To determine the specific gut microbes related to HUA, we

used linear discriminant analysis (LDA) effect size (LEfSe) to

screen 186 gut microbial species. Figures 4A, B show the top 50.

The phylum Bacteroidetes and its derivatives (Bacteroidia,

Bacteroidaceae, and Bacteroides), the phylum Proteobacteria

and its derivative (Gammaproteobacteria), the order

Enterobacteriales and its derivatives (Enterobacteriaceae and

Shigella), the class Erysipelotrichi and its derivatives

(Erysipelotrichales and Erysipelotrichaceae), the family

Streptococcaceae and its derivative (Streptococcus), and the

order Lactobacillales and its derivatives (Lactobacillaceae and

Lactobacillus) were higher in the HUA patients. Conversely, the

phylum Verrucomicrobia and its derivatives (Verrucomicrobiae,

Verrucomicrobiales, Verrucomicrobiaceae, and Akkermansia),

the phylum Actinobacteria and its derivatives (Coriobacteriia,

Coriobacteriales, Coriobacteriaceae, and Collinsella), and the
Frontiers in Endocrinology 05
family Ruminococcaceae and its derivative (Ruminococcus)

were lower in the HUA patients.
Microbial biomarker model for
diagnosing HUA

To develop a HUA diagnostic model using gut microbial

biomarkers, we randomly divided (2:1 ratio) 107 participants

(from the HUA and control groups) into the development and

validation groups. Subsequently, we performed a 10-fold cross-

validation of the random forest model in the development group,

and 12 gut microbial biomarkers were identified as the optimum

parameter set (Table S2). The POD index in HUA and control

samples in the development and validation groups was used to

determine the diagnostic value of the 12 gut microbial

biomarkers. The POD index was significantly increased in the

HUA samples compared to the control samples in both groups

(both P<0.001, Figures 5A, C). The POD index achieved an AUC

value of 84.9% and 82% for distinguishing between the HUA

patients and controls in the development and validation group,

respectively (Figures 5B, D). To evaluate the discriminatory

ability of the ROC curve, we computed the AUC with a 95%

CI by using 500 bootstrap resamplings. Sensitivity, specificity,

positive predictive value (PPV), negative predictive value (NPV),

positive likelihood ratio (PLR), and negative likelihood ratio

(NLR) of the stepwise model are also presented in Table 2

(which shows the clinical model and the combined model,

similarly hereinafter). This suggested that the microbial

biomarker model has a high diagnost ic value for

predicting HUA.
TABLE 1 Participant characteristics.

Variable Low serum uric acid (LSU) group Control group Hyperuricemia group X2or F P value

Age, years 46.25±9.83 47.19±9.64 49.18±8.21 1.395 0.251

Sex, male, n (%) 40(65.6) 36(63.2) 33 (66) 5.587 0.061

Body mass index 25.70±4.31 26.36±3.66 27.13±3.62 1.857 0.159

SBP (mmHg) 125.93±20.68 131.26±19.94 127.46±16.49 1.179 0.31

DBP (mmHg) 76.92±10.13 78.30±11.14 77.34±13.32 0.22 0.802

Uric acid (µmol/l) 162.13±30.62 274.69±48.93 451.43±65.81 147.1 <0.001

Blood urea nitrogen (mmol/l) 3.86±1.17 4.29±1.15 5.58±1.73 19.793 <0.001

Creatinine (µmol/l) 64.35±17.27 72.99±13.66 73.20±15.60 6.082 0.003

Blood glucose (mmol/l) 4.76±0.60 5.12±0.62 5.82±2.26 11.531 0.003

Alanine aminotransferase (U/L) 19.16±9.59 24.93±11.06 20.8±9.85 4.962 0.008

Aspartate transaminase (U/L) 25.95±10.75 23.74±10.32 23.36±11.16 0.98 0.377

Triglyceride (mmol/l) 1.07±0.29 1.18±0.74 1.94±0.94 37.979 <0.001

Total cholesterol (mmol /l) 3.69±1.22 3.98±1.62 4.13±1.08 1.593 0.207

HDL-C (mmol/l) 1.40±0.29 1.56±0.37 1.13±0.34 22.291 <0.001

LDL-C (mmol/l) 2.25±0.6 2.64±0.58 2.65±0.9 10.652 0.005
front
SBP, systolic blood pressure; DBP, diastolic blood pressure; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol.
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Combined model vs clinical and
microbial marker models for
diagnosing HUA

The clinical model was constructed using three clinical

factors (BUN, TG, and HDL-C), and these factors were then

also used in the combined model. These three clinical factors

were selected using univariate regression and ROC curves (with

AUCs), which identified 11 predictive clinical factors (Table 3),

followed by least absolute shrinkage and selection operator

(LASSO) regression of the 10 variables with AUC >0.5.

In the development group, the combined model (Figures 6A,

B) was superior to the clinical model (AUC: 89.1 vs 81%,

P<0.001) and the microbial biomarker model (AUC: 89.1 vs

84.9%, P<0.001), while the clinical and microbial biomarker

models did not significantly differ. Similarly, in the validation

group, the combined model (Figures 6C, D) was superior to the

clinical model (AUC: 86.2 vs 80.1%, P<0.001) and the microbial

biomarker model (AUC: 86.2 vs 82%, P<0.001), while the clinical

and microbial biomarker models did not significantly differ. In

summary, the ROC curves of the three models in the
Frontiers in Endocrinology 06
development and validation groups indicated that the

prediction results of the combined model were superior to

those of the microbial biomarker and clinical models

(Figures 6E, F).
Combined model and nomogram for
predicting HUA

To visualize the prediction of HUA using the combined

model, we established a nomogram based on the combined

model (Figure 7A). Based on the risk factors on the left side of

the nomogram, it can be seen that the combined model involves

four risk factors. The diagnostic index (DI) of HUA can be

calculated according to the following formula for the combined

model: 116.92062 + 9.09091×BUN (mmol/l) + 10.31362 × TG

(mmol/l) - 39.40222 × HDL (mmol/l) - 42.84683 × microbiome.

Subsequently, we found that the results of the Hosmer–

Lemeshow goodness-of-fit tests for the combined model were

P=0.931 and P=0.316 in the development and validation

groups, respectively (Figures 7B, C). This indicates that
A B

D EC

FIGURE 2

Serum uric acid level was associated with changes in the gut microbiota. (A) a diversity analyses based on Simpson and Shannon indices. Simpson and
Shannon indices in the low serum uric acid (LSU) and hyperuricemia (HUA) groups decreased compared to the control group, but only the decreases in
the HUA group were significant (P=0.0029 and P=0.013, respectively). (B–D) b diversity was assessed using principal coordinates analysis (PCoA) of
unweighted UniFrac distances, which reflected the dispersion degree of the sample point distribution. There were large differences in the composition
of the gut microbiota between the HUA and control groups. (E) Nonparametric analysis of similarities (ANOSIM) among the three groups showing that
the LSU and HUA groups were far away from the control group. The control group box plot indicates the sample differences within the control group.
The other two box plots indicate the distance from the HUA or LSU groups to the control group. The number corresponding to x-axis represents the
number of comparisons between samples, and the y-axis represents the distance.
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there was no significant deviation between the observed and

predicted probabilities. Thus, the nomogram based on the

combined model (involving microbial biomarkers and

clinical factors) has a high diagnostic ability regarding

HUA. To further determine the clinical value of the

combined model, we used DCA to evaluate the model. In
Frontiers in Endocrinology 07
both the development and validation groups, the curve for the

combined model (gray dotted line) was far above the two

extreme curves (intervention for none and intervention for

all: red and blue lines, respectively), indicating that the

combined model provides high net clinical benefit for HUA

patients (Figures 7D, E).
A

B D E

C

FIGURE 3

Differences in gut microbiota between the HUA and control groups. (A) Dominant phyla in HUA and control groups and (B) difference in
Proteobacteria. (C) Dominant genera in HUA and control groups, and differences in (D) Bacteroides (P=0.02) and (E) Ruminococcaceae_Ruminococcus
(P=0.04).
A B

FIGURE 4

Linear discriminant analysis (LDA) effect size (LEfSe) analysis indicating the most differential genera between the HUA and control groups. (A) Cladogram.
The brightness of each point is directly proportional to its effect. (B) Histogram. Blue and red represent control and HUA samples, respectively.
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Discussion

In this study, the composition and distribution of gut microbial

communities in individuals with different uric acid levels were

distinct. However, in current clinical practice, the serum uric acid

level is still used to diagnose HUA, and the occurrence and
Frontiers in Endocrinology 08
development of HUA cannot be easily pre-empted. Therefore, we

successfully developed a diagnostic model for HUA based on gut

microbial biomarkers and clinical factors for the first time, which

has clinical value according to the DCA evaluation.

More and more studies have shown that the gut microbiome

is closely related to a variety of metabolic diseases, such as
TABLE 2 Prediction Performance of the Three Models.

Microbial Marker Model Clinical Model combined model

Development
group

Validation
group

Development
group

Validation
group

Development
group

Validation
group

AUC (95%CI) 0.849 (0.752- 0.945) 0.820 (0.688-0.988) 0.810 (0.726-0.890) 0.801(0.635-0.967) 0.891 (0.817-0.966) 0.862 (0.736-0.988)

Cutoff value 58.4% 49.6% 56.4% 48.7% 40.7% 67.6%

Sensitivity, % 91.7% 71.4% 69.4% 78.6% 80.6% 78.9%

Specificity, % 79.4% 95.5% 83.3% 71.4% 85.4% 81.2%

PPV, % 82.5% 90.9% 80.6% 64.7% 80.6% 83.3%

NPV, % 90.0% 84.0% 73.2% 83.3% 85.4% 76.5%
AUC, area under curve; PPV, positive predictive value; NPV, negative predictive value.
A

B D

C

FIGURE 5

Performance of the microbial biomarker model for diagnosing HUA. (A) Comparison of the probability of disease (POD) index between the HUA
and control groups and (B) ROC curve (with AUC) in the development group. (C) Comparison of the POD index between the HUA and control
groups and (D) ROC curve (with AUC) in the validation group.
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diabetes (16, 17), hypertension (18, 19), coronary heart disease

(20, 21), hyperlipidemia (22), and gout (23, 24). Guo et al. (23)

found that 17 bacterial genera (including Bacteroides,

Holdemania, and Anaerotruncus) were enriched in gout

patients , while Faecalibacterium , Coprococcus , and

Ruminococcus were decreased. We used high-throughput

sequencing of the V3-V4 region of the 16S rDNA gene to

characterize the microbiome in 168 fecal samples. The a
diversity decreased in LSU and HUA patients compared to

controls (Figure 2A; Table 3).

Additionally, we found that certain opportunistic pathogens

were enriched in HUA, such as the phylum Bacteroidetes (and its

genera Bacteroides), genus Shigella, family Erysipelotrichaceae,

and genus Streptococcus (Figures 3D, 4A). Bacteroides

enrichment has been reported to be associated with intestinal

inflammation, such as inflammatory bowel disease (IBD), and

autoimmune diseases, such as systemic lupus erythematosus

(25), rheumatoid arthritis (26), and type I diabetes (27, 28).

Certain Bacteroides species are considered biomarkers of IBD

and their associated OmpW proteins can be used as targets for

developing IBD immunotherapy (29). Shigel la and

Erysipelotrichaceae are considered opportunistic pathogens in

the human gut and are significantly increased in Crohn’s disease

(30, 31). Erysipelotrichaceae can produce phenyl sulfate, which

impairs glomerular function and is highly associated with

diabetic nephropathy (32). Lastly, Streptococcus is a common

type of pyogenic coccus that can cause various types of pyogenic

inflammation related to intestinal inflammatory responses and

intestinal mucosal damage, and it can affect intestinal uric acid

excretion (33, 34).

In our HUA patients, the genera Ruminococcus, Coprococcus,

and Blautia, which produce short-chain fatty acids (SCFAs), were

significantly reduced (Figures 4A, B). SCFAs are bacterial

metabolites that can promote health by regulating intestinal

immune function and maintaining the intestinal mucosal barrier

(35–37). The decreased Ruminococcus, Coprococcus, and Blautia in

HUA may decrease SCFAs in the intestine, increasing the risk of
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HUA. Ruminococcus and Coprococcus are mainly associated with

butyrate production (24). Butyrate, a major SCFA, is mainly

produced by bacterial fermentation of dietary fiber in the gut. It

is the main energy supply for intestinal epithelial cells (via fatty acid

oxidation) and regulates intestinal health, inhibits inflammation,

and has antioxidant and anticancer effects (38, 39). As mentioned,

Ruminococcus was decreased in our HUA patients (Figure 3E). Chu

et al. (24) also found that butyrate-producing bacteria were

significantly reduced in gout patients. Additionally, long-term

alcohol intake greatly decreases Ruminococcus in the gut, thereby

affecting butyrate production and increasing the risk of

steatohepatitis and liver injury; decreased Ruminococcus is also

associated with lipid metabolism disorders, and dyslipidemia is an

important risk factor for HUA (40). Furthermore, Wan et al. (41)

found that a low-fat diet was associated with increased Blautia, and

the butyrate in the feces of the high-fat diet group was significantly

lower than in other groups. This indicates that a long-term high-fat

diet had harmful effects on the gut microbiome, increasing the risk

of inflammation and chronic diseases.

Thus, it could be seen that there were significant differences

in the distribution of intestinal flora between HUA and healthy

people in our research. In particular, gut microbes that produced

SCFAs were significantly reduced in HUA. SCFAs are involved

in energy metabolism (42); they can provide energy for intestinal

epithelial cells and participate in the excretion of uric acid. The

decrease in gut uric acid excretion increases the burden on the

kidneys (43), and then affects the level of serum uric acid.

Subsequently, we used a random forest model to identify 12

gut microbial biomarkers as the optimal parameter set for

predicting HUA. We then used the POD index of the 12

microbial biomarkers to predict HUA. This index had strong

predictive ability in both the development and validation groups

(AUC=84.9% and 82%, respectively; P<0.001). These results

suggested that the microbial biomarker model might be useful

for the early diagnosis of HUA.

In recent years, clinical factors have often been used to

construct diagnostic prediction models. However, the model
TABLE 3 Candidate Variables for Clinical Model Development.

variables AUC P values 95% CI

SBP 0.6003 0.07226232 0.4665-0.7341

DBP 0.5517 0.2267171 0.4171-0.6863

BUN 0.7168 0.000790465 0.599-0.8347

Cr 0.5637 0.1778288 0.4284-0.6989

glucose 0.5498 0.2355044 0.4105-0.689

ALT 0.6385 0.02189498 0.5096-0.7674

AST 0.5475 0.2460171 0.4126-0.6823

TG 0.799 6.48E-06 0.6824-0.9156

TC 0.5544 0.2152263 0.4198-0.689

HDL 0.8098 3.14E-06 0.7117-0.9079

LDL 0.4996 0.5044931 0.3576-0.6416
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constructed using only clinical factors had only moderate

predictive ability for HUA, and a combined model based on

clinical factors and gut microbial biomarkers had not been

previously developed for HUA. Therefore, we not only

constructed a clinical model and a microbial biomarker model,

but also used the factors in these two models to construct a
Frontiers in Endocrinology 10
combined model. The predictive ability of the combined model

was significantly better than that of the other two models. To

visualize the combined model, we constructed a nomogram that

indicated the predictive ability of each included variable. More

importantly, the predictive ability of the nomogram was assessed

in both the development and validation groups. The results
A B

D

E F

C

FIGURE 6

Performances of the clinical and combined models for diagnosing HUA. ROC curves (with AUCs) for the (A) clinical and (B) combined models in
the development group were similar to those for the (C) clinical and (D) combined models in the validation group. ROC curves (with AUCs) of
clinical model, microbial biomarker model, and combined model in the (E) development and (F) validation groups showing that the combined
model was superior to the others models in both groups. The diagonal line (45°) indicates the performance of a diagnostic test that is no better
than chance.
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indicated that the combined model had good accuracy (based on

the ROC curve), discrimination (based on the decision curve

analysis), and calibration results (based on calibration curves)

for predicting HUA.

There are several limitations to this study. First, although we

developed a combined model that involved gut microbial

biomarkers, the specific functions of these biomarkers remain

unclear. Second, we only used 16S rDNA sequencing of DNA

from stool samples, without assessing fecal metabolites or blood

samples. Third, the sample size was relatively small, and external

validation was not conducted. Multicenter studies involving

different regions/countries are needed to verify the

combination model.

In conclusion, we first found that there were distinct gut

microbiomes among participants with different serum uric acid

levels. The gut microbial diversity decreased in LSU and HUA

patients compared to controls, especially in HUA patients.

Therefore, we developed a diagnostic model by combining

clinical factors and gut microbial biomarkers that has practical

clinical value for predicting HUA.
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