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Abstract

The trRosetta structure prediction method employs deep learning to generate

predicted residue-residue distance and orientation distributions from which 3D

models are built. We sought to improve the method by incorporating as inputs

(in addition to sequence information) both language model embeddings and template

information weighted by sequence similarity to the target. We also developed a

refinement pipeline that recombines models generated by template-free and tem-

plate utilizing versions of trRosetta guided by the DeepAccNet accuracy predictor.

Both benchmark tests and CASP results show that the new pipeline is a considerable

improvement over the original trRosetta, and it is faster and requires less computing

resources, completing the entire modeling process in a median < 3 h in CASP14. Our

human group improved results with this pipeline primarily by identifying additional

homologous sequences for input into the network. We also used the DeepAccNet

accuracy predictor to guide Rosetta high-resolution refinement for submissions in

the regular and refinement categories; although performance was quite good on a

CASP relative scale, the overall improvements were rather modest in part due to

missing inter-domain or inter-chain contacts.
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1 | INTRODUCTION

Recent work1-4 has shown that predicted distances and orienta-

tions from deep-learning networks such as AlphaFold and trRosetta

coupled with gradient descent minimization can lead to more accu-

rate 3-D protein models than previous approaches. We sought to

improve the accuracy of such deep learning approaches by incorpo-

rating template information and model accuracy estimation

methods. We developed a structure prediction pipeline with the

following features: (a) joint usage of MSA and template information

for the trRosetta distance and orientation predictions2;

(b) recombination and rescoring of models made with and without

template information guided by the DeepAccNet accuracy predic-

tor; (c) simultaneous modeling of all domains in multi-domain pro-

teins; and (d) full automation of all modeling stages. Here we

describe the performance of this pipeline in CASP14, and also the

performance of a full atom refinement protocol with DeepAccNet

guided sampling.Ivan Anishchenko, Minkyung Baek, and Hahnbeom Park contributed equally to this work.
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2 | MATERIALS AND METHODS

2.1 | Searching for sequence and structure
homologs

We generated six different multiple sequence alignments by multiple-

round iterative HHblits5 searches against uniclust30 (UniRef3

0_2020_01) database6 with gradually relaxed e-value cutoffs ranging

from 1e-80 up to 1e-1. In the course of iterations, we picked five align-

ments corresponding to e-values of 1e-80, 1e-40, 1e-10, 1e-3, 1e-1

followed by filtering at 95% sequence identity and no coverage cutoffs.

For the sixth alignment, we selected the one with the lowest e-value

which met one of the two criteria: at least 2,000 sequences with 75%

coverage or 5,000 sequences with 50% coverage (both at 90% sequence

identity cutoff) were collected. This last alignment was also used to per-

form template searches against the PDB100 database with hhsearch5 for

the template-based branch of the structure prediction pipeline.

2.2 | Manual MSA curation for human submissions

For targets in which the automated procedure described above resulted

in shallow alignments, we performed additional sequence searches against

metagenomic and metatranscriptomic datasets provided by JGI7; in the

case of viral and phage targets, we also used IMG/VR v2 database storing

genomes of cultivated and uncultivated viruses.8 We converted one of

the automatically generated MSAs (usually MSA #6) to an HMM profile

and used hmmsearch9 to collect sequence homologs in the extended

sequence database. We then clustered the full-length sequence hits at

30% identity cutoff using mmseqs2,10 realigned sequences within each

cluster by ClustalW,11 and used these alignments to build a custom hhblits

database specific to the target. This database was then used in conjunc-

tion with uniclust30 to generate MSAs for human submissions; e-value

cutoffs were manually tuned on a per-target basis to balance MSA depth,

diversity, and coverage of the target sequence.

2.3 | Predicting inter-residue geometries with
trRosetta

We developed two neural networks to predict inter-residue distance

and orientation restraints for subsequent 3D model reconstruction via

gradient descent. First, we updated the previously described MSA-

based trRosetta network2 by incorporating as additional input fea-

tures TAPE language model embeddings of the target sequence12 and

residue-residue sequence separation. We also increased the number

of filters in the bottom layers of the network from 64 to 128 and

decreased the bin size for the predicted angular coordinates from 15�

to 10�. Second, we developed a network that utilizes template infor-

mation in addition to the MSA-based and TAPE features. The top

25 hhsearch hits were converted into 2D network inputs by extracting

pairwise distances and orientations from the template structure for

the matched positions only. These were complemented by hhsearch

positional similarity and confidence scores (both are 1D) provided by

hhsearch, which were tiled along horizontal and vertical axes of the

2D inputs. Features for all unmatched positions were set to zero.

Templates were first processed independently by one round of 2D

convolutions and then merged together into a single 2D feature

matrix using a pixel-wise attention mechanism. This processed

feature matrix was then concatenated with the MSA and TAPE fea-

tures as in the MSA-based network described above; the architecture

of the upstream part of the network was kept the same (Figure 2(A)).

Template-based trRosetta was first used in Farrell et al13 in the con-

text of cryo-EM structure reconstruction.

2.4 | Training trRosetta networks

To train the new networks, we compiled an extensive training set based

on the entire PDB as of 02/17/2020 and uniclust30 sequence database

(version UniRef30_2020_01). We used all non NMR structures with bet-

ter than 3.5Å resolution; in cases where the same protein was solved

multiple times, as well as when there were multiple copies of the same

protein in an asymmetric unit we retained all of the conformations to

account for potential uncertainties in the structure; in total 208,659 pro-

tein chains were selected. All the unique sequences from the selected

set of protein chains were then clustered at 30% sequence identity cut-

off using mmseqs2 resulting in 22,922 clusters and including 73,193

unique sequences. For each sequence, we collected an MSA using the

same procedure as outlined in “Searching for sequence and structure

homologs” subsection (only MSA #6 was used here) and identified top

500 templates by running hhsearch against PDB100—the latter was

used to train the template-based variant of trRosetta. Every training

epoch, we cycled through all sequence clusters by picking a random

sequence member from each cluster. For each selected sequence, a

subsampled MSA and a randomly picked protein conformation (in cases

where there were multiple) comprise one training example; for the

template-based trRosetta, up to 10 randomly selected templates were

also used. In this way, each cluster and each sequence are presented to

the network somewhat differently at each training epoch.

Protein chains over 300 residues in length were cropped during

training to fit into GPU memory. In addition to the continuous crops

used to train the original trRosetta network in Yang et al,2 we also

explored discontinuous crops in which two randomly selected non-

intersecting sequence fragments along with the corresponding intra-

and inter-fragment portions of the network inputs and outputs were

used during training. This cropping strategy better handles interac-

tions between residues distant along the sequence in long multi-

domain proteins.

2.5 | Recombining trRosetta predictions from
different MSAs

Each of the six MSAs generated as described above for the query

sequence was used as input to both the MSA only and the MSA plus
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template variants of the trRosetta network. Following Anishchenko

et al,14 we estimated the quality of these predictions on a per residue

pair basis by calculating the KL-divergence (DKL,ijk, indices i,j define a

residue pair and index k enumerates MSAs which were used to get

the predictions) of the predicted distance and orientation distributions

from the background (higher DKL values correspond to more peaked

distributions and hence more confident predictions). We then merged

predictions, separately for each type of the network, by calculating

the weighted sum of the predicted distributions where the weights

are softmaxed DKL,ijk values along the last k dimension.

2.6 | Recreating 3D structure from network
predictions

For each residue pair, the predicted distance and orientation distribu-

tions were converted into restraints following the reference state cor-

rection step2,15 and were then used to generate protein structures

using trRosetta folding protocol based on restrained minimization. For

this CASP14, we introduced a few tweaks to the protocol to improve

its convergence and increase the model quality as measured by the

MolProbity score.16 First, we added a Savitzky-Golay filter17 to

smoothen the trRosetta-derived restraints before feeding them into

Rosetta as cubic spline functions. We also implemented the automatic

detection of disulfides to favor bond formation between closely

located cysteines that could form an S-S bond. Additionally, during

energy minimization in the centroid mode, the weight of the repulsive

van der Waals energy term was ramped up from 3.0 to 10.0, while the

restraint weights for distances and orientations were ramped down

from 3.0 to 1.0 and from 1.0 to 0.5, respectively. To further improve

stereochemistry and local quality of the final models, two-step full

atom relaxation18 was introduced. In the first step, the full-atom

model was relaxed in torsion space with elevated restraint weights

(3.0 and 1.0 for distances and angles, respectively) as well as Rosetta

full-atom scores to add side chains while keeping overall backbone

structures similar to the input centroid level structures satisfying given

restraints well. In the second step, the full-atom model was further

relaxed with much weaker pairwise distance restraints (weight: 0.1) in

torsion angle space followed by relaxation in the Cartesian space. For

each of the merged predictions from two different trRosetta networks

with different MSAs, 45 protein models were generated using this

improved folding protocol with a various subset of restraints.

2.7 | Model accuracy estimation using
DeepAccNet

A deep learning framework called DeepAccNet was developed for

model accuracy estimations.19 DeepAccNet estimates per-residue

accuracy in l-DDT and residue-residue distance signed error (repre-

sented as histograms of residue-pair distance errors, or estogram in

short) in protein models and can be used to guide Rosetta protein

structure refinement. Two variants of DeepAccNet were tested in

CASP14; DeepAccNet-MSA incorporates trRosetta distance predic-

tions as an additional input feature to the network to improve

prediction accuracy; DeepAccNet-cen represents protein models in a

coarse-grained level and can be enumerated faster by an order of

magnitude than the regular DeepAccNet.

2.8 | Model recombination by trRefine and scoring

To recombine the two sets of models from two trRosetta networks

(one with and the other without template information), we developed

a new network, called trRefine, which takes the outputs of the two

trRosetta networks as well as generated model structures and their

predicted distance errors as inputs and generates the refined predic-

tions for residue-residue geometries (Figure 1(B)). Among the total

90 models from both trRosetta network predictions, the top 10 scored

models were selected based on REF2015 energy function.20 The

inter-residue Cβ–Cβ distance errors (Cα for GLY) were estimated by

DeepAccNet-MSA, and they were combined with corresponding

model conformations represented in pairwise distance and orientation

maps. The combined 2D features for each model conformation were

independently processed by a single 2D residual convolution block

and then merged into a single 2D feature matrix using pixel-wise

attention. The outputs from two trRosetta networks were also

processed by a single 2D residual convolution block and were merged

into a single feature matrix. The processed structural features and

predicted inter-residue geometry features were concatenated

together and processed further by 2D residual convolution networks

to predict refined inter-residue geometries. This trRefine network was

trained on decoy structures generated by two trRosetta networks for

7,307 protein chains used to train DeepAccNet.19 For data augmenta-

tion, three subsampled MSAs were generated with various depths

(i.e., number of sequences in MSA), and for each subsampled MSA,

15 models were generated for each of trRosetta networks. The dis-

tance errors in trRosetta models were estimated by DeepAccNet-

MSA. During the training, one of the subsampled MSAs was randomly

selected, and the corresponding trRosetta outputs and structures with

predicted distance errors were used to optimize the trRefine network.

Based on trRefine predictions, the new pool of structure models

was generated by the trRosetta folding protocol. The trRefine-derived

models were re-scored using DeepAccNet-MSA, and among the top

10 scored models, three models were picked for submissions 1–3

after clustering. Submissions 4 and 5 were the top models from the

MSA-only and template-based trRosetta, respectively.

2.9 | Human intervention

We sought to test two human interventions for the human category

submissions. At the first stage, MSAs different from that used by the

server (details in the previous “Manual MSA curation for human sub-

missions” section) were used to build ensembles of new model struc-

tures, and the model with the best match to the predicted distances
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was chosen for the starting point of refinement. When more than one

MSA led to comparable distance predictions, all those were subject to

refinement and ranked by DeepAccNet-MSA at the end. Automated

refinement (see below) was applied to every domain <300 aa that was

not intertwined or engaged in inter-domain contacts.

2.10 | Model accuracy estimation guided
refinement protocol

We experimented with deep learning-based model refinement in

CASP14 in both regular (TS) and refinement (TR) categories. This was an

advance over our refinement protocol in the last CASP where no deep

learning component was utilized.21 In this CASP, we tested two refine-

ment protocols integrating variants of DeepAccNet. The standard proto-

col integrates DeepAccNet-MSA into our standard Rosetta refinement

protocol,19 and resulting models were submitted for the group

“BAKER.” The experimental protocol uses DeepAccNet-cen directly in

the Rosetta Monte Carlo (MC) search algorithm, and resulting models

were submitted for the group “BAKER-experimental.”
The standard protocol was used (a) for the final stage refinement

of trRefine models in human regular category predictions, as

described previously, and (b) for refinement category predictions.

DeepAccNet-MSA was incorporated into every iteration in the refine-

ment protocol at three levels. Estograms were converted to residue-

residue interaction potentials which were added to the Rosetta

energy function as restraints to guide Rosetta sampling. Second, the

per-residue l-DDT predictions were used to decide which regions to

intensively sample or to recombine with other models. Third, global l-

DDT prediction was used as the objective function during the selec-

tion stages of the evolutionary algorithm and to control the model

diversity in the pool during iteration. More details of the protocol can

be found in Hiranuma et al.19,22

The experimental protocol was designed to facilitate more fre-

quent communication between the deep neural network and Rosetta

modeling components within the conformation search stage. In the

basic sampling unit, MC search using fragment insertion and/or partial

chunk rigid-body movements was guided by using the inverse of

l-DDT (�l-DDT) predicted by DeepAccNet-cen as score with temper-

ature factor kT = 0.01. Two-hundred independent 5000 step MC

trajectories were carried out from the initial model at the first itera-

tion, and then 40 MC trajectories (with the same 5000 steps) were

run for each of the five structures selected after all-atom relaxation

and DeepAccNet-MSA evaluation using a simple evolutionary

F IGURE 1 Deep neural networks for protein structure prediction, model recombination and rescoring. (A) Revised trRosetta network
incorporating TAPE language model and homologous template derived features. (B) trRefine network utilizing DeepAccNet guided model
recombination (see Methods for details). (C)–(E) Benchmarking of the newly developed networks on CASP13 targets. MSAs for CASP13 targets
were taken from Yang et al2; hhsearch templates sharing more than 30% sequence identity to the target were excluded. (E) Average GDT-TS
scores for each target difficulty category
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algorithm. This “coarse-grained sampling stage” was iterated five

times. Twenty models selected by DeepAccNet-MSA from the entire

iterations were subjected to 10 iterations of all-atom refinement

protocol,22 and the top 5 models selected by DeepAccNet-MSA at

the end were submitted.

3 | RESULTS

3.1 | Updates to trRosetta and development of the
trRefine network

We sought to improve the trRosetta network by incorporating addi-

tional features beyond raw multiple sequence alignments. Recent

studies have shown that language models trained in a self-supervised

way on the massive body of protein sequence data produce learned

representations capturing the fundamental properties of proteins like

secondary structure, inter-residue contacts, biological activity, and

others.12,23,24 We trained a version of the trRosetta network that uses

TAPE language model embeddings12 as additional input features

(Figure 1(A)), using an updated training set that employs different

MSA variants at each training epoch (see Methods). When

benchmarked on CASP13 targets, this updated network results in

much better models for the FM category, improving the average TM-

score from 51.9 (reported in Yang et al2) to 63.7 on the same set

of MSAs.

Despite good performance on hard protein targets, the quality of

sequence-based trRosetta models in the homology modeling regime

was not high. To tackle this issue, we developed a modified version of

trRosetta (referred to as template-based trRosetta, see Methods) in

which MSA-based and TAPE input features were complemented by

structural information derived from top-scoring homologs identified

by hhsearch (Figure 1(A)). As expected, the biggest benefit of using

template-based trRosetta compared to the sequence only method is

in the TBM category: the GDT-TS score improves from 69.9 to 76.4

for the networks with and without templates, respectively (Figure 1

(C),(E)).

Ideally, a single network (i.e., template-based trRosetta) should be

sufficient to capture all the relevant information from both input

sequences and template structures. In practice, we found it challeng-

ing to balance the two sources of information within one network,

and there were a small number of targets for which the sequence-

based variant of trRosetta gave better models (Figure 1(C), points

below the diagonal). To mitigate this, we developed a separate neural

network called trRefine (Figure 1(B), see Methods) to recombine pre-

dictions from the two trRosetta networks guided by DeepAccNet-

MSA and generate refined predictions for inter-residue geometries; a

new pool of structure models was then generated by the trRosetta

folding protocol and these were evaluated with DeepAccNet-MSA.

The joint use of model recombination and rescoring increased the

overall accuracy across all CASP13 targets by additional +2.3 GDT-TS

score units over template-based trRosetta when averaged across all

difficulty categories (Figure 1(D),(E)); the improvement mostly comes

from recombination of predictions from the sequence- and template-

based variants of the trRosetta network for multi-domain targets

when the two networks disagree in their predictions for different

domains.

3.2 | Fully automated structure prediction pipeline

We incorporated these ideas into a fully automated protein structure

prediction pipeline outlined in Figure 2(A), which was used in CASP14

both by our BAKER-ROSETTASERVER group, and with several inter-

ventions described below, our human group (BAKER). The pipeline

starts with collecting multiple sequence alignments and structure tem-

plates for the target sequence that are then passed through the two

variants of the trRosetta network to predict inter-residue distances

and orientations. Inter-residue geometry restraints derived from the

network predictions are used to fold structures by direct minimization

and relaxation in Rosetta yielding two sets of structure models. The

two pools of models are rescored and recombined using

DeepAccNet-MSA and trRefine networks, and the refined inter-

residue geometry restraints are used to guide a second round of

minimization-based folding from which final models are selected by

DeepAccNet-MSA.

Since for a given sequence, different MSAs lead to network pre-

dictions with different accuracies, and the deepest alignment does not

necessarily result in the best prediction accuracy,2,25 we chose to gen-

erate six alignments using different inclusion cutoffs and then recom-

bined network predictions from all these alignments (see Methods).

Using updated sequence and structure databases for training and

incorporating the TAPE embeddings resulted in more accurate models

(ΔGDT-TS = +3.1 on CASP14 targets) compared to the original

trRosetta when run on the alignments generated by BAKER-

ROSETTASERVER (Figure 2(B)). Incorporation of template information

yielded ΔGDT-TS = +2.6 improvement over the sequence-only net-

work (Figure 2(B)), and model recombination and rescoring with

trRefine and DeepAccNet-MSA, an additional ΔGDT-TS = +2.1. For

55% (or 85%) of domains the automatically selected model 1 was

within 2 (or 5) GDT-TS score units from the best model sampled

throughout the whole modeling protocol (Figure 2(C)–(E), closed and

open green stars).

3.3 | Modeling multi-domain targets

Considering targets as a whole during modeling and not splitting them

into domains allowed in many cases for accurate recapitulation of

inter-domain interactions: our automated server was scored #1 by the

assessors among all the servers or #7 overall with Z-score = 7.84;

the next best server is RaptorX with Z-score = 6.32 and ranked #18

overall. Modeling results for 3-domain target T1052 (Figure 3(A)–(C))

exemplify how the input sequence and structural information was rec-

ombined by trRosetta to yield high-quality predictions for all three

domains. As shown in Figure 3(A), multiple templates were selected
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F IGURE 2 Contributions to CASP14 structure prediction accuracy. (A) Fully automated structure prediction pipeline. (B) Contribution of
different factors to the overall performance on CASP14 targets; trRosetta.v1 is the original network from Yang et al,2 and trRosetta.v2
incorporates the TAPE embeddings and was trained on the new training set. (C)–(E) Per-target analysis of models generated by the pipeline for
FM, FM/TBM and TBM targets respectively. Blue, orange and green dots indicate models produced by trRosetta, trRosetta with templates, and
trRefine networks respectively. Black vertical lines represent server model 1, while magenta lines correspond to model 1 of the human
submissions. Stars and crosses on the left of panels (C)–(E) visualize scoring success by measuring the difference in the GDT-TS score between
the submitted server model 1 and the best model generated by the pipeline
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F IGURE 3 Recombination of
input sequence and structural
information by the automated
trRosetta pipeline. Panels (A) and
(D) show coverage of targets T1052
and T1101 respectively by the top
25 templates identified by hhsearch.
(B) Examples of pixel-wise attentions
assigned by the network to the

templates for the three residue pairs
each belonging to a different domain
of the 3-domain target T1052: pairs
81–251, 252–570, 571–771 from
domains D1, D2, D3 are marked in
green, cyan, and magenta
respectively. Panels (C) and (F) show
experimental structures (gray) of
targets T1052 and T1101 overlaid
with the BAKER-ROSETTASERVER
model 1 of the respective domains.
GDT-TS scores are indicated for each
domain for both targets, and for all of
T1101
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for both domains D1 and D2; D1 could not have been accurately

modeled without templates (ΔGDT-TS with the MSA-based trRosetta

model is +48.1), while MSA was the only source of information for

domain D3. The attention mechanism utilized to merge the signal

from multiple templates into a single feature matrix makes it possible

to track which templates were selected for each residue pair within

the target (Figure 3(B)). For D2, none of the selected templates were

particularly close to the target: GDT-TS to the closest template struc-

ture was 52. However, by recombining multiple templates along with

the sequence-derived signal, template-based trRosetta yielded a

model with GDT-TS = 70.1 (for comparison, MSA-based trRosetta

gave GDT-TS = 66.2, both picked by Rosetta energy20); model quality

was improved further by trRefine and DeepAccNet-MSA networks

increasing GDT-TS to 78.1. The final BAKER-ROSETTASERVER

model 1 for T1052-D2 was the most accurate among all servers with

ΔGDT-TS = +4.1 from the next best server model.

Despite good quality models for individual domains, the auto-

mated pipeline was not able to recapitulate domain-domain interac-

tions of full length T1052 due to lack of signal from both MSA and

templates. Unlike T1052, MSA provided sufficient signal to predict a

patch of inter-domain contacts in the case of T1101 (Figure 3(D)–(F))

so that the domain-domain arrangement was also recapitulated;

BAKER-ROSETTASERVER full length model 1 was the most accurate

among all servers with the full-length GDT-TS = 59.7 (next best full-

length GDT-TS = 57.0 is from another trRosetta-based server

Yang_FM); individual domains D1 and D2 from this target were also

ranked #1 among servers.

According to the official rankings, BAKER-ROSETTASERVER was

the best automated server for FM/TBM and TBM targets with Z-

score = 63.4 (combined Z-scores > 0.0 according to assessors' formula)

vs Z-score = 49.7 of the next-best Zhang-Server. The relatively poor

performance on the free modeling targets compared to other groups

likely reflects the limited sequence information utilized (uniclust30 was

the only sequence database used (UniRef30_2020_01)). Incorporating

the BFD database26,27 into the pipeline and re-running it increased the

average GDT-TS score over all targets by +4.5 (“automated meta-

genomic searches” bar on Figure 2(B) and a scatter plot comparison in

Figure 4(B)); the biggest improvements are for the FM targets with aver-

age ΔGDT-TS = +11.0.

3.4 | Impact of MSA curation

The human group utilized the same automated pipeline but achieved

better performance primarily through manual MSA curation. As we

were not aware until after CASP14 of the improvement in perfor-

mance simply by including the BFD database in the automated pipe-

line, custom target-specific hhblits databases were generated using

metagenome information from the JGI (see Methods). In Figure 4(A),

the model quality before the human sequence search (i.e., server

models) and after the search are compared. The net improvement

brought about by the manual MSA curation and, in a few cases

described below, by adjusting the query sequence boundaries was 6.8

units in GDT-TS (“automated metagenomic searches” + “other man-

ual interventions” bars on Figure 2(B) and a scatter plot comparison in

Figure 4(A)). The improvements were largest for multi-domain model-

ing problems. For example, T1085 (Figure 4(D)), which was modeled

as a whole unit by the server but had a sequence coverage issue at its

D2, was split into two modeling units for sequence search and was

rebuilt by “hybridizing” distance maps from two domain to improve

the GDT-TS of D2 by 23 units. Modeling of 8 targets from an

8-domain viral RNA polymerase (PDB ID 6vr4) also benefited from

additional sequence search (Figure 4(E)) against metagenomic and viral

sequence databases that generated MSAs yielding more accurate intra

and interdomain distance and orientation predictions; based on the

predicted inter-domain contacts, the 8 targets were grouped into

3 modeling units and the resulting models were considerably better

than those of the automated pipeline (red points in Figure 4(A)).

3.5 | Deep learning guided refinement

We have tested two refinement protocols in CASP14 that utilize the

DeepAccNet deep neural network to guide sampling. The “standard”
protocol used DeepAccNet-msa only on the resulting models from

Rosetta fragment-assembly Monte Carlo (MC) search, while the

“experimental” protocol used DeepAccNet-cen also inside the MC

search; details can be found in Methods. Both protocols were tested

in the TR category; the standard protocol was also applied to trRefine

models for our human group “BAKER” submissions in the TS

category.

The net improvements by the standard protocol on 52 TS

domains and 44 TR domains, and by the experimental protocol on

44 TR domains are reported in Figure 5(A). The average improvement

added by the standard refinement protocol on TS domains was 4.4

GDT-HA units (2.3 in GDT-TS; the overall contribution is +1.3 in

GDT-TS (Figure 2) because only 55% of targets were subjected to

refinement). The net improvement on regular TS targets was larger

and more consistent than for TR targets (average ΔGDT-HA = +2.0).

Still, the results on the TR targets were ranked first in the refinement

category by assessors.

The primary advance compared to previous CASPs was refine-

ment of larger proteins. Because of the very large search space,

refinement methods have typically not been successful at improving

models with more than 150 residues. We overcame this limitation in

CASP14 by using DeepAccNet; residue pair distance restraints

derived from the network focused sampling in the correct region of

conformational space. Four of 9 non-AlphaFold2 models bigger than

>150 residues in the TR category were improved by more than

5 GDT-HA units with the standard protocol (this was best perfor-

mance on these targets according to the assessor).

The somewhat better performance in refining TS compared to TR

models likely reflects differences in how the protocol was applied.

During TS modeling, we attempted to include the larger protein con-

text (neighboring domains, etc.) whenever possible, while for TR

modeling, the provided starting model was refined in isolation in a
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fully automated manner. This difference is exemplified by modeling

results for T1035, which was released both for TS and TR categories

(Figure S1, part of full protein shown in Figure 4(C)). Modeling this

domain alone in the TR category resulted in model degradation

(ΔGDT-HA = �7), which contrasts with our TS submission (ΔGDT-

HA = +1) refined along with neighboring domains.

The improvements brought about by refinement, while among

the best in the refinement category in CASP14, were somewhat

smaller in CASP14 than in recent benchmark studies on more

controlled datasets.19 Missing inter-chain or domain contacts in the

current refinement protocol can lead to failures because the physically

based Rosetta energy function20 requires the larger protein context

for accurate energy evaluation (as illustrated by several of the

AlphaFold2 predictions, deep learning methods can in some cases

implicitly account for “missing” contacts). Also, for more complex pro-

tein topologies, the more intensive use of DeepAccNet to guide sam-

pling in the experimental protocol led to structures with predicted

accuracies quite a bit higher than the actual accuracies. This highlights

F IGURE 4 Improvements brought by human interventions. (A)–(C) Overall model quality in GDT-TS by automated prediction pipeline (x-axis)
and (A) by modeling after human sequence search (y-axis) or (B) by the same pipeline but with the metagenome database ran after CASP14 (y-
axis). (C) Comparison of Y-axis values in panels (A) and (B) shows that expert sequence augmentation produced modest improvements for all but
the hardest targets once sequence database effects are controlled for. Targets part of the viral RNA polymerase (PDB ID 6vr4) are highlighted by
red dots. (D) T1085, an example when sequence search by domains helped. (E) Viral RNA polymerase (target numbers
T1031,33,35,37,39,40,41,42,43) modeled as three sets of domains (modeling units). Inter-domain contacts are highlighted by gray circles. Models
for the units are overlaid on the crystal structure on the right. The improvements for this target from additional sequence search and per-domain
MSA generation are indicated in the bottom right corner
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the challenges of direct optimization of quantities computed by deep

learning networks with millions of parameters—the models can be

very good at prediction generally, but because of the large numbers of

parameters and search space, direct optimization is very prone to false

minima. Reducing these false minima through adversarial training28

and including the Rosetta energy along with the predicted accuracy in

the Monte Carlo search could help alleviate this problem.

4 | DISCUSSION

We developed an accurate, fast, and fully automated protein structure

prediction pipeline. Analysis of results revealed that joint use of MSAs

and templates within a single network helped in building more accu-

rate structure models compared to an MSA-only network. Additional

improvement resulted from recombination and rescoring with the

F IGURE 5 Refinement performance. (A) Scatter plots comparing starting model (x-axis) vs refined model (y-axis) quality for TS category
predictions (top), TR BAKER predictions (bottom left), and TR BAKER-experimental predictions (bottom right). (B) Schematic descriptions of
refinement protocols. (C) Refinement success on relatively large proteins. Native structures, starting models, and final refined models are shown
in gray, red, and blue, respectively. Improvements in GDT-HA are +19.6, +25.0, and +6.5 for T1100-D1 (166aas), R1085-D1 (160aas), and
R1057 (241aas), respectively

ANISHCHENKO ET AL. 1731



networks, trRefine and DeepAccNet-MSA. Still further improvements

followed from manual curation of MSAs and the use of extended

sequence databases, as was demonstrated by our human BAKER

group. We have also been benchmarking our CASP14 automated

structure prediction pipeline in CAMEO,29 and it has been consis-

tently ranked first over the last 6 months. Our combination of the

Rosetta physically based model with DeepAccNet to guide sampling

showed promise in CASP14, but more consistent results will likely

require inclusion of all interacting domains in the modeling process,

and reduction or avoidance of false optima in the accuracy predictor.

ACKNOWLEDGMENTS

This work is supported by National Science Foundation Award # DBI

1937533 (I.A.), Eric and Wendy Schmidt by recommendation of the

Schmidt Futures program (H.P.), the Howard Hughes Medical Institute

(D.B., D.K., S.M.), NIAID Federal Contract # HHSN272201700059C

(M.B.), a gift from Amgen (I.H.), The Open Philanthropy Project

Improving Protein Design Fund (J.D.), The Audacious Project at the

Institute for Protein Design (D.B.), and a gift from Microsoft (S.M.

and M.B.).

PEER REVIEW

The peer review history for this article is available at https://publons.

com/publon/10.1002/prot.26194.

DATA AVAILABILITY STATEMENT

All the codes and deep learning models will be made available at

https://github.com/RosettaCommons/trRosetta2 under the MIT

license. Fully automated modeling is accessible through the webserver

https://robetta.bakerlab.org/.

ORCID

Ivan Anishchenko https://orcid.org/0000-0003-3645-2044

Minkyung Baek https://orcid.org/0000-0003-3414-9404

REFERENCES

1. Senior AW, Evans R, Jumper J, et al. Improved protein structure prediction

using potentials fromdeep learning.Nature. 2020;577(7792):706-710.

2. Yang J, Anishchenko I, Park H, Peng Z, Ovchinnikov S, Baker D.

Improved protein structure prediction using predicted interresidue

orientations. Proc Natl Acad Sci U S A. 2020;117(3):1496-1503.

3. Xu J. Distance-based protein folding powered by deep learning. Proc

Natl Acad Sci U S A. 2019;116(34):16856-16865.

4. Greener JG, Kandathil SM, Jones DT. Deep learning extends de novo

protein modelling coverage of genomes using iteratively predicted

structural constraints. Nat Commun. 2019;10(1):3977.

5. Steinegger M, Meier M, Mirdita M, Vöhringer H, Haunsberger SJ,

Söding J. HH-suite3 for fast remote homology detection and deep

protein annotation. BMC Bioinformatics. 2019;20(1):473.

6. Mirdita M, von den Driesch L, Galiez C, Martin MJ, Söding J,

Steinegger M. Uniclust databases of clustered and deeply annotated

protein sequences and alignments. Nucleic Acids Res. 2017;45(D1):

D170-D176.

7. Chen I-MA, Markowitz VM, Chu K, et al. IMG/M: integrated genome

and metagenome comparative data analysis system. Nucleic Acids Res.

2017;45(D1):D507-D516.

8. Paez-Espino D, Chen I-MA, Palaniappan K, et al. IMG/VR: a database

of cultured and uncultured DNA viruses and retroviruses. Nucleic

Acids Res. 2017;45(D1):D457-D465.

9. Eddy SR. Accelerated profile HMM searches. PLoS Comput Biol. 2011;

7(10):e1002195.

10. Steinegger M, Söding J. MMseqs2 enables sensitive protein sequence

searching for the analysis of massive data sets. Nat Biotechnol. 2017;

35(11):1026-1028.

11. Larkin MA, Blackshields G, Brown NP, et al. Clustal W and Clustal X

version 2.0. Bioinformatics. 2007;23(21):2947-2948.

12. Rao R, Bhattacharya N, Thomas N, et al. Evaluating protein transfer

learning with TAPE. Adv Neural Inf Process Syst. 2019;32:9689-9701.

13. Farrell DP, Anishchenko I, Shakeel S, et al. Deep learning enables the

atomic structure determination of the Fanconi Anemia core complex

from cryoEM. IUCrJ. 2020;7(Pt 5):881-892.

14. Anishchenko I, Chidyausiku TM, Ovchinnikov S, Pellock SJ, Baker D.

De novo protein design by deep network hallucination. bioRxiv.

https://doi.org/10.1101/2020.07.22.211482

15. Zhou H, Zhou Y. Distance-scaled, finite ideal-gas reference state

improves structure-derived potentials of mean force for structure

selection and stability prediction. Protein Sci. 2002;11(11):2714-

2726.

16. Williams CJ, Headd JJ, Moriarty NW, et al. MolProbity: more and bet-

ter reference data for improved all-atom structure validation. Protein

Sci. 2018;27(1):293-315.

17. Savitzky A, Golay MJE. Smoothing and differentiation of data by sim-

plified least squares procedures. Anal Chem. 1964;36(8):1627-1639.

18. Conway P, Tyka MD, DiMaio F, Konerding DE, Baker D. Relaxation of

backbone bond geometry improves protein energy landscape model-

ing. Protein Sci. 2014;23(1):47-55.

19. Hiranuma N, Park H, Baek M, Anishchanka I, Dauparas J, Baker D.

Improved protein structure refinement guided by deep learning based

accuracy estimation. Nat Commun. 2021;12(1):1340-1350. https://

doi.org/10.1101/2020.07.17.209643

20. Park H, Bradley P, Greisen P Jr, et al. Simultaneous optimization of

biomolecular energy functions on features from small molecules and

macromolecules. J Chem Theory Comput. 2016;12(12):6201-6212.

21. Park H, Lee GR, Kim DE, Anishchenko I, Cong Q, Baker D. High-

accuracy refinement using Rosetta in CASP13. Proteins. 2019;87(12):

1276-1282.

22. Park H, Ovchinnikov S, Kim DE, DiMaio F, Baker D. Protein homology

model refinement by large-scale energy optimization. Proc Natl Acad

Sci U S A. 2018;115(12):3054-3059.

23. Rives A, Meier J, Sercu T, et al. Biological structure and function

emerge from scaling unsupervised learning to 250 million protein

sequences. Proc Natl Acad Sci U S A. 2021;118(15):e2016239118.

https://doi.org/10.1073/pnas.2016239118

24. Elnaggar A, Heinzinger M, Dallago C, et al. ProtTrans: towards

cracking the language of Life's code through self-supervised deep

learning and high performance computing. IEEE Trans Pattern Anal

Mach Intell. 2021;14(8):1-11. https://doi.org/10.1109/TPAMI.

2021.3095381

25. Kandathil SM, Greener JG, Jones DT. Prediction of interresidue con-

tacts with DeepMetaPSICOV in CASP13. Proteins. 2019;87(12):

1092-1099.

26. Steinegger M, Mirdita M, Söding J. Protein-level assembly increases

protein sequence recovery from metagenomic samples manyfold. Nat

Methods. 2019;16(7):603-606.

27. Steinegger M, Söding J. Clustering huge protein sequence sets in lin-

ear time. Nat Commun. 2018;9(1):2542.

28. Madry A, Makelov A, Schmidt L, Tsipras D, Vladu A. Towards deep

learning models resistant to adversarial attacks. Poster presented at:

6th International Conference on Learning Representations, ICLR 2018,

Vancouver, BC, Canada, April 30 - May 3, 2018. https://openreview.

net/pdf?id=rJzIBfZAb

1732 ANISHCHENKO ET AL.

https://publons.com/publon/10.1002/prot.26194
https://publons.com/publon/10.1002/prot.26194
https://github.com/RosettaCommons/trRosetta2
https://robetta.bakerlab.org/
https://orcid.org/0000-0003-3645-2044
https://orcid.org/0000-0003-3645-2044
https://orcid.org/0000-0003-3414-9404
https://orcid.org/0000-0003-3414-9404
https://doi.org/10.1101/2020.07.22.211482
https://doi.org/10.1101/2020.07.17.209643
https://doi.org/10.1101/2020.07.17.209643
https://doi.org/10.1073/pnas.2016239118
https://doi.org/10.1101/2020.07.12.199554
https://doi.org/10.1101/2020.07.12.199554
http://arxiv.org/abs/1706.06083
http://arxiv.org/abs/1706.06083


29. Haas J, Barbato A, Behringer D, et al. Continuous automated

model EvaluatiOn (CAMEO) complementing the critical assessment of

structure prediction in CASP12. Proteins. 2018;86(Suppl 1):387-398.

SUPPORTING INFORMATION

Additional supporting information may be found online in the

Supporting Information section at the end of this article.

How to cite this article: Anishchenko I, Baek M, Park H, et al.

Protein tertiary structure prediction and refinement using

deep learning and Rosetta in CASP14. Proteins. 2021;89(12):

1722-1733. https://doi.org/10.1002/prot.26194

ANISHCHENKO ET AL. 1733

https://doi.org/10.1002/prot.26194

	Protein tertiary structure prediction and refinement using deep learning and Rosetta in CASP14
	1  INTRODUCTION
	2  MATERIALS AND METHODS
	2.1  Searching for sequence and structure homologs
	2.2  Manual MSA curation for human submissions
	2.3  Predicting inter-residue geometries with trRosetta
	2.4  Training trRosetta networks
	2.5  Recombining trRosetta predictions from different MSAs
	2.6  Recreating 3D structure from network predictions
	2.7  Model accuracy estimation using DeepAccNet
	2.8  Model recombination by trRefine and scoring
	2.9  Human intervention
	2.10  Model accuracy estimation guided refinement protocol

	3  RESULTS
	3.1  Updates to trRosetta and development of the trRefine network
	3.2  Fully automated structure prediction pipeline
	3.3  Modeling multi-domain targets
	3.4  Impact of MSA curation
	3.5  Deep learning guided refinement

	4  DISCUSSION
	ACKNOWLEDGMENTS
	  PEER REVIEW
	  DATA AVAILABILITY STATEMENT

	REFERENCES


