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Simple Summary: Artificial intelligence (Al) is increasingly being used in medicine, es-
pecially in diagnosing and treating childhood cancers. Pediatric oncology faces unique
difficulties due to the rarity and diversity of these cancers, making the use of Al promising
for more accurate and efficient detection and treatment. Al analyzes large amounts of
data, like medical images and genetic information, faster than doctors can. It helps identify
tumors and cancer types and predicts treatment responses, leading to quicker and more
tailored diagnoses for children. However, using Al in pediatric cancer has challenges
due to limited data on rare cancers in children. This makes training Al systems difficult.
Continuous advancements in Al technology and information-sharing between hospitals
and research centers are addressing these issues.

Abstract: Artificial intelligence (Al) is rapidly transforming pediatric oncology by creat-
ing new means to improve the accuracy and efficacy of cancer diagnosis and treatment
in children. This review critically examines current applications of Al technologies like
machine learning (ML) and deep learning (DL) to the main types of pediatric cancers. How-
ever, the application of Al to pediatric oncology is prone to certain challenges, including
the heterogeneity and rarity of pediatric cancer data, rapid technological development in
imaging, and ethical concerns pertaining to data privacy and algorithmic transparency.
Collaborative efforts and data-sharing schemes are important to surpass these challenges
and facilitate effective training of Al models. This review also points to emerging trends,
including Al-based radiomics and proteomics applications, and provides future directions
to realize the full potential of Al in pediatric oncology. Finally, Al is a promising paradigm
shift toward precision medicine in childhood cancer treatment, which can enhance the
survival rates and quality of life for pediatric patients.

Keywords: pediatric oncology; artificial intelligence; cancer diagnosis; machine learning;
deep learning

1. Introduction

Pediatric malignancies are a major cause of death for children worldwide and throw a
sinister shadow over the lives of many children and their families [1]. Despite significant
progress in medical research and treatment advances, the fight against pediatric malignan-
cies is still a complex and challenging endeavor [2]. A vast number of children receive
cancer diagnoses, including sarcomas, brain tumors, neuroblastomas, and leukemia, which
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forces them to fight an intangible foe [3,4]. Acute leukemia, which makes up nearly 28% of
all pediatric cancer cases, is the most prevalent type of the disease. Acute myeloid leukemia
(AML) and acute lymphocytic leukemia (ALL) are the most pervasive forms of cancer in
youngsters [5]. Brain and spinal cord tumors rank second in terms of frequency among
pediatric cancers, making up approximately 26% of all pediatric cancer cases. Brain and
spinal cord tumors can take many distinct forms, and each one has a unique etiology and
course of treatment [6]. Because of the severe side effects of radiation and chemotherapy,
as well as sometimes delayed diagnosis, treating juvenile tumors encounters different
challenges compared to treating adult cancers. It is critical to comprehend all difficulties
and circumstances associated with various pediatric malignancies and create innovative
treatment strategies [7,8].

Rapid advancements in knowledge and technology have opened new avenues for
multi-layered diagnoses in pediatric oncology [9]. Artificial intelligence (Al) techniques
can quickly process vast volumes of original data to solve intricate problems with high
accuracy [10]. Therefore, with Al approaches, doctors can potentially increase the ef-
fectiveness of their diagnosis, improving the subsequent individualized treatment and
surveillance [11,12]. Al systems can gather data, recognize underlying patterns, reach
predetermined goals, and make judgments and forecasts regarding actual occurrences. As
a primary subset of artificial intelligence (AI), machine learning (ML) denotes a distinct
approach from conventional hard-coded software programs that use algorithms to build
prediction models dynamically by training on vast volumes of historical data [13,14]. Deep
Learning (DL) is a rapidly expanding field of artificial intelligence (Al) that leverages the
structure of convolutional neural networks (CNNs) with numerous interconnected layers
to provide learnable weights and high efficiency with little pre-processing [15]. DL-CNNs,
which are made up of several stacked CNN layers, are superior to earlier ML algorithms in
terms of accuracy, speed, and vendor independence [9].

Machine learning (ML), the core domain of artificial intelligence, allows computers
to learn from vast data and improve their decision-making capabilities without being
explicitly coded [16]. In oncology, the research and treatment of pediatric cancer, ML has
been recognized as a central technology to enhance diagnosis, classify cancer in the best way,
and inform customized treatment processes [17]. Because cancer is a public health issue
due to its high incidence, death, and biological diversity, the utilization of machine learning
offers potential avenues to improve early detection and prognosis [18]. ML algorithms
applied in oncology aim to complement traditional clinical methodologies and enable
better, more precise, and data-driven healthcare practices [19,20]. In cancer research, Al
techniques have provided beneficial support for clinical management, including cancer
segmentation, susceptibility, and classification, which are crucial components for early
detection and prognosis management [21,22]. Despite the current Al advancements, the
sustainable development of Al tools in health care relies on the availability of large datasets
with strict quality control. Different Al-based algorithms and approaches can be used can
be used to assist in the diagnosis and management of pediatric cancers [23].

2. Al-Based Application for Pediatric Diagnosis and Treatment

To illustrate various applications of Al-based methods in pediatric oncology, we will
focus on Ewing Sarcoma (ES), a rare type of bone cancer that primarily affects kids and
youngsters. Al-based methods can be used in cancer prediction, early cancer diagnosis,
and cancer treatment, as shown in Figure 1.
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Figure 1. Potential uses of Al in Ewing Sarcoma management.

2.1. Early Detection and Diagnosis for ES
2.1.1. Image Analysis

Al algorithms can analyze medical images, such as computed tomography (CT) scans,
magnetic resonance imaging (MRI), and X-rays, to detect abnormalities or potential cancer-
ous lesions. They aid in early diagnosis and increase the chances of successful treatment
against ES [24,25].

2.1.2. Tumor Detection and Segmentation

Radiomic analysis uses algorithms to analyze image data to extract beyond what is
visually apparent. The tumor segmentation step is the most crucial since it converts the
original medical image into an extractable image. Despite prolonged studies, there is still
room for improvement in the fully automatic segmentation technique, especially in medical
image analysis [26]. Al algorithms can assist the comprehension of MRI, CT, and ultrasound
images to precisely identify and segment the tumors, even in pediatric patients when the
tumors are much smaller, and the contrast is considerably lower. The most relevant methods
for segmenting images are threshold segmentation, image segmentation methods based
on fuzzy logic, region-based image segmentation, and edge-based image segmentation.
Although there are a lot of algorithms in tumor image segmentation, the following issues
are still not well resolved: the best segmentation algorithm for use in different scenarios,
how different segmentation algorithms will affect post-feature quantification and feature
extraction, which type of segmentation method will be more in line with the gold standard,
and whether there exists a general segmentation method [27].
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2.1.3. Quantitative Analysis of Tumor Characteristics

Quantitative image analysis is used to extract quantifiable tumor characteristics from
medical images [28]. These tumor imaging biomarkers can be extracted from medical
images such as MRI or CT. Al enables the extraction of quantitative features from medical
images, assessing tumor size, shape, texture, and enhancement patterns. These features aid
in differentiating between benign and malignant lesions and monitoring tumor response to
treatment [29,30].

Quantitative imaging and analysis of characteristics such as tumor shape, size, texture,
heterogeneity, and molecular markers are important for the diagnosis, staging, prognosis,
and evaluation of treatment response for Ewing Sarcoma. This is made possible by Al
algorithms, including machine learning and deep learning, through the review of advanced,
high-dimensional data from multimodality imaging and digital pathology slides to uncover
patterns undetectable by inhuman vision [31].

Radiomics, a subfield of Al, automatically derives a rich quantitative feature set from
medical images such as X-rays, MRI, CT, and PET scans [32]. In ES, radiomics models
enable efficient discrimination between tumor and non-tumor tissues, the quantification of
tumor heterogeneity, and the prediction of clinical status. For example, radiomics analysis
of MRI imaging has been used to predict patient response to neoadjuvant chemotherapy
and characterize tumor subtypes according to textural and morphological features [33].
Outside of radiology, Al software analyzes digital pathology images for the purpose of
evaluating tumor morphology and subtypes with high accuracy. Recent advancements
include machine learning algorithms trained on computerized hematoxylin and eosin-
stained slides that can predict sarcoma subtypes, including Ewing Sarcoma, with over
90% accuracy [34].

2.1.4. Risk Stratification and Prognostic Assessment

Risk stratification is mainly determined using tumor location, pathological tumor
grading, tumor size, and specific histological subtypes [35,36]. Al models can integrate
imaging data with clinical and molecular information to stratify patients into risk groups
and predict outcomes such as overall survival, disease-free survival, and risk of recurrence.
This information helps clinicians tailor treatment strategies to individual patients [37].

2.1.5. Radiomics and Texture Analysis

Radiomics is an image-processing method that uses data extraction to identify biomark-
ers for customized treatment [38]. Al-driven radiomic analysis can identify subtle imaging
biomarkers associated with treatment response and prognosis, aiding in personalized
treatment planning. Al and radiomics can work together because Al can handle enormous
amounts of data more effectively than standard statistical techniques. The main goal is
to extract and analyze as many relevant hidden quantitative data as possible to support
decision-making processes.

Texture-based MRI texture models have been shown to be very sensitive in distin-
guishing between histological osteosarcoma subtypes such as chondroblastic versus non-
chondroblastic patterns via intraosseous and extraosseous lesion compartment assess-
ment [39]. Models using T2-weighted images have been able to distinguish these patterns
with AUCs of up to 0.89 during validation, highlighting the potential of texture features
to delineate subtle tumor histology not easily distinguishable by means of conventional
imaging [39]. Such models allow for early risk stratification to guide clinical management
plans, including chemotherapy aggressiveness and timing of surgery. PET radiomics pro-
vides added richness to diagnostic accuracy through the inclusion of metabolic tumor
features reflecting tumor microenvironment heterogeneity and metabolic activity, which
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are key predictors of tumor behavior in children with sarcomas. Radiomics is also useful in
differentiating pulmonary metastases from non-metastatic nodules in pediatric osteosar-
coma patients according to CT texture analysis, yielding higher diagnostic accuracy than
conventional radiological assessment [40].

2.1.6. Clinical Decision Support Systems (CDSS)

A computer system that gives physicians information and tools to aid decision-making
is called a clinical decision support system (CDSS) [41]. There are two types of CDSSs:
knowledge-based and non-knowledge-based. Rules, like IF-THEN statements, are used by
knowledge-based systems to analyze inputs and generate outputs or actions. Rules can be
based on literature, practice, or patient-directed evidence [42]. The CDSSs can be classified
into Expert System (ES)-based and Machine Learning (ML)-based systems. The ES-based
CDSS is relatively simple, and evaluations are based on binary decisions. On the other
hand, ML-based CDSS is complex and based on statistical inferences [43]. Al-powered
CDSSs assist radiologists and oncologists in interpreting imaging findings, providing risk
estimates, and recommending optimal treatment strategies based on personalized patient
data [44].

2.2. Al Image Analysis Tools and Algorithms in Pediatrics Cancers

Several Al image analysis tools and algorithms are being developed and used in
pediatric oncology to assist in detecting, diagnosing, and treating cancers. They include the
following categories:

2.2.1. Convolutional Neural Networks (CNNs)

A CNN is a kind of artificial neural network mainly used for processing and image
recognition because of its capacity to identify image patterns [45]. CNNs are widely
used in medical image analysis, including pediatric oncology. They can automatically
learn hierarchical representations of features from medical images, enabling tasks such
as tumor detection, segmentation, and classification [46]. Moreover, by integrating Grad-
CAM explainability approaches, doctors may see regions of CT images that are mostly
responsible for CNN-based predictions, increasing openness and confidence in Al-assisted
diagnosis. In clinical settings, interpretability is crucial since decisions about invasive
operations are mostly based on imaging results. To customize surgical strategies and
radiation therapy for the treatment of Ewing Sarcoma, CNNs can provide whole-image
assessments by identifying tumor margins and internal heterogeneity features [47].

2.2.2. U-Net

U-Net is a convolutional neural network designed for biomedical image segmentation,
modified for fewer training images and better precision [48]. The U-Net architecture has
also been employed in diffusion models for iterative image denoising. U-Net is one class
of popular CNN architectures dealing with segmentations of medical images, including
pediatric oncology. It performs exceptionally well in segmenting tumors and organs from
medical images against smaller datasets [49]. Recent research has used U-Net design
modifications, such as nnU-Net, to accurately segment pelvic and sacral ES lesions. These
models replace the laborious and arbitrary manual segmentation that radiologists have
historically performed by automating the delineation of tumor areas. For staging and
treatment decision making, U-Net models facilitate quicker diagnosis and more reliable
tumor volume assessment by drastically lowering the need for manual annotation [47].
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2.2.3. DeepLab

DeepLab represents semantic segmentation architecture: first, the input image passes
through the network by dilated convolution, while later, the output is processed by bi-
linear interpolation, and then a fully connected Conditional Random Field is applied to
perform fine-tuning to obtain the final prediction [50]. DeepLab is a state-of-the-art deep
learning algorithm for semantic image segmentation [50,51]. DeepLab has been applied
in pediatric oncology for accurate tumor segmentation from medical images, aiding in
treatment planning and monitoring [52]. The DeepLab model, especially the DeepLabV3
and DeepLabV3+ versions, has been shown to be highly efficient in semantic segmenta-
tion by utilizing atrous (dilated) convolutions and the Atrous Spatial Pyramid Pooling
(ASPP) module, which capture multi-scale contextual information without a loss of spatial
resolution. This functionality enables DeepLab to discriminate between tumor tissues
and surrounding healthy tissues clearly, even if tumors present with complex shapes or
at varied scales, a case often encountered in Ewing Sarcoma imaging [53]. The recent Al
applications for pediatric cancers are shown in Table 1 [9].

Table 1. Current Al applications in the diagnosis of childhood non-solid tumors.

AI Method Medical Field Task Tumor
CNN/GAN Pathology Detectlpg AL].“ and .AML usimg a dee.p learner ALL and AML
classifier using microscopic blood images
Constructing a hybrid model using a genetic
CNN and GAN Pathology/Genomics algorithm and a residual CNN to predict ALL ALL
using microscopy images
SVM Pathology Building a mo.del to classify acute leukemias Acute promyelocytic leukemia
using flow cytometry
ANN/FENN/SVM Pathology Proposing an MIL-based model for ALL ALL
categorization using microscopic blood images
Building an aggregated DL model for .
CNN Pathology leukemic B-lymphoblast classification Leukemic B-lymphoblast
Using bone marrow cell microscopy images
CNN Pathology for the classification of AML, ALL, and CML AML, ALL, and CML
. Developing transcriptome-wide biomarkers
RF Others-mRNA sequencing for ALL subtyping ALL
Identifying reliable cancer-associated
ANN Others-DNA methylation methylation signals in gene regions from Leukemia

leukemia patients

Nearest shrunken centroids

Investigating the utility of CpG methylation
Others-DNA methylation status to differentiate blood from patients with ALL and AML
ALL and AML from normal blood

GAN: generative adversarial network; SVM: support vector machine; ANN: artificial neural network; FENN: feed
forward neural network; ACC: accuracy; AUC: area under the curve; RF: random forest; CpG: cytosine-guanine.

3. AI Approaches in Drug Discovery and Development
3.1. Target Identification for Pediatric Cancers

Al is used to examine large datasets and find possible molecular targets for cancer
therapy. Because pediatric malignancies are rare diseases that require specialized therapies
for young children, drug research and development for these conditions present unique
hurdles. Al-based technologies are being used more frequently to expedite the procedure
and handle these issues [54,55].
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3.2. Al in Anticancer Drug Repurposing

Al systems can examine enormous databases of currently available medications, ge-
netic information, and disease characteristics to find possible candidates for repurposing in
pediatric malignancies [56-59]. Al expedites the identification of novel treatment options
by forecasting which medications may be effective against various kinds of cancer. The
efficacy of existing anticancer medicines has been limited to a few tumor types despite enor-
mous efforts in academic and pharmaceutical research worldwide [60]. The acknowledged
obstacles to creating new molecular entities are that the novel drug design is more costly,
slower, less safe, and more complicated than drug repurposing [61]. The extensive uses
of machine learning algorithms and computational modeling have provided significant
insights into the biological mechanisms of cancer and drug action [62].

3.3. Al in Anti-Drug Repositioning Based on Drug—Tnrget Interaction

Numerous artificial intelligence-based methods have been used to predict the re-
lationships between drugs and their targets [63]. Predicting drug-target connections is
currently one of the primary methods for repurposing drugs [64]. Cheng et al. have
developed a genome-wide localization system network algorithm to enable personalized
medicine repurposing utilizing genomic data [65]. This technique obtains disease modules
for drug repurposing using patient-specific DNA and RNA sequencing profiles of specific
targets [65]. DeepDRK is a deep learning framework that was proposed by Wang et al.
using kernel-based data integration. More than 20,000 pairs of anticancer medication com-
binations from pan-cancer cell lines were used to train the algorithm, utilizing kernel-based
similarity matrices that incorporate data from multiple sources and fields such as genomics,
transcriptomics, epigenomics, chemical characteristics of substances, and established drug-
target interactions. By combining pharmacogenomic data, they offered a computational
method for predicting the responses of cancer cells to medications, providing an alternate
strategy for drug repurposing in cancer precision medicine [66].

3.4. Al in Anti-Drug Repositioning Considering Drug—Disease Interactions

Similarity and network analyses are the primary methods for identifying drug-disease
interactions. A multiscale drug-disease topology learning framework (MTRD) using
similarity-based techniques has been proposed [67]. This approach examined the novel
therapeutic impact of existing pharmaceuticals by learning the representative characteristics
of the drug—disease node pairings based on the relevant similarity and association data [68].
Similarly, to forecast new drug—disease interactions using drug-related and disease-related
similarity information and previous drug-disease interactions, Jarada et al. introduced a
unique deep learning-based framework called SNF-NN [69].

A new computational technique called MBiRW was proposed by Luo et al. to find
possible new indications for well-known medications. This method combines similarity
measures with the birandom walk (BiRW) algorithm [70]. Additionally, Sadeghi et al.
presented a novel model for drug repositioning using multiple labeling of heterogeneous
graph neural networks called DR-HGNN [71]. A graph neural network-based drug reposi-
tioning model known as GDRnet proposed by Doshi et al. showed the ability to effectively
search the database for currently available medications and forecast their unidentified
therapeutic effects [72].
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3.5. Virtual Screening and Molecular Docking

A computer method called virtual screening (VS) is used in drug discovery to find
possible therapeutic candidates from vast libraries of chemical compounds. VS is a fun-
damental method in contemporary drug discovery that is increasingly being employed
to find new medicines against cutting-edge therapeutic targets [73,74]. Molecular dock-
ing algorithms are helpful in the identification of new therapeutic candidates because
they can predict the interactions and binding affinities between medicines and target
proteins [75-78].

3.6. Al's Role in Evaluating Drugs for Cancer Prevention

Proteins or enzymes are the therapeutic targets used in the screening process for
anticancer pharmaceutical hit chemicals. High-throughput screening is used primarily
to find computer-aided hit chemicals by structure- and ligand-based screening [73]. In
numerous research and development initiatives, high-throughput screening methods have
proven to be quite effective; however, the efficiency of screening millions of compounds
has reached a limit, and the expense is also substantial. The increasing use of GPUs,
growing computing power, and the rapid advancement of Al technology have led to the
development of more virtual hit compound screening techniques to broaden the toolkit for
drug discovery [79,80].

3.6.1. Al and Structure-Based Virtual Screening (SBVS)

The SBVS, which uses docking and scoring values against the target protein, is a
significant method for identifying lead chemical compounds. Anticancer drug design
benefits greatly from this tactic; however, many existing docking techniques are laborious
and create barriers to extensive virtual screening [81,82]. The Similarity of Interaction
Energy Vector Score (SIEVE-Score) is a new SBVS technique for hit compounds using
Al approaches, which offers significant advantages over previous cutting-edge virtual
screening techniques [83].

3.6.2. Al and Ligand-Based Virtual Screening (LBVS)

LBVS is another screening method promptly used in drug discovery to identify similar
chemical scaffolds from large datasets based on chemical and physical properties [84,85]. The
recommended methods used for LBVS are the fingerprint approach [86], Shape-based
similarity [87,88], and Pharmacophore modeling [89]. Moreover, there are some algorithms
used in LBVS, such as the Tanimoto coefficient (a standard metric used to measure the
similarity between fingerprints), Dice coefficient (similarity measure used for binary fin-
gerprints), Shape overlay algorithms (3D shapes of molecules to identify the best spatial
fit), and ML algorithms, being trained on known ligand data to learn how to identify new
ligands with desired properties [90].

3.6.3. Al and Fragment-Based Virtual Screening (FBVS)

Another Al-based computational drug discovery method called FBVS screens libraries
of short molecule fragments to find possible candidates for drugs [91]. The goal of FBVS
is to target relevant macromolecular targets with fragments of low molecular weight.
Typically, FBVS generates potential drugs using chemical fragments with low molecular
weight, low binding affinity, and simple chemical structures [73]. The application of nuclear
magnetic resonance (NMR) for FBVS has gained popularity throughout the past 20 years.
Faster medication development and lower production costs have been made possible by
FVBS, resulting in a high success rate [92]. Several FBVS techniques are in use today, and
ligand generation from a fragment through machine learning has become more popular.
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The primary benefit of utilizing FBVS is the low complexity of the simulation’s pieces,
which permits the application of various methodologies to create novel compounds and
mitigate drug development expenses [93].

3.7. Al-Based Target Identification for Anticancer Drugs

The first stage in designing an anticancer therapy is to identify drug-target interactions
(DTIs). Binding affinity constants, which include markers like a dissociation constant
(Kd), an inhibition constant (Ki), and a half-maximum inhibitory concentration (ICsg), are
frequently used to characterize the strength of drug-target binding. The computational
prediction of DTlIs is quite interesting because experimentally determining them takes a
long time and a lot of money. Precise and efficient DTI forecasts can significantly support
medication discovery and hasten the identification of lead or hit compounds [54,94].

Molecular docking simulation and machine learning-based techniques have histori-
cally been used as computational approaches for DTI predictions [95]. However, conducting
these investigations without knowledge of the 3D structures of the pharmacological targets
would be costly, time-consuming, and challenging. An innovative end-to-end learning
system based on heterogeneous graph convolutional networks (EEG)-DTI is used to fore-
cast DTI [96]. Drug and target low-dimensional feature representations were learned
using a graph convolutional network-based model, which was then utilized to predict
the DTI. Even without the utilization of the 3D structures of the pharmacological targets,
it produced a promising DTI prediction performance. Shao et al. enhanced the predic-
tion performance by treating the DTI prediction as a link prediction problem [97]. Yang
et al. introduced a drug-target interaction prediction technique that relies on mutual learn-
ing mechanisms, even without 3D structure information, and tackles the deep learning
explanation problem [98].

3.8. Determining the Druggability of Cancer Drug Targets Using Al

In designing drugs for cancer, choosing therapeutic targets is particularly cru-
cial because it dramatically affects the likelihood that subsequent clinical trials will be
successful [54]. As a result, numerous related techniques were created. Raies et al. pre-
sented a prediction model known as DrugnomeAl to solve the issue of tailored drug
synthesis. DrugnomeAl was developed to forecast the druggability of drug targets in
the human exome using a stochastic semi-supervised machine learning framework. Ad-
ditionally, DrugnomeAl can be used to predict a drug target’s druggability in cancer
disorders [99]. Synthetic lethality (SL) has recently been shown in many research papers
to be a viable strategy for finding targets for anticancer medications. However, there are
issues with the wet experimental screening for SL, such as excessive expenses, batch effects,
and results that are not on goal [100]. Wang and colleagues developed KG4SL, a new
model built on top of a graph neural network (GNN). It integrates a graph neural network
prediction with knowledge graph (KG) messaging. The experimental findings showed that
adding KG to the GNN for SL predictions had a significant positive impact [101].

3.9. Modelling Applications in Drug Discovery
3.9.1. Variational Auto-Encoder (VAE) Model

Diederik P. Kingma and Max Welling introduced the variational auto-encoder (VAE)
in 2013, which is a significant generative model [102]. To produce candidate compounds
with anticancer therapeutic qualities, Born et al. used a hybrid VAE model, and the
model produced strong inhibitory effects against particular diseases. In terms of structure,
synthesizability, and solubility, the produced compounds resembled those of currently
available medications [103]. The NEVAE model proposed by Samanta et al. addressed
the issues with the existing approaches. For example, current models can only produce
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molecules with an equal number of atoms but do not use a huge number of macromolecules
during training to limit the diversity of the molecules formed. They also do not provide the
spatial coordinates of the produced atoms [104].

3.9.2. Recurrent Neural Network (RNN) Model

The recurrent neural network (RNN) model creates molecules in a temporal order
using fundamental units as the core vocabulary, such as atoms or molecules in fragments.
The RNN model’s next atom character’s output probability is determined by the atom that
came before it. A novel bidirectional RNN molecule generation model called BIMODAL
was proposed by Grisoni et al. and is helpful for data augmentation and using Simplified
Molecular Input Line Entry System (SMILES) strings. By using alternate Learning, the
model accomplished bidirectional molecular design. It was then compared to other bidirec-
tional RNNs. BIMODAL outperformed state-of-the-art techniques and showed promise in
terms of molecular innovation, backbone diversity, and chemical and biological significance
of the produced compounds [105].

3.9.3. Generative Adversarial Network (GAN)

The generative adversarial network (GAN) is an unsupervised learning method com-
prising two networks: the generating network G, which matches the data distribution, and
the discriminative network D, which assesses if the input is “real.” During the training pro-
cess, the two networks play a game in which the generative network D attempts to extract
as much real data as possible from the generative network’s output, while the generative
network G attempts to “cheat” D by accepting random noise to mimic the real images in
the training set. Ideally, the game should generate a “faked” generative model [106]. The
Mol-Cycle GAN approach was proposed by Maziarka et al. [68,107]. Mol-Cycle GAN is
a generative model-based conditional generative adversarial network technique for de
novo drug design and optimization of molecule synthesis. Given an initial molecule, it can
resolve the issue of molecules that are difficult to synthesize.

Additionally, it can produce molecules with the desired architectures and charac-
teristics [68,107]. ABbbasi et al. [108] proposed a feedback-based GAN framework that
connected a predictor depth model, a GAN, and an encoder—decoder via a feedback loop
to apply an optimization method. The outcomes demonstrated that the GAN optimization
model can produce compounds with high binding affinities [108].

3.10. Practical Application of Al to Treat Pediatric Cancer

The implementation of Al in pediatric oncology is especially challenging due to
the rarity and heterogeneity of pediatric cancers and the paucity of large, standardized
datasets [109]. Nonetheless, Al-powered precision medicine platforms are beginning to
show substantial benefits in guiding the treatment of pediatric cancers. There are different
applications of Al in pediatric cancer treatment [110]. Al algorithms, particularly deep
convolutional neural networks (CNNSs), can read medical images (MRI, CT, and PET
scans) fast and accurately to detect very small anomalies indicative of cancer, which could
lead to earlier diagnosis [111]. Furthermore, Computer-Aided Diagnosis (CAD)-based Al
applications can also be utilized to assist pathologists in identifying cancer cells and tumor
subtype classification from biopsies and pathology slides, improving diagnostic accuracy
and speed [112]. Al has the capability to analyze genomic, proteomic, and metabolomic
data in huge amounts to identify new biomarkers that will be used in the early detection of
cancer and risk stratification in children [113]. Al models can integrate clinical, genomic,
and imaging data to predict the response of a patient to a range of treatments, allowing
oncologists to personalize therapies for best efficacy and minimum side effects [114]. Al
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can be used to precisely define tumors in order to plan radiation therapy, which could
minimize radiation to normal tissues and optimize the outcome [115].

4. Recent Advancements in Pediatric Oncology Diagnosis and Treatment

ML is a subset of Al that deals with the development of algorithms capable of learn-
ing from data and predicting outcomes or making decisions without explicit program-
ming [116]. ML algorithms can analyze complex datasets, identify patterns, and create
predictive models. There are two main types: supervised learning with labeled data and
unsupervised learning with unlabeled data, both used in healthcare. Deep learning, which
uses deep neural networks, excels in processing unstructured data like medical images
and genomic sequences [9]. ML and DL applications in pediatric oncology encompass
several important aspects including diagnosis, tumor classification, treatment response
prediction, and survival prognosis. Both technologies exploit different kinds of data includ-
ing clinical records, pathology images, radiological imaging, and multi-omics datasets to
allow comprehensive and integrative analyses [117,118]. In diagnostic applications, ML
and DL models significantly enhance the accuracy of pediatric hematological malignancy
classification [117]. For instance, DL on bone marrow cell microscopy images enables
the classification of acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML),
and chronic myeloid leukemia (CML) with accuracy exceeding 90%, even outperforming
experienced hematologists in some instances [119]. Hybrid models combining genetic algo-
rithms and residual CNNs have also optimized the diagnoses with accuracy rates of over
98%. Similarly, ML-based analysis of DNA methylation and transcriptomic data provides
robust biomarkers allowing the determination of leukemia subtypes, which is crucial for
individualized treatment planning. Furthermore, Al-driven intraoperative diagnostics,
including Raman spectroscopy with ML classifiers, facilitate real-time tumor recognition
and surgical guidance [9].

Research on extracranial tumors in children also benefits from Al techniques. From
radiography and histopathologic data, ML classifiers can accurately differentiate between
malignancies in bone and soft tissue tumors, improving diagnosis, particularly in envi-
ronments with limited resources. In addition to reducing intrusive procedures, Al and
ML technologies used to circulate tumor DNA and DNA methylation analysis are assist-
ing efforts for liquid biopsies and early detection [120-122]. Furthermore, ML and DL
enable prognostic modeling and therapeutic decision making [123]. Predictive models
from electronic health records and imaging forecast treatment response, relapse risk, and
cognitive function following therapy in children with leukemia, paving the way for risk-
adapted trials and precision medicine. The models incorporate clinical, genomic, and
imaging variables, enabling stratification to inform the intensification or de-escalation of
therapies [123,124]. Many Al-based algorithms, such as deep learning, have emerged as
effective instruments for Al-assisted anticancer medication development. A comparison of
different models with accuracy and parameters is depicted in Table 2.
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Table 2. Comparison of Al algorithms along with different key features.

Al Models

Cancer Type

Data Type

Application

Performance Metrics

Key Features

Deep Learning CNN

Acute Lymphoblastic Leukemia

(ALL), AML, CML

Bone marrow cell
microscopy images

Classification of leukemias

Accuracy: 90-99%; Some
models >98%

Outperforms expert
hematologists; hybrid models
improve with genetic algorithms

Transcriptomic &
Methylation-Based ML

ALL Subtyping

mRNA sequencing, DNA
methylation profiles

Subtyping and diagnosis

Accuracy: 93.8-100%;
AUC up t0 99.98

Uses multi-omics; provides
reliable leukemia subtype
discrimination

ML Classification (SVM, RF)

Acute Promyelocytic Leukemia

Flow cytometry

Leukemia classification

ACC: 94.2%; AUC: 99.5

Effective in flow cytometry data

DL-CNN

Pediatric Brain Tumors
(Medulloblastoma, Gliomas,

Ependymomas)

MRI sequences,
Histological images

Tumor subtype classification
and diagnosis

Accuracy: 75-95.5%;
AUC: 0.81-0.99

Improved sensitivity and
specificity; supports real-time
and intraoperative diagnostics

Temporal Deep Learning Model

Pediatric Gliomas

Sequential brain MRI scans

Predict recurrence risk

Accuracy: 75-89%

Uses temporal learning on
multiple longitudinal scans,
outperforming
single-timepoint methods

DL-Based PET/MR Image

Pediatric Lymphoma

Ultralow-dose PET /MR images

Image quality enhancement,
dose reduction

Radiation dose reduction >90%

Augments image quality to
reduce radiation exposure
in imaging

Augmentation
.. . . o Early metastatic risk prediction;
ML Radiomics + CT Osteosarcoma CT scan of primary tumor Predict lung metastases Accuracy: 73% L
needs further validation
DL-CNN + Multimodal MRI Osteosarcoma MRI images (T1, Chemotherapy response Accuracy: 90% Differentiates necrotic vs. viable
STIR, postcontrast) evaluation tumor areas
. . . . Predict neoadjuvant Texture feature analysis
ML Model Using FDG PET Osteosarcoma Baseline FDG PET imaging AUC: Up to 0.863 . -
chemotherapy response improved response prediction
o . . Lesion detection and . o Differentiates Ewing sarcoma
CNN Classifier Ewing Sarcoma Radiographs differentiation Accuracy: ~90-94% and osteomyelitis effectively
o . . . . Tumor differentiation Sensitivity: 78.1%; Outperforms human experts for
DL-CNN Classifier Wilms Tumor Triphasic CT images and staging Accuracy: ~79% non-Wilms tumor detection

ML Classifiers (SVM, RF etc.)

Soft-Tissue Sarcomas

Radiological images,
histopathology slides

Malignant vs. benign
differentiation

Accuracy: 80.8-90.5%;
AUC: 0.88-0.96

Applied on histopathology and
imaging, effective in pediatric
soft-tissue masses classification

CNN-Based Dermatology Al

Infantile hemangiomas

Clinical and dermoscopic photos

Disease diagnosis

Accuracy: 91.7%

Non-invasive clinical
image-based Al diagnosis

Classifies brain tumors accurately

ML & Proteomics

Pediatric Brain Tumors

CSF proteomic profiles

Tumor subtype classification

AUC: 0.97-1

with proteomics and
ML algorithms

Raman Spectroscopy + ML

Intraoperative Pediatric
Brain Tumors

Raman spectroscopy data

Real-time tumor vs. normal
tissue differentiation

AUC: 0.91-0.94

Enables safe tumor
resections intraoperatively
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5. Analysis of Genomic and Molecular Data

Al is also applied when examining pediatric cancer patients’ transcriptome, proteome,
and genetic data to find promising molecular targets for future medication development.
Al contributes to developing targeted medicines suited to the unique molecular profiles of
pediatric patients by identifying genetic changes that fuel cancer growth.

5.1. Pediatrics Malignancies and Genome Landscape

Early large-scale sequencing studies of pediatric malignancies highlighted the gen-
erally low mutational burden while identifying novel driver genes [125]. Furthermore,
the whole-genome sequencing (WGS) investigations of acute myeloid leukemia (AML), T
cell acute lymphoblastic leukemia (T-ALL), and Wilms tumor revealed subtype-specific
driving events and highlighted the interaction between germline and somatic changes in
the pathogenesis of juvenile cancer. These investigations have identified several pathways
unique to juvenile cancer [125,126]. For instance, pediatric AML is distinguished by fre-
quent age-dependent gene fusion events and focused regions of gene deletion; however,
both adult and pediatric AML are generally characterized by a low mutational burden
and a lengthy “tail” of uncommon mutational events [127]. Furthermore, it was shown
that certain co-occurring occurrences, such as a NUP98-NSD1 fusion or FLT3-ITD (internal
tandem duplication) with the WT1 mutation, were indicative of poor outcomes, particularly
in pediatric AML [128].

5.2. Al Resources for Genome Landscape Research

Analyses of the enormous and complex amounts of data produced by pediatric cancer
genome studies have been completely transformed by Al [129]. The essential tools and
resources that play a significant role in understanding pediatric cancer through genomic
studies are listed in Table 3.

Table 3. Al-based implication models for pediatric oncology.

AI Approaches Explanation Ref.
Variant identification Identify and classify the somatic apd other genomic alterations from [130]
sequencing data.
Pattern recognition and discovery Discover hld.den relationships and patterns in large datasets to identify [9,131]
new driver genes, pathways, and possible treatment targets.
Integration of multi-omics data Integrate information from genomics, transcriptomics, proteomics, and [132,133]

other omics data sources for treatment prediction.

Predictive modeling

Make informed clinical decisions and enhance the care of individual
patients by using their genetic profiles to predict treatment success, [134]
relapse risk, and patient outcomes.

Optimize clinical trial design and predict treatment responses based on

Clinical Trial Design and Patient Stratification patient characteristics and molecular profiles. [135]
Prognostic and Predictive Analytics Survival prediction and recurrence risk for the patients [136]
Telemedicine and Remote Monitoring Remote consultations and continuous monitoring of patients [137,138]

6. Conclusions

Cancer diagnosis has been transformed with the advent of Al methods. Al techniques
have been applied broadly in adult cancers and pediatrics. However, there are very few
specialized uses of Al algorithms in children’s cancer, most likely because there are not
sufficient datasets to understand the etiology of many pediatric cancers better. Most CNNs
cannot be simply generalized from children to adults, and thus well-trained CNN architec-
tures learned from adults cannot be applied directly to pediatric oncology. Therefore, Al
algorithms specifically developed for use in pediatric oncology are required. Based on the
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gathered data, there is immense scope for application in pediatric cancers using Al, which
can be validated for application in assisting therapeutic decisions in the near term.

Despite promising results, the application of ML and DL in pediatric oncology is
confronted with certain field-specific limitations. Foremost among them is the unavailability
of large, high-quality pediatric datasets due to the low incidence of pediatric cancers and
ethical limitations in pediatric research. Small sample sizes limit the ability of ML models,
especially data-hungry deep learning architectures, to generalize to diverse pediatric
populations [139]. The heterogeneity of childhood tumors also hinders the development of
models, as clinical and molecular diversity require integrative, multi-modal datasets that
are rarely available in adequate quantities. The standardization and interoperability of data
across centers are still lacking, limiting collaborative studies and external validation [140].
Privacy and ethical issues are significant hurdles in data sharing in pediatrics, where
stringent protections sometimes restrict data availability for model training. Moreover,
the interpretability of complex ML/DL models is crucial in the clinical environment to
establish trust among clinicians; reliance on “black-box” deep learning methods resists
transparency and accountability of decisions [141].

Regulatory frameworks governing the application of Al in medicine are being devel-
oped continuously, generating uncertainties regarding model validation, approval, and
continuous monitoring, especially for pediatrics-specific tools. Practical challenges include
compatibility with existing clinical workflow and electronic health records, computational
costs, and differences in technical infrastructure across sites of care. The subject of machine
learning in pediatric oncology is still in its infancy, according to this systematic study. The
field will advance with the help of enhanced methodology, larger datasets, and uniform
reporting standards. Numerous potentials exist to use machine learning techniques in
pathology, imaging, and electronic health records to find novel biomarkers, algorithms,
and tools to enhance the care of children with cancer.

Advancements in transfer learning, where the model is pre-trained on adult oncology
data and subsequently fine-tuned for pediatric use, promise to alleviate data constraints.
Federated learning permits simultaneous model training without data exchange, ensuring
privacy while improving robustness. The further incorporation of ML with multi-omics
and multi-modal imaging databases promises to unlock new biomarkers and therapeutic
directions [140]. The development of XAl techniques is important to enhance the trans-
parency and acceptability of ML models in pediatric oncology to enable clinicians to
understand model thinking and integrate predictions into clinical decision-making [139].
The standardization of data collection protocols, expansion of open-access pediatric oncol-
ogy databases, and encouragement of interdisciplinary collaborations will be the building
blocks of future progress. Furthermore, integrating ML and DL into clinical trials and
treatment regimens could facilitate adaptive, precision pediatric oncology treatment, en-
hancing survival and limiting long-term toxicity. Novel Al applications could support
pharmacogenomics, fine-tune radiotherapy doses, and assist in the identification of patients
at risk for treatment toxicities.
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