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Background:Myocardial ischemia is a common early symptom of cardiovascular disease
(CVD). Reliable detection of myocardial ischemia using computer-aided analysis of
electrocardiograms (ECG) provides an important reference for early diagnosis of CVD.
The vectorcardiogram (VCG) could improve the performance of ECG-based myocardial
ischemia detection by affording temporal-spatial characteristics related to myocardial
ischemia and capturing subtle changes in ST-T segment in continuous cardiac cycles. We
aim to investigate if the combination of ECG and VCG could improve the performance of
machine learning algorithms in automatic myocardial ischemia detection.

Methods: The ST-T segments of 20-second, 12-lead ECGs, and VCGs were extracted
from 377 patients with myocardial ischemia and 52 healthy controls. Then, sample entropy
(SampEn, of 12 ECG leads and of three VCG leads), spatial heterogeneity index (SHI, of
VCG) and temporal heterogeneity index (THI, of VCG) are calculated. Using a grid search,
fourSampEn and two features are selected as input signal features for ECG-only and VCG-
only models based on support vector machine (SVM), respectively. Similarly, three features
(SI, THI, and SHI, where SI is the SampEn of lead I) are further selected for the ECG + VCG
model. 5-fold cross validation was used to assess the performance of ECG-only, VCG-
only, and ECG + VCG models. To fully evaluate the algorithmic generalization ability, the
model with the best performance was selected and tested on a third independent dataset
of 148 patients with myocardial ischemia and 52 healthy controls.

Results: The ECG + VCG model with three features (SI,THI, and SHI) yields better
classifying results than ECG-only and VCG-only models with the average accuracy of
0.903, sensitivity of 0.903, specificity of 0.905, F1 score of 0.942, and AUC of 0.904, which
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shows better performance with fewer features compared with existing works. On the third
independent dataset, the testing showed an AUC of 0.814.

Conclusion: The SVM algorithm based on the ECG + VCG model could reliably detect
myocardial ischemia, providing a potential tool to assist cardiologists in the early diagnosis
of CVD in routine screening during primary care services.

Keywords: myocardial ischemia, vectorcardiogram (VCG), sample entropy (SampEn), Lyapunov index, support
vector machine (SVM)

1. INTRODUCTION

Myocardial ischemia is a condition in which the perfusion of
heart muscle is insufficient due to an obstructive plaque, coronary
artery spasm, or coronary microvascular dysfunction (Liu H.
et al., 2020; Paolo Severino, 2020). Myocardial ischemia can lead
to cardiovascular events including acute myocardial infarction
death and sudden cardiac death (SCD) (Moran et al., 2014). It
accounts for 16% of the world’s total deaths and has been listed as
a leading cause of mortality by the World Health Organization
(WHO), with the prevalence rate per 100,000 population
supposed to increase from 1,655 to 1845 by the year 2030
(Khan et al., 2020).

Clinically, the gold standard of myocardial ischemia diagnosis
is the invasive measurement of fractional flow reserve (FFR) and
index of microcirculatory resistance (IMR) using a coronary
guidewire (Kaski et al., 2018; Geng et al., 2022). Clinical
imaging techniques have also been applied to myocardial
ischemia detection, including invasive coronary angiography,
computed tomography (CT) coronary angiography, nuclear
myocardial perfusion imaging, and cardiac magnetic resonance
(CMR) (Kaski et al., 2018). However, due to their invasiveness,
radiation, high cost, and complicated operations that need special
training, the guidewire measurements and imaging modalities are
usually applied to patients with existing ischemic symptoms.
There is an increasing clinical need for a non-invasive, low-
cost, and convenient method to achieve early detection of
myocardial ischemia.

An electrocardiogram (ECG) is a non-invasive and low-cost
method to detect cardiac electrophysiology. Myocardial ischemia
can lead to specific changes in the ECG waveform. As shown in
Figure 1, the earliest manifestations of myocardial ischemia in
the ECG waveform include transient ST-elevation or ST-
depression and T-wave changes (Thygesen et al., 2012). These
typical changes in T wave and ST segment are commonly used as
indicators of myocardial ischemia. At present, ECG is the first-
line diagnostic tool in the assessment of patients with suspected
myocardial ischemia (Fihn et al., 2014). Due to the difficulty of
capturing subtle changes in ST-T segments, the sensitivity of
manual inspection in diagnosing myocardial ischemia is only
about 60% (Dehnavi et al., 2011; Stefan Weber et al., 2014). Even
patients with severe coronary stenosis may have no observable
ECG changes (Barstow et al., 2017).

To overcome the limitations of manual inspection, computer-
aided diagnostic frameworks based on myocardial ischemia-
relevant ECG features have been proposed (Alizadehsani et al.,

2019).To improve the sensitivity in myocardial ischemia
classification, most algorithms used for myocardial ischemia
classification and diagnosis focus on the feature extraction
from heart rate variability (HRV) (Goldenberg et al., 2019),
beat-based techniques (Acharya et al., 2016) or frame-based
schemes (a few consecutive beats) (Sharma and Sunkaria,
2017; Braun et al., 2020; Butun et al., 2020).

In particular, vectorcardiogram (VCG) can further empower
the ECG-based automatic detection of myocardial ischemia. VCG
is a special form of ECG and can be mathematically synthesized
from standard 12-lead ECG. The VCG consists of three
orthonormal leads (X, Y, and Z), reflecting cardiac electric
activity in the frontal, horizontal, and sagittal planes
(Grishman et al., 1951). Compared with the standard 12-lead
ECG, VCG represents both the magnitude and spatial
information of heart activity (Burger et al., 1956). Hence, VCG
provides higher sensitivity than ECG in diagnosing myocardial
ischemia, e.g., 70% using manual inspection (Dehnavi et al.,
2011), without sacrificing specificity (Hurd et al., 1981; Sascha
et al., 2021). The combination of ECG and VCG could achieve
even better performance (Lee et al., 1968; Correa et al., 2016).
Authors demonstrated that combination of ECG and ECG-
reconstructed VCG can achieve comparable performance to
the combination of ECG and measured VCG in detecting
myocardial ischemia (Bemmel et al., 1992; Kors et al., 1992).
Therefore, VCG-enhanced automatic early detection of
myocardial ischemia has gained increasing popularity (Ansari
et al., 2017).

VCG features extracted automatically are employed to detect
ischemic beats (Häggmark et al., 2008; Aranda Hernandez et al.,
2018; Braun et al., 2020; Chuang et al., 2020) or frames (Rahul
et al., 2021), discriminate myocardial ischemia (Deng et al., 2017),
localize the culprit infarct-related arteries in acute myocardial
infarction (Le et al., 2020), and screen for the presence of scar
tissue in the myocardium (Uyen Chau et al., 2018).

Deep features can be extracted from ECG or VCG in heart
beats or frames using various mathematical transforms (Acharya
et al., 2016). The number of features is highly diverse in existing
studies. 12 nonlinear ECG features (Liu J. et al., 2020), 72
multiscale energy and eigenspace ECG features (Sharma et al.,
2015), 288 ECG features in time, frequency, nonlinear, and
entropy domains (Liu et al., 2019), 7 (Correa et al., 2013) and
52 features of 3-lead ECG (Chuang et al., 2020), 290
multidimensional parameters of 5-lead VCG (Braun et al.,
2020), 22 features of 6-lead VCG (Dehnavi et al., 2011), and
322 pseudo-VCG features (Aranda Hernandez et al., 2018). These
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features are fed into machine learning (ML) models (Aranda
Hernandez et al., 2018; Chuang et al., 2020) to develop computer-
aided diagnostic models of myocardial ischemia, achieving higher
efficiency and accuracy than manual inspection.

Existing computer-aided approaches for myocardial
ischemia detection suffer from some limitations. Firstly,
there are few studies on the combination of ECG and VCG
in detecting myocardial ischemia. It has been demonstrated
that the models with both VCG and ECG features yielded the
highest performance, followed by the VCG-only and ECG-
only models, while the details of the algorithms were not
disclosed (Bemmel et al., 1992; Kors et al., 1992). In 2021,
Pollard et al. drew a similar conclusion using eight different
models based on global electrical heterogeneity extracted
from ECGs and VCGs (Pollard et al., 2021). Secondly, the
high-dimensional features lead to an oversaturation of small

datasets and a high computational burden. Some features are
correlated or insignificant for the classification (Pollard et al.,
2021). The minimization of the feature set is essential to
enhance the recognition capabilities of a model. Thirdly,
beat- or frame-based approaches are usually used, which
results in the incapacity to detect the subtle ST-T changes
in continuous cardiac cycles and oversampling.
Oversampling may weaken the model’s feasibility and
adaptability (Fu et al., 2020). Longer ECG records can
avoid the oversample and enhance the total scheme
efficiency and overall accuracy for the myocardial ischemia
diagnosis algorithm (Li et al., 2021).

To overcome the above-mentioned limitations, we propose a
novel algorithm for myocardial ischemia detection based on three
selected features extracted from ST-T segments of 20 s, 12-lead
ECGs, and derived 3-lead VCGs. Three support vector machine

FIGURE 1 | Ischemia-related changes in ST-wave (ST-segment). (A) ST wave from a healthy control. (B) ST wave from a patient with myocardial ischemia. Red line
presents ST wave in ECG.

Frontiers in Physiology | www.frontiersin.org May 2022 | Volume 13 | Article 8541913

Zhao et al. Early Detection of Myocardial Ischemia

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


(SVM) models fed with different signal features (ECG-only,
VCG-only, and ECG + VCG) are trained and tested. The
model with the best performance was selected as a potential
approach towards accurate, non-invasive, and low-cost detection
of myocardial ischemia.

2. MATERIALS AND METHODS

As shown in Figure 2, work consists of four parts: data
collection, preprocessing, feature calculation, and
classification. Firstly, 20-second (20 s), 12-lead ECGs were

FIGURE 2 | System framework.
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collected and converted into 3-lead VCGs. The onset of ST-wave
and offset of T-wave were marked on the ECGs and VCGs.
Then, multi-domain characteristics analysis was performed to
extract the features, including sample entropy (SampEn) from
ECGs’ and VCGs’ ST-T segments, as well as spatial
heterogeneity index (SHI) and temporal heterogeneity index
(THI) from VCGs’ ST-T segments. Subsequently, the most
effective features were selected from the training dataset,
combined (i.e., ECG-only, VCG-only, ECG + VCG), and
deployed in support vector machine (SVM) models for
myocardial ischemia identification. To validate the feature
selection results, the classification performance of the selected
features was compared with that of principal component
analysis (PCA)-derived features. With 5-fold cross validation
based on clinical diagnosis, the results of three SVM models
(ECG-only, VCG-only, and ECG + VCG) were
comprehensively evaluated and compared to investigate if
VCG features can improve the accuracy of myocardial
ischemia detection. Finally, the final selected model was
tested on a third independent dataset.

2.1 Data Collection
The 10-second (10 s) ECG is common in clinical practice, whilst
longer ECGs can improve the total scheme efficiency and overall
accuracy of myocardial ischemia detection algorithms (Li et al.,
2021). However, it is difficult for some patients to stay in the
supine posture for long period to get high-quality ECGs.
Consequently, 20sec segments are adopted in this work.

2.1.1 Datasets for Training and Validation
In this study, clinical data was collected from 429 subjects in two
cohorts. The data of 52 healthy controls (age: 43 ± 17 years; 41 males
and 11 females) were from the Physikalisch-Technische Bundesanstalt
(PTB) diagnostic ECG database (https://www.physionet.org/content/
ptbdb/1.0.0/) (Bousseljot et al., 1995; Goldberger et al., 2000). The
ECGs in this collection were obtained using a non-commercial, PTB
prototype recorderwith 16-bit resolution at a resolution of 0.5 μV/LSB
and a sampling frequency of 1,000Hz.

From November 2014 to November 2015, the data of 377
patients with myocardial ischemia were obtained from FuWai
Hospital, Beijing, China, with approval from the local ethics
committee for sharing and analyzing retrospective anonymized
patient data with informed consent form waived. Inclusion
criteria were suspected patients with coronary artery disease
(CAD) for coronary angiography with simultaneous ECG
records. The exclusion criteria were as follows:

1) The presence of heart diseases such as heart valve disease,
congestive heart failure, pulmonary arterial hypertension, or
left ventricular hypertrophy;

2) The presence of bundle branch blocks, as well as of non sinus
or paced rhythm.

The hospital diagnosis of myocardial ischemia, which was
used as the ground truth, was made by professional cardiologists
based on comprehensive analysis of clinical data and the
following positive indicators:

1) Suggestive clinical history and clinical examination;
2) Presence of coronary stenosis of >50%.

The 20 s, 12-lead resting ECGs were recorded using a
commercially available ECG device (Mindray Bene-Heart R12,
Shenzhen, China) with 16 bit precision at a resolution of 1 μV/
LSB and a sampling frequency of 1,000 Hz. The characteristics of
377 ischemic patients are presented in Table 1.

Finally, the 20 s, 12-lead ECGs from two groups (377 ischemic
patients and 52 healthy controls, as positive and negative samples,
respectively) were sampled at 1,000 Hz frequency with 16-bit
precision. Figure 1 shows the ECGs of two subjects from the
ischemic patient and control groups.

2.1.2 A Third Independent Database for Testing
To fully evaluate algorithmic generalization ability, a third
independent dataset was implemented for testing. The data
was collected from 200 subjects in two cohorts. Regarding
positive samples, 148 20 s ECGs were collected from 148
patients with myocardial infarction (age: 60 ± 11 years, 108
males and 40 females, 67 smokers, systolic blood pressure:
121 ± 19 mmHg, and diastolic blood pressure: 74 ± 13 mmHg)
of the PTB diagnostic ECG database with 16 bit precision at a
resolution of 0.5 μV/LSB and a sampling frequency of 1,000 Hz
(Goldberger et al., 2000).

As for negative samples, 52 20 s ECGs were randomly collected
from 52 healthy controls (age: 37 ± 15 years, 18 males and 34
females) of the China Physiological Signal Challenge in 2018
(CPSC 2018) database (http://2018.icbeb.org/Challenge.html)
with 16 bit precision at a resolution of 1 μV/LSB and a
sampling frequency of 500 Hz (Perez Alday et al., 2021; Reyna
Ma, 2021; Reyna Ma, 2022). Then, the 52 20 s ECGs were
resampled at 1,000 Hz.

2.2 Data Preprocessing
Firstly, the baseline drift and low-frequency fluctuations (e.g.,
respiratory movements) were removed using a high-pass
Butterworth filter at 0.67 Hz. The cutoff frequency setting in
high-pass filtering could significantly influence the morphology
of ST segments. The cutoff frequency of 0.67 Hz is recommended
for diagnostic purposes since it could remove baseline drifts with

TABLE 1 | Clinical characteristic of ischemic patients

Characteristics Values*

Age (years) 58 ± 10
Female 91/377
Chest pain 228/377
Dyspnea 196/377
Heart rate (bpm) 70 ± 10
Ejection fraction (%) 62 ± 6
Left ventricular end diastolic diameter (mm) 48 ± 5
Systolic blood pressure (mmHg) 129 ± 16
Diastolic blood Pressure (mmHg) 79 ± 12
Smoker 225/377
Family history of CAD 19/377

*The continuous values were provided as mean ± SD, for normally distributed data while
the categorical data was presented as numbers and percentages.

Frontiers in Physiology | www.frontiersin.org May 2022 | Volume 13 | Article 8541915

Zhao et al. Early Detection of Myocardial Ischemia

https://www.physionet.org/content/ptbdb/1.0.0/
https://www.physionet.org/content/ptbdb/1.0.0/
http://2018.icbeb.org/Challenge.html
https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


no obvious distortion of ST segments (Roger Abächerli and
Schmid, 2009; Luo and Johnston, 2010).

Subsequently, high-frequency noises, including power-line
interference (50/60 Hz) and electromyogram noise (10–230Hz)
(Yazdani et al., 2017), should be removed since they can affect the
localization of ST-segments in ECG waves and affect the detection of
myocardial ischemia (Christov et al., 2017). Band-pass filtering is
widely used in ECG signal processing for eliminating high-frequency
noise and performs well in R-peak detection. Regarding two
commonly used cutoff frequencies (i.e., 40 and 150Hz) in low-
pass filtering of ECGs, 40 Hz could effectively eliminate the high-
frequency noises but lead to the elevation of J-point, i.e., the junction
between QRS termination and ST-segment onset (Nakagawa et al.,
2014; Christov et al., 2017), resulting in inaccuracy of the onset of the
ST segment, whereas 150Hz could overcome this problem but cause
a high level of residual noise (Ricciardi et al., 2016; Christov et al.,
2017). As compared with a band-pass filter, the discrete wavelet
transform could perform better in terms of eliminating high-
frequency noise and keeping the morphology feature points of the
ECG signal (Addison, 2005; Singh and Pradhan, 2018; Chen et al.,
2020), as illustrated in Supplementary Figure S1. Therefore, high-
frequency noise was removed using discrete wavelet transform and
wavelet thresholding (Kumar et al., 2021). Coif4 was utilized as a
wavelet basis function to decompose noise-containing ECGs into four
layers. The denoized ECGs were reconstructed using the inverse of
the discrete wavelet transform followed by the elimination of noise by
an adaptive threshold.

Next, 20 s,12-lead ECGs were standardized based on 25 mm/s
using a gain setting of 10 mm/mV (Kossmann et al., 1967) and
then transformed into VCGs (Jaros et al., 2019):

⎧⎪⎨⎪⎩ Vx � 0.38I − 0.07II − 0.13V1 + 0.05V2 − 0.01V3 + 0.14V4 + 0.06V5 + 0.54V6
Vy � −0.07I + 0.93II + 0.06V1 − 0.02V2 − 0.05V3 + 0.06V4 − 0.17V5 + 0.13V6
Vz � 0.11I − 0.23II − 0.43V1 − 0.06V2 − 0.14V3 − 0.20V4 − 0.11V5 + 0.31V6

.

(1)

Finally, the ST-T segments of ECGs and of VCGs were
detected employing a hybrid approach (Song et al., 2012). The
three-dimensional (3D) ST-T segments of VCGs are shown in
Figure 3.

2.3 Feature Extraction
Feature extraction is the process of revealing hidden ischemia-
related characteristics from ECGs and VCGs, which lays the
groundwork for detecting myocardial ischemia. In our proposed
scheme, features were extracted from ST-T segments in the
entropy domain, frequency domain, and Lyapunov index,
separately.

2.3.1 SampEn
For detecting myocardial ischemia, various entropies calculated
from HRV (Udhayakumar et al., 2019), ST segments (Rabbani
et al., 2011; Wei et al., 2012) or filtered 12-lead ECGs (Liu et al.,
2019) have been used. To quantitatively evaluate the complexity of
physiological time-series and diagnose diseases, Richman and
Moorman refined the approximate entropy algorithm and
introduced sample entropy (SampEn) by excluding the self-
matching of templates’ data length (Richman and Moorman,
2000). SampEn, defined as the negative natural logarithm of a
conditional probability, was employed in this study, since it is
largely independent of record length and enables more consistent
calculation results compared with approximate entropy (Richman
andMoorman, 2000). Given that two data sequences are similar for
m points, they remain similar at the next point, within a tolerance
“r” that represents a fraction of the series standard deviation.
SampEn is positively related to the signal complexity of each ECG
lead. Overall, the SampEn obtained from the ST segment of healthy
controls was less than that of ischemic patients (Rabbani et al.,
2011). Therefore, SampEnmay be an early indicator of myocardial
ischemia.

In our method, SampEn values were calculated from the ST-T
segments of ECGs
(Si, i � I, II, III, AVR,AVL, AVF,V1, V2, V3, V4, V5, V6) and
VCGs (Si, i � Vx, Vy, Vz) based on existing methods (Richman
and Moorman, 2000; Antonio Molina-Picó et al., 2011; Marwaha
and Sunkaria, 2016). The major steps are as follows: Firstly, for
each ECG or VCG lead, its time series,
i.e., {x(n)} � x(1), x(2),/, x(N) was formed by splicing beat-
to-beat ST-T segments followed by standardization: x � x−μ

σ .
where μ and σ are mean value and the standard deviation of
the whole time series. N is the length of the time series.Then, the
vectors Xm(1),/, Xm(N −m + 1) and
Xm+1(1),/, Xm+1(N −m) with a dimension of m and m + 1
were formed, respectively. Here Xm(j) �
{x(j), x(j + 1),/, x(j +m − 1)}, 1≤ j≤N −m + 1 and
Xm+1(j) � {x(j), x(j + 1),/, x(j +m)}, 1≤ j≤N −m.

Subsequently, the distance between Xm(j) and Xm(z) was
defined as:

d{Xm(j), Xm(z)} � max
0≤k≤m−1

(∣∣∣∣x(j + k) − x(z + k)∣∣∣∣), 1≤ z, j≤N
−m + 1, z ≠ j.

(2)

FIGURE 3 | Three-dimensional VCGs’ ST-T segments derived from
20sec, 12-lead ECGs.
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Aj(m, r) and Aj(m + 1, r) were defined as:

Aj(m, r) � nj(m, r)
N −m − 1

, j � 1,/, N −m + 1, (3)

Aj(m + 1, r) � nj(m − 1, r)
N −m − 1

, j � 1,/, N −m. (4)

Here nj(m, r) presents the number of vectors Xm(j) within r of
vector Xm(z): d(Xm(j), Xm(z))< r. r is the error tolerance
range of similar regions and is recommended between 0.1 and
0.25 times the standard deviation of time series. nj(m + 1, r)
presents the number of vectors Xm+1(j) within r of vector
Xm+1(z): d(Xm+1(j), Xm+1(z))< r, z ranges from 1 to N −m,
and z ≠ j.

φ(m, r) � 1
N −m

∑N−m

j�1
Aj(m, r), (5)

φ(m + 1, r) � 1
N −m

∑N−m

j�1
Aj(m + 1, r). (6)

Here φ(m, r) and φ(m + 1, r) are the probability that two
sequences match at m and m + 1 points, respectively.

Finally, SampEn was calculated as follows:

SampEn(N,m, r) � −lnφ(m + 1, r)
φ(m, r) , (7)

where the parameters r andmwere set to the best value (Richman
and Moorman, 2000; Marwaha and Sunkaria, 2016)
of r � 0.1, m � 2.

2.3.2 SHI and THI
The spatial heterogeneity index (SHI) and temporal heterogeneity
index (THI) reflect the spatial and temporal heterogeneity of 3D
trajectory, respectively (Deng et al., 2017). SHI (Deng et al., 2017)
was calculated based upon the Lyapunov index to describe the
spatial characteristics of VCGs’ ST-T segments, as described in
Eq. 8.

SHI � 1
N

∑N

n�1ln(dn2

dn1
), (8)

where N presents the length of VCGs’ ST-T segments, dn1 is the
distance between the nth data point and its nearest data points, and
dn2 denotes the distance between the n

th data points and its nearest
data points after 10 steps. THI (Deng et al., 2017) was calculated to
reveal the temporal characteristics of VCGs’ ST-T segments:

fi(w) � abs(F(Vsi)), i � x, y, z, (9)
where F is the Fourier transform, and Vsi represents the VCGs’
ST-T segments.

Then, the fi(w) was fitted as an exponential function with an
exponent λi.

γi � argminλi

∣∣∣∣fi(w) − fi(w) exp( − 0.001λi)
∣∣∣∣, i � x, y, z, λi

� 1: length(fi(w)).
(10)

Finally, THI was calculated as follows:

THI �
������∑3

i�1γ
2
i

3

√
. (11)

2.4 Myocardial Ischemia Detection
Using SVM
2.4.1 The Proposed Models
The SVMmodel is one of the most frequently utilized MLmodels
for cardiovascular disease detection (Alizadehsani et al., 2019)
and is constructed by projecting input vectors into a higher
dimensional space via a kernel function and capturing the
decision boundary (formally known as a hyperplane) with the
maximummargin between different classes. It has the advantages
of reducing empirical errors, preserving the complexity level of
the mapping function, and ensuring better performance. Thus, an
SVM model with the Gaussian radial basis function (RBF) kernel
was employed in this study to distinguish between healthy
controls and ischemic patients.

The extracted features were combined into vectors and fed
into the SVM model to classify the subjects (i.e., healthy control
vs. ischemic patients). For the model design, the ECG-only model
presented the SVM framework fed with ECGs’ SampEn only.
Similarly, the VCG-only model employed only the VCGs’
features in the SVM framework. Finally, the ECG + VCG
model presented the SVM framework utilizing selected ECG
and VCG features.

2.4.2 Feature Selection
Feature selection plays a critical role in improving the
performance of classification algorithms by identifying relevant
features and discarding irrelevant ones. Generally, a subset of
available features includes all relevant features, whereas the
remaining irrelevant features do not contribute to the
classification (Urbanowicz et al., 2018).

To minimize the number of the selected features and reduce
the computational burden, a grid search was implemented to
select the most influential features on the training dataset for each
model, as shown in Figure 4. Firstly, all the features with an
average accuracy of over 0.6 on the training dataset were selected
for the ECG-only and VCG-only models, separately. Then, all
possible permutations of the selected features were separately fed
into the corresponding SVMmodels to pick out the most effective
one for each model.

Regarding the ECG + VCGmodel, the selected ECG and VCG
features rather than all of the ECG and VCG features (17 in total:
15 SampEn, SHI, THI) were fed into the SVM model.
Subsequently, all possible permutations of the features with an
average accuracy of over 0.6 were selected using the grid search to
pick out the most useful one.

Finally, to verify that the grid search method can select the most
useful features with the fewest features, for each model (i.e., ECG-
only, VCG-only, ECG + VCG), the classification results using the
features selected by the grid search were compared with those using
the eigenvectors developed by the PCA algorithm, which is the
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commonest method for feature reduction (Alizadehsani et al.,
2019). The eigenvector developed using the PCA algorithm for
each model was titled as PCA-derived features. In the PCA
algorithm, Minka’s maximum likelihood estimation was utilized
to obtain the dimension of eigenvectors.

2.4.3 Evaluation Criteria
We evaluated the classification performance of the constructed
models using the area under the curve (AUC) of the receiver
operating characteristic (ROC) curve and calculated the following
metrics: accuracy, specificity, sensitivity, and F1 score according
to the expressions in Eqs 12–15.

Accuracy � TP + TN

TP + FP + FN + TN
, (12)

Specificity � TN

TN + FP
, (13)

Sensivity � TP

TP + FN
, (14)

F1 � 2TP
2TP + FP + FN

, (15)

where TP, TN, FP, and FN represent the true positive, true
negative, false positive, and false negative cases, respectively.

2.4.4 Cross-Validation
Considering the limited size of our dataset, to avoid any
overfitting caused by out-of-sample validation, we adopted a
5-fold cross-validation approach to evaluate the performance
of the proposed models. The data was randomly divided into
five groups, of which four groups were used for training and the
last group was used as a test dataset for verification. This process
was repeated five times, and the corresponding evaluation criteria
for each calculation were recorded.

2.4.5 Testing on a Third Independent Dataset
ECG parameters vary with ethnicity, age, gender, and region in
different populations (Tan et al., 2016; Ching-Hui Sia, 2019). To
further investigate the applicability and generalization ability of

our final selected model, i.e., the ECG + VCG model employing
(SI, THI, and SHI) for different populations, the testing was
performed on a third independent dataset.

2.5 Statistical Analysis
The statistical analysis was performed on SPSS (Version 25.0,
IBM Corp). Continuous values were presented as mean ±
standard deviation (SD) for normally distributed data and
median value (lower-upper quartiles) for non-normally
distributed data. The categorical data was presented as
numbers and percentages. The Kolmogorov-Smirnov test (K-S
test) was used to check whether the data was normally
distributed. Student’s t test (for normal distribution) or
Wilcoxon signed rank test (for non-normal distribution) was
deployed when appropriate. Statistical significance was defined as
p values less than 0.05.

2.6 Development Environment
The experimental setup comprised an i7-8550u@1.98GHz CPU
and 32GB of RAM. The data preprocessing and feature extraction
were implemented using the (R2014; The MathWorks Inc.,
Natick, United States). The SVM models were designed and
tested in Python 3.7 using Tensorflow 2.0 and the PCA algorithm.

3. RESULTS

3.1 ECG-Only Model for Myocardial
Ischemia Classification
The values of SampEn extracted from ECGs’ ST-T segments are
shown in Figure 5A. The SampEn’s mean values of ischemic
ECGs are obviously higher than those of healthy ones in most
leads except SV2 and SV3.

Figure 5B shows the average training accuracy of the SVM
models fed with SampEn of each ECG lead, i.e., Si. It can be
observed that SI, SII, SAVR, SAVF, and SV6 are more influential than
the remaining features, with an accuracy higher than 0.6. Table 2
lists two feature combinations selected using the grid search on

FIGURE 4 | The flow chart of feature selection using a grid search on the training dataset
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the training database with the highest classification capabilities.
(SI, SII, SAVF, SV6) outperforms (SI, SII, SAVR, SAVF, SV6) in respect
of the major evaluation criteria except the training sensitivity.
Thus, (SI, SII, SAVF, SV6) was selected as the input feature
combination for the ECG-only model.

For validation, the grid search results were compared with
those derived from PCA-derived features, as listed in Table 3. (SI,
SII, SAVF, SV6) selected using the grid search outperformed PCA-
derived features in all evaluation criteria. Therefore, (SI, SII, SAVF,
SV6) was verified as the best candidate for the ECG-only model.

3.2 VCG-Only Model for Myocardial
Ischemia Detection
The values of SampEn, SHI, and THI extracted from VCGs’ ST-T
segments are exhibited in Figure 6. Compared with healthy
controls, the patients with myocardial ischemia show higher
SampEn and THI (Figures 6A,B, respectively) but lower SHI
(Figure 6C).

In the grid search, (SVy, THI, SHI) and (THI, SHI) were
selected for further comparison with their corresponding
performance listed in Table 4, while the remaining feature
permutations were excluded. On the training dataset, the SVM
model utilizing (THI, SHI) outperformed that using (SVy,THI,
SHI) in major evaluation criteria except the training sensitivity
and AUC. Therefore, (THI,SHI) was chosen as the candidate for
the VCG-only model.

In Table 5, the VCG-only model employing (THI, SHI)
selected using the grid search outperforms the model with
PCA-derived features in most items except specificity and
AUC. Therefore, (THI, SHI) was verified as the input feature
combination for the VCG-only model.

3.3 ECG + VCG Model for Myocardial
Ischemia Diagnosis
To determine the best feature combination for the ECG + VCG
model, all the selected features (i.e., SI, SII, SAVR, SV6, SHI, and
THI) of the ECG-only and VCG-only models were included and
selected using a grid search. In a grid search, (SI, SV6, THI, SHI)
and (SI, THI, SHI) were picked up for further comparison with
their corresponding modeling evaluation criteria listed in
Table 6, while other permutations were ruled out. Table 6
demonstrates that (SI, THI, SHI) yields better performance
than (SI, SV6, THI, SHI) on the training dataset. Thus, (SI,
THI, SHI) were selected as the best candidates for the ECG +
VCG model.

In Table 7, the ECG + VCG model employing (SI, THI, SHI)
selected by a grid search outperforms that employing PCA-
derived features in all evaluation criteria. Therefore, (SI, THI,
SHI) were validated as the optimal feature combinations for the
ECG + VCG model.

3.4 Comparison Among ECG-Only,
VCG-Only, and ECG + VCG Models
Figure 7 shows the quantitative comparison of evaluation criteria
among ECG-only, VCG-only, and ECG +VCGmodels. The ECG
+ VCG model achieves higher median and mean values for the
evaluation criteria than any of the remaining models. The
Student’s t-tests show that the ECG + VCG model is

FIGURE 5 | SampEn of each ECG lead from healthy controls and
patients with myocardial ischemia. (A) SampEn of each ECG lead. (B) The
average accuracy of an ECG-only model using each single Si on the training
dataset.

TABLE 2 | Results of feature selection using the grid search for the ECG-only model on the training dataset

Input Vectors Accuracy Specificity Sensitivity F1 Score AUC

(SI,SII,SAVF,SV6) 0.921 ± 0.004 0.911 ± 0.004 1.000 ± 0.000 0.953 ± 0.002 0.955 ± 0.002
(SI,SII,SAVR,SAVF,SV6) 0.889 ± 0.034 0.873 ± 0.009 1.000 ± 0.000 0.932 ± 0.006 0.936 ± 0.004
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significantly better than the ECG-only model in all evaluation
criteria (p < 0.05 for all). Meanwhile, it is significantly superior to
the VCG-only model in terms of sensitivity and AUC (p < 0.05 for
both). Therefore, the ECG + VCG model employing (SI, THI,
SHI) was the optimal one for myocardial ischemia detection.

3.5 Testing of the Selected Model on a Third
Independent Dataset
On the third independent dataset, the testing results of the
selected ECG + VCG model employing (SI, THI, SHI) were
0.790 accuracy, 0.764 sensitivity, 0.865 specificity, 0.843 F1
score, and 0.814 AUC.

4. DISCUSSION

4.1 Summary of Results: In Comparison
With Existing Studies
In this work, we developed a reliable ECG + VCG SVMmodel for
myocardial ischemia detection using the features extracted from
VCGs’ and ECGs’ ST-T segments. The classification effectiveness
of three models was comprehensively compared across five
evaluation criteria.

The comparison of our model against state-of-the-art
myocardial ischemia detection approaches is listed in Table 8.
Our model yields better effectiveness by using a much lower
number of features but longer ECG and VCG signals. The major
reason behind this is that the comprehensive utilization of ECGs’
and VCGs’ ST-T segments could capture more ischemia-induced
temporal and spatial changes. Specifically, ischemia-related beat-
to-beat changes in ST-T segments were measured by the temporal
and spatial features used in this work, while beat-based (Correa
et al., 2014; Aranda Hernandez et al., 2018; Braun et al., 2020) ML
models only utilized the changes in a single heartbeat. Beat-to-
beat changes in the T wave or ST segment result from the increase
in ischemia-induced repolarization dispersion between ischemic
and healthy regions as well as between different ischemic regions
(Arini et al., 2014). SHI was extracted to evaluate the beat-to-beat
changes of VCGs in 3D space. Besides, ischemia-induced
temporal changes can be reflected in the VCG waveform and
the time delays among ECG leads (Correa et al., 2014). Therefore,
the temporal characteristics of beat-to-beat changes in ST-T
segments were assessed by VCGs’ THI and ECGs’ SampEn
simultaneously. Besides, longer signals used in this work could
enhance the total scheme efficiency and overall accuracy (Hussein
et al., 2021; Li et al., 2021).

TABLE 3 | Comparison of the classification effects of two different feature selection methods for the ECG-only model

Methods Accuracy Specificity Sensitivity F1 Score AUC

Grid search 0.861 ± 0.033 0.876 ± 0.043 0.749 ± 0.131 0.916 ± 0.022 0.813 ± 0.057
PCA 0.766 ± 0.021 0.757 ± 0.022 0.829 ± 0.111 0.850 ± 0.015 0.793 ± 0.054

FIGURE 6 | Deep features extracted from VCGs. (A) SampEn’s value.
(B) THI. (C) SHI.
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In some existing studies, patients with myocardial infarction
were selected from the STAFF III database as positive samples of
ischemia (Correa et al., 2013; Correa et al., 2014; Aranda
Hernandez et al., 2018), in which the ischemic changes in ECG
waveform are more obvious than asymptomatic patients. In
comparison, we included ischemic patients with CAD but not

limited to symptomatic ones with myocardial infarction, which
provides a better understanding of ischemia instead of focusing on
myocardial infarction. Moreover, the VCGs from the same patient
with myocardial infarction before and during the percutaneous
transluminal coronary angiography (PTCA) procedure were
selected from the STAFF III database as the corresponding
negative and positive samples (Correa et al., 2014; Aranda
Hernandez et al., 2018). In contrast, our patients and controls
were recruited separately, where the effect of clinical intervention
could be excluded to better reflect the ischemic changes.

Compared with state-of-the-art myocardial ischemia
detection approaches, our final selected model was tested on a
third independent database rather than a testing dataset separated
from the same cohort. ECG parameters depend on physiological
factors including ethnicity, sex, age, and body size (Tan et al.,
2016; Ching-Hui Sia, 2019). As a result, ECG-based screening of
CAD is influenced by a myriad of factors, including
demographics, anthropometrics, level of physical fitness, and
population-specific reference ranges among distinct population
groups (Ching-Hui Sia, 2019). Therefore, testing on a third
independent database can comprehensively evaluate the
algorithmic applicability and generalization ability for different
populations. As far as we know, we tried the testing in different
populations for the first time. Despite the inconsistent data
distribution and the heterogeneity between cohorts, the major
evaluation criteria are above 0.8, except for the sensitivity and
accuracy, which demonstrated that our proposed model provides
the possibility for applications in different populations.

TABLE 4 | Results of feature selection using the grid search for the VCG-only model on the training dataset

Input Vectors Accuracy Specificity Sensitivity F1 Score AUC

(THI,SHI) 0.887 ± 0.005 0.889 ± 0.005 0.870 ± 0.018 0.932 ± 0.003 0.880 ± 0.010
(Svy,THI,SHI) 0.863 ± 0.016 0.856 ± 0.019 0.918 ± 0.018 0.917 ± 0.011 0.887 ± 0.012

TABLE 5 | Comparison of the classification effects of two different feature selection methods for the VCG-only model

Methods Accuracy Specificity Sensitivity F1 Score AUC

Grid search 0.877 ± 0.034 0.884 ± 0.044 0.827 ± 0.073 0.926 ± 0.022 0.856 ± 0.029
PCA 0.870 ± 0.044 0.876 ± 0.046 0.829 ± 0.065 0.921 ± 0.029 0.921 ± 0.029

TABLE 6 | Results of feature selection using the grid search for the ECG + VCG model on the training dataset

Input Vectors Accuracy Specificity Sensitivity F1 Score AUC

(SI,THI,SHI) 0.907 ± 0.008 0.904 ± 0.008 0.923 ± 0.017 0.944 ± 0.005 0.913 ± 0.010
(SI,SV6,THI,SHI) 0.904 ± 0.007 0.902 ± 0.007 0.918 ± 0.024 0.942 ± 0.005 0.910 ± 0.014

TABLE 7 | Comparison of the classification effects of two different feature selection methods for the VCG + ECG model

Methods Accuracy Specificity Sensitivity F1 Score AUC

Grid search 0.903 ± 0.040 0.903 ± 0.043 0.905 ± 0.086 0.942 ± 0.025 0.904 ± 0.049
PCA 0.894 ± 0.039 0.898 ± 0.046 0.865 ± 0.046 0.936 ± 0.025 0.882 ± 0.028

FIGURE 7 | The boxplots of the accuracy, specificity, sensitivity, F1
score, and AUC for myocardial ischemia detection correspond to the ECG-
only, VCG-only, and ECG + VCG models.
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4.2 Importance of VCG in Detecting
Myocardial Ischemia
Our ECG + VCG model outperforms the ECG-only and VCG-
only ones for myocardial ischemia detection, which is in
accordance with existing studies (Lee et al., 1968; Häggmark
et al., 2008; Correa et al., 2016). The ECG measurements are
based on the lead theory, which assumes that cardiac
electrophysiological activities form a heart vector which
moves periodically in 3D space in cardiac cycles, forming
VCG loops. Ischemia-induced repolarization dispersion can
change the temporal and spatial properties of the heart
vector. Thus, the ST vector is called the “ischemia vector”
due to its sensitivity to myocardial ischemia. VCG could
reflect the dynamics of repolarization abnormalities (Hasan
and Abbott, 2016). Both ECG and VCG signals have
ischemia-related temporal changes, while VCG uniquely
shows the spatial changes.

VCG is a recurring, near-periodic pattern of cardiac dynamics
and represents the trajectory of the tip of heart vectors in 3D
space. From VCG which reflects both the magnitude and
direction of the heart vector, the dysfunction of the ischemia-
related back region of the heart can be detected. In contrast, ECG
is the secondary projection of VCG loops on the lead axis
(Okamoto et al., 1982), which only reflects the magnitude but
not the orientation of the heart vector (Hasan et al., 2012). A
particular ECG lead describes the heart vector from a fixed
direction, making it difficult to detect electrical activity in
some areas of the heart. For example, 12-lead ECG has limited
sensitivity in detecting an acute posterior injury pattern during
circumflex coronary artery ischemia (Khaw et al., 1999).
Therefore, VCG plays a key role in improving the accuracy in
detecting myocardial ischemia.

4.3 Relationship Between Features and
Myocardial Ischemia
In this study, SI, THI, and SHI were selected as the most crucial
features for the ECG + VCGmodel. These features can reflect the
heterogeneous repolarization process resulting from the decrease
in conduction velocity and the duration of action potential leads
(Janse and Wit, 1989) during myocardial ischemia.

SampEn extracted from ischemic ST-T segments is higher than
that from healthy ones in most leads, as shown in Figure 5A;
Figure 6A. The heterogeneous repolarization is reflected in the ECG
via the changes in ST-segment and T-wave (Correa et al., 2014), such
as ST segment elevation or depression and T-wave changes (e.g.,
inverted T wave, biphasic T wave, or high-tip T wave). Therefore,
these ischemia-related changes increase the complexity of beat-to-
beat ST-T segments, leading to a higher SampEn. It is demonstrated
that ST segments induced by myocardial ischemia have relatively
large morphological variability (Wei et al., 2012). The average
SampEn obtained from ischemic ST segments of ECGs was
found to be higher than that of healthy subjects (Rabbani et al.,
2011). SampEn extracted from the filtered ECGs could reflect
ischemia-induced myocardial infarction (Liu et al., 2019).
Therefore, SampEn is a reliable feature of myocardial ischemia.

The results in Figures 6B,C and Table 5 suggest that SHI and
THI calculated from VCGs’ ST-T segments reflect the heterogeneity
of ventricular repolarization induced by ischemia. Usually, the
heterogeneous repolarization is reflected in the VCG by the
changes in the QRS loop, T-wave vector, and ST vector (Correa
et al., 2014). Spatial TT′ angle and beat-to-beat variability in T-loop
roundness represent intrinsic measures of beat-to-beat
repolarization ability (Feeny and Tereshchenko, 2016).
Compromised hearts have irregular and distorted T-loops, whilst
healthy ones have smooth planar loops. Myocardial ischemia

TABLE 8 | Comparison of the proposed model against existing approaches on myocardial ischemia detection

Authors Year Algorithm Cohorts Signals Num. of
Features

Performance

Kors et al. (1992) 1992 Decision tree 1,220 subjects from CSE database 10 s VCGs and
ECGs

Unknown Overall Acc:
84.3

Dehnavi et al. (2011) 2011 Forward neural
networks

60 ischemic patients, 10 healthy controls 3 s VCGs 22 Sen:70
Spec:86

Correa et al. (2013) 2013 Linear discriminant
analysis

80 ischemic patients in MI from STAFF III database, 52
healthy controls from PTB database

VCG beats 8 Sen:88.5
Spec: 92.1

Correa et al., (2014) 2014 Linear discriminant
analysis

80 ischemic patients before (control) and during PTCA
from STAFF III database

VCG 4 out of 12 Sen: 90.5
Beats Spec:92.5

Aranda Hernandez
et al. (2018)

2018 The gradient boosting
method

98 ischemic patients before (control) and during PTCA
from STAFF III database

10 s VCGs 7 out of 328 Sen: 89.6
Spec:82.7

Braun et al. (2020) 2019 Five feed forward neural
networks.

406 ischemic patients,189 non-CAD patients VCG beats 27 out of
2,320

For female:
Sen: 90.2 ± 4.2
Spec:74.4 ± 9.8
Overall Acc:
82.5 ± 6.4

This work 2021 SVM 377 ischemic patients, 52 healthy controls from PTB
database

20 s ECGs and
VCGs

3 Acc: 0.90 ± 0.04
Sen: 0.90 ± 0.04
Spec:
0.90 ± 0.08

abbreviations: Acc: accuracy. Sen: sensitivity. Spec: specificity. CSE, database: Common Standards for Quantitative Electrocardiography database. PTCA: percutaneous transluminal
coronary angiography.
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changes the T vector angle and T loop morphology. Meanwhile, the
spatial orientations andmagnitudes of ST vectors were not stable (ter
Haar et al., 2013). Therefore, features of VCGs’ ST-T segments can
be indicators of myocardial ischemia (Correa et al., 2014; Dong et al.,
2018). ST-T interval characterizations have significant differences
before starting and during the PTCA procedure in patients with
acute myocardial ischemia (Correa et al., 2014).We hypothesize that
beat-to-beat changes in T vector and ST vector make ischemic
trajectories of VCGs’ ST-T segments more chaotic with more
perturbations compared with healthy ones. SHI and THI can
capture the ischemia-related chaotic spatial and temporal
characteristics of VCGs and therefore distinguish ischemic and
normal subjects (Deng et al., 2017).

4.4 Advantages, Limitations, and Future
Directions
Our proposed model affords the possibility of noninvasive detection
of myocardial ischemia in different populations. It could be
implemented in ECG acquisition systems with VCG
mathematically synthesized from standard 12-lead ECG. There
will be no extra workload for operators, since feature extraction
and classification algorithms are automatic. Compared with PCA-
derived features calculated from all features using a linear transform,
ourmodel is based on theminimal number of features selected using
a grid search, which is achievable on wearable devices where the
computational resources are limited. Therefore, it could become a
practical, easy-to-accept, and cost-effective tool for myocardial
ischemia detection in various application scenarios, including
routine community screening, older people’s homes, and daily
monitoring using wearable ECG sensors. The results can provide
an important reference for clinicians on the early diagnosis of CAD.

There are some limitations to this work. First, the number of
samples, specifically negative samples, is relatively small. Secondly,
the evaluation criteria of our final selected model on a third
independent dataset are lower than those of other state-of-the-art
algorithms since ECGs from the training and testing datasets were
collected from different populations with different acquisition
equipment. Thus, the difference in physiological characteristics
may affect the results. Thirdly, we focused on the
electrophysiological features, while other clinical examination
results were not included in our model. In future studies, the
feature extraction from 10 s ECGs can be explored to enable
daily clinical use. The combination of ECG features and clinico-
radiological parameters can be deployed to achieve higher accuracy
in ischemia detection. A large-scale mixed database of multicenter
datasets in different populations can be built to further verify our
conclusions and improve the accuracy among different populations.

5. CONCLUSION

The ECG +VCGmodel can outperform the ECG-only and VCG-
only models in identifying myocardial ischemia using only three

features (SI, THI, and SHI) extracted from VCGs’ and ECGs’ ST-
T segments, providing a potential tool for non-invasive detection
of myocardial ischemia.
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