
Timing within the menstrual cycle, sex, and the use of
oral contraceptives determine adrenergic suppression
of NK cell activity

K Shakhar, G Shakhar, E Rosenne and S Ben-Eliyahu

Department of Psychology, Tel Aviv University, Tel Aviv 69978, Israel

Summary Physiological responses that involve adrenergic mechanisms, such as stress-induced changes in cardiovascular indices, were
reported to fluctuate along the menstrual cycle. Metastatic development following surgery was also reported to vary according to the
menstrual phase during which a primary breast tumour was removed. Natural killer (NK) cells are believed to play an important role in
controlling metastases. Our recent studies in rats demonstrated that adrenergic suppression of NK activity and of resistance to metastasis is
more profound during oestrous phases characterized by high levels of oestradiol. In the current study in humans, we examined the in vitro
impact of a β-adrenergic agonist, metaproterenol (MP), on NK activity, comparing blood drawn from (a) women tested at 3–4 different phases
of their menstrual cycle (n = 10), (b) women using oral contraceptives (OC) (n = 10), and (c) men (n = 7). NK activity in each blood sample
was assessed in the presence of 5 different concentrations of MP (10–8 M to 10–6 M), and in its absence (baseline). The results indicated
marked group differences in the magnitude of NK suppression by MP: EC50 was 2.6-fold lower in the luteal phase compared to the follicular
phase, and 1.8-fold lower in OC users compared to men, who were least susceptible to the effects of MP. No significant group differences or
menstrual effects in baseline levels of NK activity were evident. These findings provide the first empirical evidence for menstrual regulation of
adrenergic impact on cellular immune competence. Relevance of these findings to the relation between the timing of breast cancer excision
within the menstrual cycle and survival rates is discussed. © 2000 Cancer Research Campaign http://www.bjcancer.com
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Several studies have demonstrated that the menstrual cycle modu-
lates the intensity of adrenergic responses as well as the severity of
several pathological conditions that involve adrenergic mechan-
isms. For example, increased cardiovascular responses to stress
were reported to occur during the luteal phase of the menstrual
cycle (Manhem et al, 1991; Tersman et al, 1991), and the adminis-
tration of oestrogen potentiated the stress-induced increase in heart
rate and blood pressure (Manhem et al, 1996). Asthma, another
adrenergic-mediated condition, was reported to worsen during the
premenstrual period (Pauli et al, 1989; Case and Reid, 1998), and
treatment with progesterone was reported to prevent menstrually
related exacerbation of asthma attacks (Beynon et al, 1988).
Additionally, about 60% of women suffering from migraine
headaches experience an increase in the frequency of migraines
during the perimenstrual phase (Case and Reid, 1998). Migraines
may also involve adrenergic processes, as plasma levels of
noradrenaline decrease and its metabolite levels increase during
attacks (Marcus, 1995).

Although ample evidence indicate that stress and adrenergic
activity can affect immune competence (Sheridan et al, 1994;
Kiecolt-Glaser and Glaser, 1995; Benschop et al, 1996a; Cohen
and Herbert, 1996; Shakhar and Ben-Eliyahu, 1998), little is
known about possible modulation of such effects by the menstrual
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cycle. Wheeldon et al (1994) reported that β2-adrenoceptor density
and cAMP generation in response to isoproterenol in lymphocytes
are greater during the luteal phase compared to the follicular
phase. Other researchers, on the other hand, recorded no menstrual
variations in these indices (Santala et al, 1990; Litschauer et al,
1998). Administration of progesterone during the follicular phase
upregulated the expression of β2-adrenoceptor by lymphocytes
(Tan et al, 1996), suggesting the involvement of a specific sex
steroid. Redistribution of WBC subpopulations (NK cells, CD8
cells, CD3 cells and CD4 cells) following brief stress, was
reported to be unaffected by the menstrual cycle (Mills et al,
1995).

An immune function markedly affected by stress in both
animals and humans, is natural killer (NK) cell activity (Irwin,
1993; Schedlowski et al, 1993; Bachen et al, 1995; Ben- Eliyahu et
al, 1999; Laudenslager et al, 1999). NK cells are large granular
lymphocytes that lyse virally infected cells and malignant cells.
Catecholamines have been implicated in mediating the effects of
stress on NK activity (Benschop et al, 1996b; Shimizu et al, 1996;
Klokker et al, 1997; Ben-Eliyahu, 1998b). Human NK cells
express β2, α1 and α2 adrenoceptors (Jetschmann et al, 1997), and
β-adrenergic agonists were shown to suppress NK activity in vitro
by elevating intracellular cAMP levels (Whalen and Bankhurst,
1990). Recent studies in rats have shown that in-vivo administra-
tion of β-adrenergic agonists suppressed NK activity in a dose-
dependent manner, consequently compromising host resistance to
metastasis (Shakhar and Ben-Eliyahu, 1998).

Studies that examined baseline levels of human NK activity
during different phases of the menstrual cycle yielded inconsistent
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results. Some reported a decrease in NK activity during the follicu-
lar phase (White et al, 1982), some a significant reduction around
the periovulatory period (Sulke et al, 1985), and others reported no
differences (Thyss et al, 1984). Animal studies are also inconsist-
ent in this respect (Hrushesky et al, 1988; Ben-Eliyahu et al, 1996).
It is our hypothesis that whereas baseline levels of NK activity
may not be affected by the ovulatory cycle, the suppressive effects
of stress, specifically those induced by catecholamines, are modu-
lated by the ovulatory cycle. This hypothesis is in line with the
above-mentioned alterations in adrenoceptors expression and
cAMP responsivity along the menstrual cycle, and the major role
they play in suppressing NK activity under stress conditions.

Our recent studies in rats have supported this hypothesis:
whereas baseline levels of NK activity did not fluctuate along the
oestrous cycle, the in-vitro suppression of NK activity by a β-
adrenergic agonist was more pronounced in blood drawn during
the proestrus and oestrus phases (Ben-Eliyahu et al, 2000).
Corresponding findings were obtained using an NK-sensitive
model of metastasis. Administration of a β-adrenergic agonist
more profoundly suppressed resistance to metastasis during the
same cycle phases. Therefore, in the present study we examined
whether the menstrual cycle would affect the sensitivity of human
NK cells to β-adrenoceptor stimulation. Blood samples were taken
from women at different phases of the menstrual cycle, women
using oral contraceptives, and men, and both baseline NK activity
and the in-vitro response of NK cells to a β-adrenergic agonist
were assessed.

MATERIALS AND METHODS

Subjects

Overall 27 subjects, 21–52 years old (mean = 25.5), were recruited
to participate in the study. The aims of the study and its specific
protocol were explained to all subjects. All participants gave their
informed consent prior to the experiment. 11 subjects were women
who had a regular menstrual cycle (25–32 days) for at least 6
months prior to the experiment (mean age 29.9 ± 11.6), 9 subjects
have been using oral contraceptives (OC) for at least 6 months
(mean age 22.1 ± 1.4), and 7 subjects were men (mean age 23.6 ±
2.06). Whenever these 3 groups were compared, the 4 oldest
women with a regular menstrual cycle were excluded from the
analysis to obtain age-matched groups (reducing the mean age in
this group to 21.3 ± 0.5). All subjects filled a medical question-
naire and reported being free of acute or chronic disease and
substance abuse. Smokers were evenly distributed among the 3
groups (1 or 2 in each group). The study was approved by the
Ethics committee of Tel-Aviv University and conformed to the
Helsinki Declaration.

Experimental procedure

The experiment was conducted over 4 sessions during 4 con-
secutive weeks. Each woman with a regular cycle was tested 
at 3–4 different sessions spanning her menstrual cycle. In 
each session 2 men, 2–3 women who use OC and 7–10 women
with a regular cycle participated. Blood was collected into 1 non-
heparinized and 3 heparinized (50 U ml–1 blood) 12 ml vacuum 
test tubes between 07:30 and 09:00 a.m. The order of blood
collection was randomized between the different experimental
groups, and the experimenters were blind to the origin of blood
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samples. Whole and washed blood NK cytotoxicity assays were
performed on the freshly drawn blood immediately after blood
collection.

Aliquots of each blood sample were tested for NK activity in the
presence of different concentrations of the β-agonist metapro-
terenol (MP), or in its absence (baseline). Aliquots of the non-
heparinized blood were used to assess levels of sex hormones from
each blood sample.

Determination of menstrual phase

The menstrual phase at blood collection was determined based on
serum levels of oestradiol, progesterone, and LH measured in each
blood sample, combined with the women’s report of the dates of
the menses preceding and following each session. In order to
describe the changes along the menstrual cycle in details, it was
divided into 7 phases (see Figure 4 for hormonal levels). Because
each woman was tested no more than 4 times, this division could
not have been used for repeated measure analysis. For this
purpose, the menstrual cycle was divided to follicular and luteal
phases. The follicular phase included an interval of up to 12 days
following the first day of menses, and the luteal phase included the
11 days preceding the first day of menses. This division was done
according to the above-mentioned criteria. Hormonal levels and
self report of menses closely agreed in all cases except in one
subject that was thus excluded from the study. 3 blood samples
taken around the ovulation phase were not included in this
analysis. Radioimmunoassay kits (Diagnostic Products Corp, Los
Angeles, CA) were used to measure serum levels of the three
hormones.

Oral contraceptives

Most subjects used monophasic OC with 0.03 mg ethinyl oestra-
diol (EE) combined with either 0.075 mg gestodene (n = 5),
0.25 mg norgestimate (n = 1), or 0.15 mg desogestrel (n = 2). One
subject took a monophasic OC with 0.035 mg EE and 2 mg cypro-
terone acetate, and 1 subject took triphasic OC with the following
dosage: 6 tablets with 0.03 mg EE + 0.05 mg levonorgestrel,
5 tablets with 0.040 mg EE + 0.075 mg levonorgestrel and
10 tablets with 0.03 mg EE + 0.125 mg levonorgestrel.

Metaproterenol 

(MP) (orciprenaline) (Sigma, Israel) is a non-selective β-adren-
ergic agonist, with a higher affinity to β2 receptors than to β1

(Dengler and Hengstmann, 1976). MP was dissolved on the
morning of each experiment in phosphate buffered saline (PBS).

Radiolabelling of K562 target cells

The standard NK-sensitive K562 erythromyeloid tumour line
(Lozzio and Lozzio, 1979) was used as the target for the NK
cytotoxicity assay. The cells were grown in complete medium
(CM) (RPMI 1640 medium supplemented with 10% heat-
inactivated fetal calf serum (FCS), 50 µg ml–1 gentamycin, 2 mM
L-glutamine, 0.1 mM non-essential amino acids, and 1 mM
sodium pyruvate (Biological industries, Beit Haemek, Israel)) 
at 37˚C in 5% CO2. For radiolabelling, cells were incubated 
for 1 hour with 200 µCi 51Cr, 400 µl FCS, and 300 µl CM per 
4 × 107 cells. Following incubation, cells were washed twice 
British Journal of Cancer (2000) 83(12), 1630–1636
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with CM (300 g, for 10 min) and adjusted to the desirable
concentrations.

NK cytotoxicity assay

Two different procedures were used to assess NK activity, the
washed blood assay, in which the serum is replaced with CM, and
the whole blood assay, in which the subject’s serum is preserved.
Both procedures differ from the standard NK assay in that they
assess anti-tumour cytotoxicity following minimal manipulation
on the blood (e.g., no exclusion of cell populations or adhesion
sorting), and are completed within a very short period after blood
withdrawal. The procedures were previously validated and used in
humans, and were shown to reflect cytotoxicity carried out by NK
cells, and not by other cell types or serum factors (Ottenhof et al,
1981; Ree and Platts, 1983). The 6 different concentrations of
target cells (K562) used in each procedure were determined in
pilot studies and set to achieve optimal levels of killing (increasing
toward a plateau). Possible direct effects of MP on the K562 target
cells were assessed to distinguish between the effects of MP on
NK activity and its effect on target cells. As in our previous animal
studies (Ben-Eliyahu et al, submitted; Giboney and Ben-Eliyahu,
2000), no direct effects on target cells were evident.

Washed blood assay
For each subject, 12 ml of blood were washed once with PBS and
once with CM. In each wash, blood was diluted 3-fold in either
PBS or CM, centrifuged at 400 g for 10 min, and the supernatant
was removed to restore the original blood volume. NK activity was
tested against 6 concentrations of target cells and in the presence
of different concentrations of MP (10–6 M, 3 × 10–7 M, 10–7 M,
3 × 10–8 M, 10–8 M) and, in duplicates, in its absence (Baseline).
200 µl of blood were placed in each well of a microtitre plate, and
50 µl of the 51Cr-labelled K562 tumour cells in CM containing one
concentration of MP, were then added on top of the blood. A
concentration of 100 000 K562 cells per well was used, and
consecutively diluted by two for lower concentrations. To deter-
mine spontaneous and maximal 51Cr release, blood was substituted
with 200 µl of CM or HCl (4%), respectively. Plates were
centrifuged at 500 g for 10 min to create a buffy coat layer of
leucocytes and target cells on top of the red blood cells, and were
then incubated for 4 hours in 5% CO2 at 37˚C. Following incuba-
tion, plates were centrifuged again and aliquots of 100 µl of the
supernatant were recovered from each well for assessment of
radioactivity in a γ-counter.

Whole blood assay
The exact same steps as in the washed blood procedure were
followed without ‘washing’ the blood, i.e. cytotoxicity was
assessed in the presence of autologous serum.

Data analysis

Percent specific lysis by NK cells
Percent specific lysis for each target cell concentration was calcu-
lated using the standard formula below (Ottenhof et al, 1981).

(CPM – b) × – (SR – b)

(MR – b) – (SR – b)

Vt – (Vb × Hct)
Vt
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CPM – count per min; SR – 51Cr spontaneous release per min; 
MR – 51Cr maximum release per min; b – background count per
min; Vt – total volume in well (blood + target cells); Vb – total
blood volume in well; Hct – % hematocrit.

Since the 51Cr released by the labelled target cells is found only in the
supernatant above the red blood cells (Ottenhof et al, 1981), the total
volume is corrected by subtracting the red blood cell volume (%
haematocrit (Hct) × blood volume (Vb)) from the total volume (Vt).

Lytic units and sensitivity of NK activity to MP
The purpose of this procedure was to assess the sensitivity of NK
activity to adrenergic stimulation regardless of the baseline
activity levels (lysis at the absence of MP). Noteworthy, these
baseline levels did not differ between the groups. First, for each
blood sample, we used baseline NK activity to determine the

percent specific lysis at which one third of the increment in lysis is
achieved. The formula used was:
where MinBaseline is the minimal level of lysis and MaxBaseline is the
maximal level of lysis. Next, Lytic Units 1/3 (LU1/3) were defined
as the concentration of target cells in which this level was achieved
in all conditions studied within this blood sample. Particularly, the
regression exponential fit method (Pollock et al, 1990) was used to
infer LU1/3 from the empirical data (of percent specific lysis at the
six E:T ratios), in respect to baseline levels as well as to each
concentration of MP.

Next, to represent the extent of NK suppression at 
different concentrations of MP we used the formula: 
LUMPx/LUBaseline (based on Friberg et al, 1996) where LUMPx is
LU1/3 at x concentration of MP, and LUBaseline is LU1/3 in the absence
of MP (baseline).

Finally, to represent the sensitivity of NK activity at different
menstrual phases and in different groups we calculated Effective
Concentration50 (EC50) – the concentration of MP needed to
suppress NK activity to 50% of baseline levels, i.e., the
concentration in which LUMPx/LUBaseline = 0.5.

Statistical analysis

For statistical analysis either factorial ANOVA or within-subject
repeated measures ANOVA were used. Provided significant group
differences existed, Scheffé post-hoc analyses were conducted.
Alpha level was set to 0.05 for all analyses.

Data from both the whole blood and washed blood assays were
analysed and correlations between the two were computed.

To compare baseline levels of the different groups, percent
specific lysis was used. The data from the 4 different sessions 
were combined based on average baseline levels of men and OC
users.

Whenever NK activity was compared between groups (i.e.
women with a regular cycle, OC users, and men), the 4 oldest
subjects of women with a regular menstrual cycle were removed in
order to age-match the groups. Additionally, the data of women
with a regular menstrual cycle, who participated in several
sessions, were averaged across the menstrual cycle. Similarly,
whenever the luteal and follicular phases were compared, the
average of the indices in each phase was used.

(MaxBaseline – MinBaseline) 
1/3 increment =

3

© 2000 Cancer Research Campaign
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Figure 2 The suppressive effect of MP on NK activity in men, oral
contraceptive users (OC), and in women with a regular cycle. Blood samples
from women in the follicular phase and from men needed higher
concentrations of MP to induce 50% suppression from baseline levels (EC50).
The statistical analysis for comparing the follicular and luteal phases was
conducted using a repeated measure ANOVA, while the comparison among
RESULTS

Correlations between percent specific lysis in the
whole blood and washed blood assays

The Baseline Percent Specific Lysis of each subject in the washed
blood and whole blood assays were highly correlated (r = 0.88,
P < 0.05). In the different levels of MP, the correlation ranged from
0.83 to 0.89.

Since in most cases the results in the whole and washed blood
assays were similar, only figures of the washed blood results are
presented. Each figure represents the combined data of the four
experimental sessions conducted.

Suppression of NK activity by β-adrenergic 
stimulation

When added in vitro to blood samples, MP caused a dose-
dependent decrease in NK activity (Figure 1). This suppression
was evident in all subjects. Trend analysis using concentration of
MP and concentration of target cells as repeated measures, indi-
cated a significant linear dose dependency both in the washed
blood (F (1, 26) = 291.20, P < 0.0001) and in the whole blood
assays (F (1, 26) = 218, P < 0.0001).

Baseline levels of NK activity: the effects of sex, use of
OC and the menstrual cycle

No significant difference was found in baseline NK activity
between the follicular and the luteal phases (ANOVA with both
E:T ratio and the cycle phase as repeated measures). No significant
differences in Baseline levels of NK cytotoxicity per ml of blood
were revealed among the three groups (i.e. women with a regular
menstrual cycle, OC, men) (ANOVA with E:T ratio as a repeated
measure).
© 2000 Cancer Research Campaign
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Figure 1 The effect of increasing concentrations of the β-adrenergic agonist
metaproterenol (MP) on blood NK activity (mean ± SEM) at different effector
to target (E:T) ratios. In vitro exposure to MP suppressed cytotoxicity in a
dose-dependent manner
Sensitivity of NK activity to β-adrenergic stimulation:
the effects of sex, use of OC and the menstrual cycle

NK activity was markedly more suppressed by MP during the
luteal phase than during the follicular phase, both in the washed
blood assay and the whole blood assay. By and large, during the
follicular phase, 3-fold higher concentrations of MP were needed
to achieve the same level of suppression as during the luteal 
British Journal of Cancer (2000) 83(12), 1630–1636

the three groups (men, OC users, and women with a regular cycle) was
conducted separately using a factorial ANOVA (the data from each woman
with a regular cycle was averaged across the cycle)
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Figure 3 Sensitivity of NK activity to different doses of MP during the
follicular and luteal phases of the menstrual cycle. NK sensitivity is expressed
as the ratio between lytic units with MP and lytic units in the absence of MP
(mean ± SEM). During the follicular phase a 3-fold higher concentration of MP
was needed to reach the same levels of suppression as in the luteal phase
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Figure 4 NK sensitivity to MP along 7 phases of the menstrual cycle (EC50)
(bars, mean ± SEM) (A). NK sensitivity is expressed in EC50 (MP
concentration needed to induce 50% suppression from baseline level).
Shown in lines are the serum levels of LH, oestradiol and progesterone
assessed in these women along the menstrual cycle (A & B)
phase (Figure 3). Two way repeated measure ANOVA indicated a
significant main effect of the menstrual cycle in both the washed
blood assay (F (1, 8) = 12.36, P < 0.01) and the whole blood assay
(F (1, 8) = 9.713, P < 0.05) (LUMPx/LUcontrol was used as the
dependent variable). As indicated above, MP had a significant
main effect.

Changes in EC50 throughout the seven phases of the menstrual
cycle are presented in Figure 4. No statistical analysis is available
due to many missing values.

When comparing the 3 groups, significant differences in
EC50 were found using an ANOVA in the washed blood assay
(F (2, 22) = 4.33, P < 0.05) but not in the whole blood assay. A
post-hoc analysis showed that men had 75% higher EC50 than OC
users (P < 0.05) (Figure 2).

DISCUSSION

This study examined the effects of the menstrual cycle, sex, and the
use of oral contraceptives on baseline levels of NK activity and on
the sensitivity of NK cells to β-adrenoceptor stimulation. As
hypothesized, alteration in NK activity along the menstrual cycle
occurred only under conditions of β-adrenoceptor stimulation.
Specifically, suppression of NK activity by β-adrenoceptor stimula-
tion was significantly greater during the luteal phase than during
the follicular phase. The suppression of NK activity in OC users
was similar to the marked suppression evident during the luteal
phase, whereas the suppression in men was similar to the lower
levels of suppression evident during the follicular phase. These
effects were evident using either methods of assessing NK activity:
British Journal of Cancer (2000) 83(12), 1630–1636
the washed blood method, which resembles standard procedures,
and the whole blood method, which preserves autologous serum.
On the other hand, no differences in baseline levels of NK activity
were evident between menstrual phases or among the three experi-
mental groups (men, OC users and women with a regular cycle).

Potential sex hormones underlying these effects have yet to be
identified. Both oestradiol and progesterone levels are higher
during the luteal phase, which was characterized by greater adren-
ergic suppression of NK activity. Nevertheless, there is indication
that oestradiol, more than progesterone, contributes to the effects
of the menstrual cycle. The degree of NK sensitivity to β-
adrenergic stimulation mirrored plasma levels of oestradiol better
than plasma levels of progesterone (Figure 4). Our recent studies
in rats, which employed a paradigm similar to the one used in the
present study, further supported this suggestion. In the Fischer-344
rat, oestradiol and progesterone levels are dissociated: oestradiol
and progesterone peak on proestrus phase, but progesterone has an
additional peak on metoestrus phase. Our findings indicated that
the high oestradiol phase, but not the high progesterone phases,
was associated with a greater adrenergic suppression of NK
activity (Ben-Eliyahu et al, 2000).

In agreement with the hypothesized role of female sex
hormones, OC users, who are continuously exposed to analogues
of sex steroids, showed suppression of NK activity that was as
marked as in women during the luteal phase (which is character-
ized by high endogenous levels of oestradiol and progesterone).
Men were as resistant to this suppression as women during the
follicular phase. Nevertheless, because the groups differ in various
factors other than levels of ovarian sex steroids, it is unclear
whether these steroids play a significant role in determining the
degree of NK sensitivity in men and OC users. Clearly, more direct
evidence in humans is needed to identify potential hormonal medi-
ators. A comparison of different regimens of replacement therapy
in postmenopausal women, or the administration of specific sex
hormones during the early follicular phase, could clarify this issue.

Possible cellular mechanisms underlying the modulatory effect
of the menstrual cycle are alterations in β-adrenoceptor expression
by NK cells, or alteration in receptor reactivity to β-adrenoceptor
stimulation. Indeed, some studies reported that the luteal phase
is characterized by higher expression of β2-adrenoceptors on
lymphocytes, and by a higher lymphocyte cAMP response to
isoproterenol (Wheeldon et al, 1994). While NK cells comprise
only about 15% of the lymphocyte population, they were reported
to express the highest levels of β2-adrenoceptors (Landmann,
1992). Activation of these receptors was shown to suppress NK
activity by increasing cAMP levels (Whalen and Bankhurst,
1990). If indeed the above alterations in lymphocyte expression of
β2-adrenoceptors occur in NK cells, they may explain the effects of
the menstrual cycle at the level of NK cell. If they occur on other
lymphocytes, they could mediate an indirect effect on NK activity.

In respect to variations in baseline levels of NK activity along
the menstrual cycle, the literature is scant and inconsistent (White
et al, 1982; Thyss et al, 1984; Sulke et al, 1985). In a recent study,
we have observed no differences in the number or in the activity of
NK cells along the menstrual cycle (Yovel et al, 1998). The current
study indicates that differences in NK activity occur under β-
adrenoceptor stimulation, but not in its absence. This may suggest
that the conflicting reports regarding baseline conditions could be
attributed to different levels of catecholamines which are released
due to stress around blood withdrawal. Indeed, in a recent study in
rats, we demonstrated that the oestrous cycle modulated level of
© 2000 Cancer Research Campaign
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NK activity following stress, but not in blood drawn from control
rats when procedural stress was minimized (Ben-Eliyahu et al,
2000). Whether such stress effects persist or dissipate may depend
on the delay between blood withdrawal and the assessment of NK
activity.

Although our findings indicate that the ovarian cycle modulates
NK sensitivity to β-adrenoceptor stimulation, the biological signif-
icance of such effects is unclear. In rats, however, we have recently
found that in-vivo suppression of resistance to metastasis of a
mammary tumour by a β-adrenergic agonist, as well as the in-vitro
suppression of NK activity by MP, were more profound during the
proestrus/oestrus phase (Ben-Eliyahu et al, submitted). These
parallel effects suggest possible clinical circumstances in which
the current findings in humans may prove clinically significant,
i.e. resisting metastasis when catecholamine levels are
high. Indeed, a major incentive for conducting our study was the
controversial clinical reports that the menstrual phase during
which breast tumours are removed influences long-term rates of
metastatic development and survival (for review see Hagen and
Hrushesky, 1998). Unfortunately, different clinical reports impli-
cated different menstrual phases as being the high-risk period
(Hagen and Hrushesky, 1998), suggesting that hospital variation
in perioperative routines may determine the timing of increased
susceptibility to metastases and whether it occurs. Nevertheless,
whenever this clinical phenomenon was observed, it occurred only
in women having positive lymph nodes at the time of surgery, indi-
cating that the metastatic process had already begun. Because the
menstrual cycle influenced survival whether or not the excised
tumour expressed receptors for sex steroids, direct effects of sex
hormones on malignant cells are unlikely. It is our hypothesis 
that the surgery itself and the psychological and physiological
stress accompanying it, markedly facilitated the metastatic
processes, and that certain aspects of the menstrual cycle 
further modulated patient resistance to metastasis in this vulner-
able condition. We also suggest that adrenergic suppression of 
NK activity may be a mechanism contributing to the adverse
effects of surgery. Suppression of NK activity after surgery is 
well documented clinically (Pollock et al, 1991; Brittenden 
et al, 1996), was attributed by animal studies to adrenergic
mechanisms (Ben-Eliyahu, 1998a), and was suggested by human
and animal studies to promote metastasis (Zoller et al, 1989;
Pollock et al, 1991; Taketomi et al, 1998; Ben-Eliyahu et al, 
1999). The current study demonstrated that such adrenergic
suppression is also modulated by the menstrual cycle, thus
proposing this modulation as a mechanism contributing to the
clinical phenomena.
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