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Abstract

The modern age of metagenomics has delivered unprecedented volumes of data describ-
ing the genetic and metabolic diversity of bacterial communities, but it has failed to provide
information about coincident cellular morphologies. Much like metabolic and biosynthetic
capabilities, morphology comprises a critical component of bacterial fitness, molded by nat-
ural selection into the many elaborate shapes observed across the bacterial domain. In this
essay, we discuss the diversity of bacterial morphology and its implications for understand-
ing both the mechanistic and the adaptive basis of morphogenesis. We consider how best
to leverage genomic data and recent experimental developments in order to advance our
understanding of bacterial shape and its functional importance.

Introduction

Imagine a bacterium. Did you imagine asymmetric, multicellular filaments of curved bacteria,
such as those belonging to the genus Simonsiella (Fig 1.21)? These bacteria glide slowly on the
surface of your palate using the concave side of their curved cells and divide parallel to their
long axis [1]. Or perhaps instead you imagined a photosynthetic, ovoid bacterium like Rhodo-
microbium vannielii, which grows extensions of the inner membrane, cell wall, and outer mem-
brane (Fig 1.19)? From its elongating (and sometimes branching) extensions, this bacterium
can bud one of three types of cells: appendaged cells like itself; swimming cells; or angular,
heat-resistant exospores [2]. The appendaged daughter cells, remaining attached to the mother
cell, grow their own extensions and progeny to create giant networks of connected cells in the
mud.

Or did you imagine a rod; in particular, one that elongates to double its length and then
divides in two?

Perusing the once-definitive guide to bacterial identification, Bergey’s Manual of Determina-
tive Bacteriology, one easily finds shapes much more interesting than rods and cocci [8]. Even
the language used to describe the morphologies of various species in the text quickly illustrates
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Fig 1. Myriad morphologies have evolved throughout the bacterial domain. Bacterial phylogeny derived from genome sequence
data for selected species, with an emphasis on morphologically and phylogenetically diverse taxa. Sequence data gathered from the
Joint Genome Institute [3] and the National Center for Biotechnology Information [4] were searched for reference genes and aligned
using Phylosift [5]. FastTree [6] generated an approximate maximum likelihood tree from the resulting concatenated alignment. The final
tree was formatted using iTol [7]. Black dots denote ancestral nodes of selected major taxa: DT, Deinococcus-Thermus; Ac,
Actinobacteria; Cf, Chloroflexi; Cn, Cyanobacteria; Fi, Firmicutes (inclusive of Mollicutes); Sp, Spirochetes; PVC, Planctomycetes,
Verrucomicrobia, Chlamydiae; Cb, Chlorobi; Bd, Bacteroidetes; a, B, Y, 5, &, Proteobacteria subdivisions. 1. Bifidobacterium longum.
2. Streptomyces coelicolor (mycelial [multicellular] filament with hyphae and spores). 3. Corynebacterium diphtheriae (two cells,
dumbbell and club shapes). 4. Herpetosiphon aurantiacus (filament of multiple cylindrical cells). 5. Calothrix (filament of multiple disk-
shaped cells). 6. Mycoplasma genitalium. 7. Spiroplasma culicicola. 8. Lactococcus lactis (predivisional cell). 9. Borrelia
burgdorferi. 10. Gimesia maris (previously Planctomyces maris, predivisional cell with proteinaceous stalk). 11. Prosthecochloris
aestuarii. 12. Pelodictyon phaeoclathratiforme (filament of multiple trapezoidal cells). 13. Spirosoma linguale. 14. Muricauda
ruestringensis (appendage includes nonreproductive bulb). 15. Desulfovibrio vulgaris (two cells, helical and curved shapes). 16.
Helicobacter pylori. 17. Caulobacter crescentus (predivisional cell). 18. Hyphomonas neptunium (predivisional cell). 19.
Rhodomicrobium vannielii (flament of multiple ovoid cells, one is predivisional). 20. Prosthecomicrobium hirschii. 21. Simonsiella
muelleri (filament of multiple curved cells). 22. Nevskia ramosa (two cells with bifurcating slime stalk). 23. Beggiatoa leptomitiformis
(filament of multiple, giant cylindrical cells). 24. Thiomargarita nelsonii (single, giant cell). 25. Escherichia coli. 26. Mariprofundus
ferrooxydans (single cell with metal-encrusted stalk). Bacterial schematics are not to scale. Species names are colored according to
morphology as indicated in the key. Colored dots are appended to indicate species with multiple morphologies. Names of species
depicted in schematics are emphasized in large, bold font.

doi:10.1371/journal.pbio.1002565.9001
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the veritable bacterial zoo found on earth: In addition to the familiar coccoid, rod-shaped, or
spirillar types, there are also dendroid, coryneform, cylindrical, bulbiform, fusiform, and
vibrioid types. There are uniseriate or multiseriate filaments of cells that are flexible or rigid,
flat or round, unbound or bound in hyaline or slime sheaths. Single cells are described as star-
shaped, disk-shaped, hourglass-shaped, lemon-shaped, pear-shaped, crescent-shaped, or flask-
shaped. Rods can be pleomorphic, straight, curved, or bent, with blunt, pointed, rounded, or
tapered ends. Some cells grow appendages such as prosthecae, stalks, or spikes. The representa-
tive schematics in Fig 1 offer a glimpse of some of this diversity but hardly do justice to the var-
iation of size and shape across the bacterial domain. Bergey’s served as a guide for identifying
species phenotypically for a century, underscoring how reliably each species reproduces its sig-
nature morphology.

A curious reader of Bergey’s may find it perturbing that the more unusually shaped bacteria
comprise a minority of the book, and most of the micrographs and notes on them date from
before 1980. If morphological diversity is so pervasive, why do rods and cocci dominate the man-
ual? And why is the information so old? These deficiencies not only reveal the historical focus of
the field of microbiology on pathogenic bacteria, which tend to be rods and cocci, but also the
shift in interest of the field to model organisms on the advent of molecular biology. During the
1970s, significant progress was made in gaining genetic control over Escherichia coli, thereby
establishing it as the model bacterium [9,10]. Since that era, model bacteria such as E. coli and
Bacillus subtilis have dominated research because of their genetic tractability and culturing ease.
Many of the more strangely shaped bacteria proved unculturable, or their original strains were
lost. In effect, Bergey’s serves as some sort of time capsule from which it is clear that a great diver-
sity of bacterial morphologies exists. Sadly, this diversity is still likely to be highly undersampled,
as the high-throughput metagenomic approaches that are quickly filling out the bacterial domain
do not capture morphological data. A more complete visual survey of the bacterial domain
would reveal more morphologies, the number of species with atypical morphotypes might rival
those of the known rods and cocci, and those “typical” rods and cocci would exhibit a great deal
more morphological variability than currently projected by the field. How are these diverse mor-
phologies related evolutionarily and mechanistically, and what are their functions?

Morphology and Bacterial Evolution

Phylogenetic trees based on molecular sequence data have transformed how we understand
bacterial evolutionary relationships [11]. Such phylogenies have proven that the historical taxo-
nomic approach used to classify bacteria based on phenotypes such as morphology often
grouped bacteria unrelated by descent. For example, the Betaproteobacteria Rhodocyclus tenuis
and Rubrivivax gelatinosus were misclassified as members of the genus Rhodospirillum, and
therefore as Alphaproteobacteria, partially on the basis of their helical shape [12]. Clearly, even
careful and expert interpretation of phenotypes alone can lead to misinterpretations of related-
ness between species. In another case, appendages called prosthecae, which are thin extensions
of the entire cell envelope, were considered a unifying characteristic of the genus Prosthecomi-
crobium. However, 16S phylogenetic analysis led to the split of the single genus into three sepa-
rate genera that were each more closely related to a nonprosthecate genus than to one another
[13]. Thus the prosthecate morphology most likely was shared by a common ancestor to this
group and was lost in some lineages. Together, these examples suggest that (1) similar-looking
morphologies can and do evolve independently in unrelated genera and that (2) the histories of
certain morphologies among related genera can be complex.

Mapping our current, yet limited, knowledge of morphological phenotypes onto robust
phylogenies allows us to make inferences about how bacterial shapes evolved. This approach
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has seen extensive application for inferring the evolutionary history of traits in eukaryotes [14],
and it was similarly applied to exploring transitions from rod to coccus shapes in the bacterial
domain [15]. Using updated phylogenetic tools, we have constructed a phylogeny that focuses
on diverse morphologies beyond rods and cocci (Fig 1). Some morphologies, such as helical
cells (green) or multicellular filamentous types (red), appear repeatedly throughout the bacte-
rial domain. This scattering amongst distant clades indicates that these morphologies have sev-
eral, independent evolutionary origins. In some cases, the same morphology appears to cluster
in a specific region of the phylogenetic tree, such as branching in the Actinobacteria (purple)
or appendages in the Caulobacterales (blue). This clustering indicates persistence of a mor-
phology inherited from a shared ancestor. These relationships between phylogeny and mor-
phology generate many questions important to evolutionary biology and bacteriology. When
the same shape arises independently, different lineages with distinct constraints somehow
arrive at a common morphology: Are these shapes generated via similar molecular strategies?
Are they influenced by similarities in the environment or bacterial lifestyle? In cases of shared
ancestry, we can address the persistence of a specific morphology:Is the shape retained through
continued selective pressure? How and why does morphological variation among family mem-
bers arise? We are only beginning to answer these questions. However, our developing perspec-
tive on bacterial diversity and the ability to map morphologies onto the ever-growing
phylogenetic tree of the bacterial domain will allow us to better address them.

The reason that bacteria have certain shapes remains unclear; we can only surmise that cer-
tain shapes have adaptive value or have been produced by other selective forces since they are
under genetic control and are maintained from generation to generation. Many theories offer
rationales for the adaptive value of specific morphologies [16,17]. Young’s [16] excellent review
explores the relationship of selective forces and bacterial morphology in detail that goes well
beyond the scope of this essay. In general, morphological traits can be attributed to adaptation
to selective forces such as nutrient limitation, reproduction, attachment, dispersal, and evasion
of predation or host detection. In the simplest formulations, helical and curved cells appear to
be optimized for motility, especially in viscous solutions [18-21], large cells (and very small
cells) for evading ingestion (or capture) by protists [22,23], and branching and net-forming
cells for buoyancy and soil retention [24,25].

We can easily speculate on the adaptive value of the morphologies presented in Fig 1. Take
for example the extremely long (100-1,200 um) multicellular filaments of Herpetosiphon aur-
antiacus (Fig 1.4), which are capable of rapid gliding motility and remarkable flexibility
[26,27]. It is possible that the extraordinary lengths of these filaments allow this bacterium to
evade phagocytosis by protists or boost its gliding motility on surfaces. Perhaps the flexibility
of the multicellular filaments allows entwinement with various substrates in aqueous or soil
environments to enhance adherence and retention. Even more exciting, these traits may play
an important role in its facultative predation of other bacteria, in which its looped filaments
trap and “bulldoze” other bacteria, lysing them with secreted hydrolases [28]. Or, consider the
case of Pelodictyon phaeoclathratiforme (Fig 1.12), a filamentous green sulfur bacterium that
forms three-dimensional nets of trapezoidal cells via branching and possibly ternary division
[29,30]. Arguably, these nets slow sedimentation and help to keep colonies of this bacterium at
the correct level in the water column, where they are optimally situated between opposing gra-
dients of light and sulfide [31]. Or, take for example the extreme size of members of the genus
Thiomargarita (Fig 1.24), a coccus that averages 0.1-0.3 mm in diameter [32-34]. This bacte-
rium breaks the usual limitations of diffusion on size by harboring a nitrate-rich, liquid-filled
vacuole that takes up 80%-98% of the cell volume and leaves only a 0.5-2 pm layer of cyto-
plasm [32]. The large size of Thiomargarita has been posited as an adaptation for a nonmotile
lifestyle in which periodic resuspension of the large, buoyant cells puts them in contact with
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the oxygenated water column [33,34]. The vacuole, as well as a host of cytoplasmic sulfur inclu-
sions, may also serve as a nutrient reservoir, which enables the bacterium to maintain metabo-
lism during nutrient limitation between resuspension events.

Adaptive explanations for bacterial morphology provide a convenient narrative, but we
must also account for alternatives. Consider the proposed roles of Herpetosiphon’s multicellu-
lar filamentation: gliding motility, predation defense, and its own predatory behavior. The
shape may serve an adaptive role in just one of these functions or some combination thereof.
However, all these guesses may be off the mark. Perhaps multicellular filamentation instead
provides a different function, such as clonal cohesion in order to reinforce cooperative behavior
like nutrient scavenging [35]. Or, the observed morphology may arise merely by chance rather
than adaptation [36]. Alternatively, multicellular filamentation may arise as a byproduct of
selection for a different phenotype [37], such as enhanced surface attachment that also happens
to increase attachment between cells. All too often, adaptive explanations for morphology com-
prise quaint, just-so stories, residing unchallenged at the end of an article’s discussion section.
Validating adaptive hypotheses for morphology requires the same scrutiny applied to other sci-
entific problems: generating and testing a clear, falsifiable hypothesis. Only with clear, empiri-
cally tested hypotheses regarding the selective function of shape can we begin to paint a clearer
picture regarding the environmental pressures that have shaped the historical evolution of the
diverse array of observed bacterial morphologies.

Mechanisms of Morphogenesis

Although it can be very difficult to determine why bacteria have certain morphologies, many
inroads have been made into determining how they obtain them. The vast majority of bacteria
synthesize a peptidoglycan (PG) cell wall that provides structural integrity to the cell. The
growth, maintenance, and modification of the cell wall play a key role in defining the shape of
the cell [38]. Much of what we know regarding bacterial shape determination at the molecular
level in bacteria comes from the study of a few model organisms with relatively simple mor-
phologies, including the following: the sphere or ovoid shape of Streptococcus pneumoniae or
Staphylococcus aureus; the rod shape of E. coli, B. subtilis, or Agrobacterium tumefaciens; and
the spiral shape of Helicobacter pylori. These model systems have proven experimentally
advantageous in understanding basic and common principles involved in different modes of
bacterial cell growth. A conserved set of proteins participates in PG synthesis and remodeling
[39,40], thus the details of cell wall synthesis gathered from select model systems provide a
solid touchstone for exploring even divergent morphologies.

Bacteria must remodel the cell wall in order to grow and divide, and this activity underlies
their shape-generating capacity. Because PG synthesis is constrained in space, all cell wall
growth and remodeling can be described as “zonal” growth at the molecular level [41]. Zonal
growth at specific points during the cell cycle gives rise to specific patterns of PG synthesis, or
growth modes. A number of growth modes have been shown to generate the rod shape. The
best-studied growth mode, exemplified by B. subtilis, is lateral elongation, in which PG synthe-
sis is evenly dispersed along the length of the cell. E. coli and Caulobacter crescentus utilize lat-
eral elongation as well as an additional growth mode called preseptal or medial elongation, in
which PG synthesis occurs at the midcell. Alternatively, some bacteria, such as A. tumefaciens,
employ polar elongation at one or both poles [42]. Despite differences in the specific details of
each system at the molecular level, all these growth modes can be viewed as a modular, spatio-
temporal utilization of zonal growth to create the rod shape. But how does zonal PG synthesis
generate diverse shapes beyond simple rods and cocci? Conceptually, simply repositioning
zonal growth to specificlocations could generate a diverse range of morphologies derived from
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the basic rod shape. Take as an example the Caulobacter prostheca, which results from zonal
growth restricted to the cell pole (Fig 2A). In the closely related genus, Asticcacaulis, distinct
prosthecate morphologies arise from repositioning the growth zone(s) at subpolar and bilateral
sites (Fig 2B and 2C) [43,44]. In Actinobacteria, branching results from repositioning the polar
growth PG machinery to create new growing poles (Fig 2D) [45]. Thus, simple variations on
the theme of zonal PG growth can give rise to diverse morphologies.

While similar growth mechanisms may yield diverse morphologies among close relatives,
can shared mechanisms also explain similar morphologies in phylogenetically distant bacteria?
An interesting comparison can be made between the alphaproteobacterium C. crescentus and
the spirochete Borrelia burgdorferi, which are only very distantly related. C. crescentus exhibits
a vibrioid (curved) morphology, which gives rise to helical shapes when the cells filament (Fig
2E and 2F) [46]. This morphology requires the species-specific molecular scaffold crescentin,
which imposes a structural constraint along the inner curve of the cell to guide PG synthesis
[46,47]. In contrast, cell curvature in the spirochete B. burgdorferi follows different rules, rely-
ing on a structural role of periplasmic flagella. In this case, what may appear to be a helical
morphology instead comprises a “flat wave” shape created by the constraints of the periplasmic
flagella (Fig 2G). Rather than inducing curvature via differential PG synthesis, the periplasmic
flagella are posited to directly deform the cell body to generate curvature [48]. Despite their
mechanistic differences, both C. crescentus and B. burgdorferi generate curvature according to
a common structural theme: scaffold-mediated delineation of an inner curvature. It will be
interesting to see whether other examples of evolutionarily distinct curvature and helicity
depend on similar themes. Do all curved cells require a scaffold? Do such scaffolds share partic-
ular physical or biochemical properties? Indeed, cytoplasmic scaffolding proteins (in addition
to PG-modifying enzymes [49,50]) participate in helical morphogenesis in H. pylori [51,52].
Like crescentin, these proteins self-oligomerize and contain coiled-coil motifs known to partici-
pate in protein—protein interactions. Although detailed experimentation is required in order to
identify the components used to achieve morphogenesis in particular species, unraveling these
mechanistic details can help to identify general morphogenetic strategies that may reveal fun-
damental constraints on how particular shapes evolve. These general trends can guide our
investigations of morphogenetic mechanisms in other bacteria and enhance our understanding
of how bacterial shape evolves.

A Path Forward

Although microbiologists have long appreciated the impressive morphological diversity among
bacteria, we still have much to learn. Modern technologies provide access to unprecedented
quantities of data, particularly microbial genome sequences. However, harnessing these data to
address the “how” and “why” of morphological evolution presents a challenge.

We must first consider where to direct our efforts in order to learn about morphology. A
clear picture of morphological evolution requires a representative sample of phylogenetic
diversity thorough enough to identify important morphological transitions. This picture
becomes muddied through oversampling of pathogens and other species of applied significance
[53]. Repeatedly studying similar, closely related bacteria effectively resamples the same ances-
tral events [54]. Phylogenetically informed sampling helps to resolve this problem by identify-
ing unique morphological transitions in the bacterial tree. More fundamentally, overemphasis
on particular taxa limits our perspective on representative morphological variation across the
bacterial domain. Recent genome sequencing efforts emphasize more phylogenetically compre-
hensive sampling, particularly the Genomic Encyclopedia of Bacteria and Archaea [55]. This
approach has helped to span various independent morphological transitions among available
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Fig 2. Different mechanisms underlie the evolution of morphogenesis. (A—C) In prosthecate
Alphaproteobacteria, simply repositioning zonal PG synthesis machinery (shown in green) can generate polar
(Caulobacter crescentus, A), subpolar (Asticcacaulis excentricus, B), or bilateral (Asticcacaulis biprosthecum,
C) prosthecate phenotypes. (D) Similar repositioning of the PG growth zone yields a branching phenotype in
Streptomyces coelicolor, which grows from the cell poles. (E) The intermediate filament-like protein crescentin
(shown in cyan) of C. crescentus constrains PG synthesis to generate cell wall curvature. (F) When cells
filament, this constraint results in long helical shapes. (G) The periplasmic flagella of Borrelia burgdorferidirectly
deform the cell body into a planar wave shape. Note that the scale of the periplasmic space, relative to the cell
membranes, has been modified to highlight this arrangement. For simplicity, details of the periplasmic
compartment are shown only for panel G.

doi:10.1371/journal.pbio.1002565.9002
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genome sequences (Fig 1). Importantly, much of the bacterial domain remains uncharacterized
[56], and numerous morphological variants likely await discovery. High-throughput culturing
[57] generates relatively unbiased bacterial libraries from an environment of interest. High-
content imaging [58] and automated image analysis provides an unbiased quantification of
morphological parameters [59-61] to identify bacteria of morphological interest. Even among
the very large fraction of bacteria that remain unculturable, the advent of single-cell genomics
opens the door to sequencing genomes of morphologically relevant species [62]. This approach
has already successfully paired high-resolution microscopy with whole-genome sequences of
noncultured bacteria [63]. These strategies will help to provide a more complete picture of
morphological diversity and characterize key morphological transitions that best inform our
understanding of how bacterial shape evolves.

Our laboratory used such a phylogenetically informed approach in order to understand the
molecular basis of the prosthecate morphology in the model organism Caulobacter and closely
related genera. The phylogeny of Caulobacter, Brevundimonas, and Asticcacaulis (Fig 3) indi-
cates that an ancestral polar prostheca has been repositioned (first subpolar and then lateral in
Asticcacaulis), increased in number (Asticcacaulis biprosthecum), and lost outright (C. segnis,
Brevundimonas diminuta). We recently examined the morphological transition from a polar
prostheca to subpolar or lateral prosthecae. Specifically, we determined a morphogenetic func-
tion for the protein SpmX, previously shown to participate in developmental regulation in C.
crescentus [64]. In Asticcacaullis, SpmX has been co-opted to position and coordinate prostheca
PG synthesis [43]. An expanded region within this protein appears to be responsible for the dif-
ference in localization patterns between A. excentricus (subpolar) and A. biprosthecum (bilat-
eral). This particular story of morphogenesis mechanism and evolution emerged from a
combination of two methods: comparative study of various Asticcacaulis and Caulobacter spe-
cies and direct genetic manipulation informed by the well-developed Caulobacter experimental
model. In this case, progress was possible because we utilized a model organism and its close
relatives. However, many morphologically interesting species are poorly studied, with little in
the way of prior research or available genetic tools. Is the study of bacterial morphology then
stuck relying on a limited selection of existing, extensively developed experimental models and
their close relatives? Thankfully, things are not so grim; comparative molecular genetics, auto-
mated image analysis, and advanced labeling tools all offer interesting solutions for studying
morphology in underrepresented systems.

Genome sequence data can provide significant insight into the evolution of morphology.
From sequence data, comparative molecular genetics can identify patterns of gene content,
selection on individual genes (including individual residues), and functionally connected suites
of genes [65,66]. Applying this approach to existing genome sequence data may reveal the
selective targets associated with specific morphologies. Indeed, this comparative genomic strat-
egy identified specific proteins associated with the transition from rods to cocci in pathogenic
bacteria [67]. Of course, genomic data cannot substitute for testing morphological mechanisms
by direct experimentation. Nonetheless, comparative genomics can help to identify suitable
targets for empirical study.

Modern tools also facilitate direct morphological experimentation, even for species without
previous experimental development. In particular, recently described fluorescent D-amino
acids (FDAAs) label sites of cell wall synthesis in diverse bacteria by leveraging the ubiquity of
PG [68,69]. This labeling strategy enables precise, microscopic observation of the growth
modes underlying interesting morphologies, even for bacteria that are poorly understood or
experimentally intractable. Another valuable tool, high-throughput imaging, can identify mor-
phological determinants even in the absence of advanced molecular genetic tools. Imaging
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Fig 3. The Caulobacterales lineage exhibits diversification of the prosthecate morphology. (A) Phylogeny of the order
Caulobacterales generated as described in Fig 1. Schematics and corresponding colors indicate inferred ancestral morphologies and
their subsequent inheritance. Black branches indicate rod-shape, nonappendaged morphology, including several apparent prostheca
loss events. Scale bar indicates 0.1 amino acid substitutions per site. (B) Transmission electron micrographs of members of the
Caulobacterales, highlighting disparate prosthecate morphologies. For each morphology, a brief description and the name of one
representative species is provided, followed by the image source in parentheses. 1. Bilateral prosthecae, Asticcacaulis
biprosthecum (Chao Jiang, Stanford University). 2. Subpolar prostheca, Asticcacaulis excentricus (Chao Jiang, Stanford
University). 3. Polar prostheca, Caulobacter crescentus (Paul Caccamo, Indiana University). 4. Polar prostheca, Maricaulis maris
(Patrick Viollier, University of Geneva). 5. Short polar prostheca, Brevundimonas subvibriodes (Brynn Heckel, Indiana University);
note other members of this genus display a much longer prostheca. 6. Polar prostheca through which budding reproduction
occurs, Hirschia baltica (Paul Caccamo, Indiana University). Magnification varies between micrographs. All images are reproduced
with permission.

doi:10.1371/journal.pbio.1002565.9003

B)

1‘

mutant libraries can identify relevant protein targets by screening for specific phenotypes such
as the following: (1) morphological variants in libraries generated by transposon or chemical
mutagenesis and (2) proteins localized to morphological features in fluorescent transposon
fusion libraries. Finally, automated analysis of cell images provides efficient and quantitative
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analysis of large mutant libraries [59-61]. These tools permit relatively detailed analysis of bac-
terial morphogenesis in model and nonmodel organisms alike.

We propose an experimental strategy for leveraging these tools to study novel morphoge-
netic mechanisms in order to determine both how patterned cell growth generates specific
morphologies and the underlying molecular machinery. Pulse labeling with FDAAs reveals the
cell wall growth pattern responsible for generating a particular bacterial shape [68]. Such
underlying growth patterns are not always obvious from the final cell shape, even for relatively
simple shapes like rods [42]. After growth patterns have been determined, the next goal is to
identify genetic loci that participate in morphogenesis. Mutant libraries can be generated
through transposon or chemical mutagenesis and then screened by high content imaging and
automated image analysis for variants in shape and FDAA labeling patterns. Sequencing of the
mutated site (transposon) or of the whole genome (chemical mutagenesis) can then identify
affected loci. This broadly applicable experimental strategy can reveal both underlying growth
patterns and mechanistic components responsible for generating particular morphotypes.
Applying this strategy across diverse taxa and morphologies can identify common themes and
points of departure in mechanisms of morphogenesis. By casting a wide net, such observations
can guide further development of key model organisms for careful inquiry at the molecular
level.

Even as we unravel the mechanistic details of bacterial morphogenesis, the ultimate expla-
nation for the varied shapes observed in nature derives from the selective forces at play in the
environment. Complex morphologies like spirals and appendages do not emerge and persist
for millions of years by chance alone. However, as discussed earlier, determining the adaptive
value of shape requires moving beyond telling plausible, “just so” stories. Fortunately, evolu-
tionary biology already provides a theoretical and experimental framework for directly examin-
ing how morphology influences bacterial fitness.

Compelling evidence of the adaptive value of shape requires direct observation of selection
acting on phenotype. The most direct evidence of adaptive value derives from head-to-head
competition of different morphotypes and the emergence of a superior competitor via selec-
tion. A recent study employed pairwise competition of distinct E. coli cell size mutants, identi-
tying fitness effects of cell size that depend on the particular growth environment [70].
Similarly, direct competition among morphotypes of H. pylori has proven that native cell cur-
vature enhances stomach colonization when compared against mutants with reduced curvature
[49], demonstrating that shape is a key fitness component for a pathogen. Future work should
follow a similar path in establishing adaptive relevance of morphology, varying both morpho-
type and environment while measuring fitness through direct competition.

We envision a combined strategy of direct competition assays and laboratory evolution for
testing hypothesized functional significance of particular bacterial morphologies. Based on a
hypothesized adaptation to a specific environmental constraint, competition assays should
identify a selective advantage of the adaptive morphotype over its mutant competitors, but
only when the constraint is imposed. Let us return to the example of Pelodictyon, whose
branched cell networks hypothetically enhance fitness by retarding sedimentation and main-
taining correct cell position along light and sulfite gradients. According to this sedimentation
hypothesis, wild-type cells should readily outcompete a non-net-forming mutant in an appro-
priately spatially structured laboratory environment. However, agitation to disrupt spatial envi-
ronmental gradients should abolish the wild-type competitive advantage conferred by retarded
sedimentation. Failure of the wild type to outcompete the mutant in the structured environ-
ment would suggest an alternate adaptive role of the branched cell network morphology. Addi-
tionally, we can use experimental evolution to observe natural selection of morphology directly
in the laboratory. If selection for reduced sedimentation maintains the filamentous network
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morphology of Pelodictyon, selection of Pelodictyon in agitated (unstructured) environments
should result in the eventual erosion of the morphology via genetic drift, whereas continued
selection in a structured environment should preserve the native phenotype. Although we can-
not reconstruct historical environmental pressures with certainty, experiments like these can
provide empirical support for adaptive hypotheses. This proposed strategy for testing the func-
tional basis of morphology elevates adaptive hypothesis beyond throwaway comments in the
discussion and into their rightful position among the results.

Conclusion

Decades after an initial surge in environmental microbiology described a vast array of different
bacterial shapes, we are left with an impressive body of knowledge describing what is out there,
but relatively little in the way of how and why. While much remains unresolved regarding the
details of bacterial morphogenesis, the current scientific landscape affords great opportunity
for progress. By pairing abundant genome sequence data with modern tools for imaging cell
growth, new experimental approaches are now available for morphologically diverse bacteria,
even in cases in which little prior research exists. We hope this opportunity yields new insights
and renewed interest in certain less familiar, morphologically varied bacteria that lie beyond
rods and cocci.
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