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Comparative genomics analysis of
triatomines reveals common first line and
inducible immunity-related genes and the
absence of Imd canonical components
among hemimetabolous arthropods
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Abstract

Background: Insects operate complex humoral and cellular immune strategies to fend against invading
microorganisms. The majority of these have been characterized in Drosophila and other dipterans. Information on
hemipterans, including Triatominae vectors of Chagas disease remains incomplete and fractionated.

Results: We identified putative immune-related homologs of three Triatominae vectors of Chagas disease, Triatoma
pallidipennis, T. dimidiata and T. infestans (TTTs), using comparative transcriptomics based on established immune
response gene references, in conjunction with the predicted proteomes of Rhodnius prolixus, Cimex lecticularis and
Acyrthosiphon pisum hemimetabolous. We present a compressive description of the humoral and cellular innate
immune components of these TTTs and extend the immune information of other related hemipterans. Key
homologs of the constitutive and induced immunity genes were identified in all the studied hemipterans.

Conclusions: Our results in the TTTs extend previous observations in other hemipterans lacking several
components of the Imd signaling pathway. Comparison with other hexapods, using published data, revealed that
the absence of various Imd canonical components is common in several hemimetabolous species.
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Background
Arthropods possess complex innate immune mecha-
nisms to fend against viruses, bacteria, fungi and para-
sites. When invading microorganisms breach the cuticle
and epithelial barriers, they confront humoral and cellular
components of the innate immune response [1]. Intruders
are recognized as non-self by pattern recognition re-
ceptors (PRRs), including peptidoglycan-binding proteins
(PGRPs) and Gram-negative bacteria-binding proteins
(GNBPs) [1–3]. In Drosophila, PRRs bind to conserved
pathogen-associated molecular patterns (PAMPs) [1].

These molecular interactions initiate the immune signal
transduction through three main pathways, Toll, Jak-
STAT and Imd. The immune signaling culminates in the
translocation into the nucleus of NF-kB/Rel transcription
factors, which activate humoral responses characterized
by the synthesis of antimicrobial peptides (AMPs) with
broad activity spectrum against bacteria, and fungi [1, 4].
In addition to AMP production, other effector mecha-

nisms are elicited as first line of defense, which includes
coagulation, melanization and the production of nitric
oxide (NO) and reactive oxygen species (ROS). Clot for-
mation involves Hemolectin and Fondue proteins, which
are critical to immobilize bacteria and initiation of
wound healing [1]. Melanization is triggered by injury or
recognition of microbial ligands through PRRs [5, 6].
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Pro-phenoloxidase (PPO) is a precursor present in the
hemolymph and hemocytes, which is activated by pro-
teolytic cascades to phenoloxidase (PO) for de novo
synthesis of melanin [7]. NO is a highly toxic for a wide
variety of pathogens. This is produced by oxidation of
L-arginine to L-citrulline by the nitric oxide synthase
(Nos) [8, 9]. ROS are produced by conserved nicotina-
mide adenine dinucleotide phosphate (NADPH) enzymes;
dual oxidase (Duox) generates hydrogen peroxide (H2O2)
and hypochlorous acid, and a member of the NADPH
oxidase family (Nox) generates H2O2 [10–12]. In this con-
text, antioxidant enzymes such as catalases, glutathione
peroxidases (GPx) and thioredoxin peroxidases (TPx),
play important roles in cellular homeostasis [13, 14].
Alongside humoral responses, cellular responses are

mediated by hemocytes [15, 16]. The main defense against
viruses is RNA interference (RNAi) [17]. RNAi is based on
Dicer (Dcr) and Argonaut (Ago) proteins. These mediate
the production of short RNAs from double-stranded RNA
(dsRNA) to guide the degradation of viral RNA by the
small interfering RNA (siRNA) pathway [18, 19].
Hemocytes phagocytose bacteria, encapsulate parasites

and produce immune toxic compounds for pathogen lysis
[15, 16]. Internalization of invaders involves members of
the scavenger receptor (SR) family and the IgSF-domain
protein Dscam (Down syndrome cell adhesion molecule)
[20–22]. In the hemolymph, thioester-containing proteins
(TEPs) act as opsonins to mark pathogens for phagocytosis
[23], C-type lectins (CTLs), recognize microbial carbohy-
drate structures [24, 25], and extracellular serine proteases,
including CLIP-domain serine proteases (CLIPs) are acti-
vated upon recognition of aberrant tissues or microbial
compounds [26].
Most information of insect immune responses has

been described in Drosophila melanogaster, the main
model organism in Diptera [1, 27, 28], but knowledge of
the immune responses in hemipterans including triato-
mine bugs is limited [29–31]. The Toll and Jak-STAT
signaling components, described in Drosophila have also
been identified in Rhodnius prolixus (RPRO) (Hemiptera:
Reduviidae) [32, 33], Acyrthosiphon pisum (ACPI) (Hem-
iptera: Aphididae) [30] and Cimex lecticularis (CLEC)
(Hemiptera: Cimicidae) [31]. However, Imd signaling
components, highly conserved in several insect orders
[34–42], appear to be absent in RPRO and ACPI [30,
33], and information on the other components of the
innate immune response in Triatomine bugs remains
fractionated and incomplete [29].
In this study, we used a transcriptomic analysis to

describe innate immune response genes of Triatoma
infestans (TINF), the major vector of Chagas disease in
sub-Amazonian endemic regions; T. dimidiata (TDIM)
a vector in northern South America and Central America,
extending into Mexico [43]; and T. pallidipennis (TPAL),

an important vector in Mexico [44]. An extended com-
parative analysis of immune genes of TPAL, TDIM, and
TINF (TTTs), and other hemipterans (RPRO, CLEC and
ACPI) along with those of other holometabolous and
hemimetabolous arthropods revealed the lack of several
components of the Imd pathway in the hemimetabolous
group.

Methods
Insect rearing
Colonies of T. pallidipennis (TPAL) (colony 0230 from
Mexico), T. dimidiata (TDIM) (colony 0252 from
Tegucigalpa, Honduras) and T. infestans (TINF) (colony
X32 from Santiago del Estero, Argentina) established in
the Centro Nacional de Chagas, Córdoba, Argentina were
reared in the Centro Regional de Estudios Genómicos
(CREG), Universidad Nacional de La Plata (UNLP) and
the Centro de Bioinvestigaciones, Universidad Nacional
del Noroeste de Buenos Aires (UNNOBA). Insects were
reared at 28 °C and a partial humidity of 70% with a 12 h
light/dark schedule. Insects were regularly fed using artifi-
cial feeders and chicken blood. Insect handling was per-
formed in accordance to the World Health Organization
protocol [45].

Transcriptome preparation and sequencing
To maximize the coverage of the gene content for each
species, total RNA was isolated from embryos (55) and
diverse organs (reproductive and digestive tract, Malpig-
hian tubules, brain, fat body and salivary glands) of fed
and starved insects of the five nymphal stages (N1 = 8;
N2 = 8; N3 = 8; N4 = 4; N5 = 4), adult mated females (4)
and adult males (4) of TPAL, TDIM and TINF using
Trizol (Life Technologies, Massachusetts, USA). A pool
was made with 2 μg of each total RNA extraction
(embryos + insect organs).
A single cDNA library for each species was independ-

ently constructed using 1.5 μg of each RNA pool (embryos
+ insect tissues) using the Mint-2 Kit (Evrogen, Moscow,
Russia) according to the manufacturer instructions. To re-
duce redundancy due to highly expressed transcripts and
to increase the representation of poorly represented tran-
scripts, each library was normalized using the Trimer-2
Normalization Kit (Evrogen, Moscow, Russia) according to
the manufacturer instructions. The cDNA libraries were
barcoded and subjected to the shotgun sequencing proto-
col using the GS FLX+ (454-Roche, Connecticut, USA).
Raw sequence datasets are available at the Sequence Read
Archive (SRA) - NCBI: TPAL (SRX2600752), TDIM
(SRX2600753) and TINF (SRX2600754).

Data filtering, trimming and assembly
Raw reads from each barcoded library were analyzed
with PRINSEQ [46] and filtered according to length,
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sequence complexity and quality. Each library was sub-
jected to de novo assembly with the GS DeNovo assembler
v.2.8 software in cDNA mode using the default parame-
ters, and including the adaptor sequences for trimming.
The assembled sequences dataset are available at the
NCBI-TSA (GFMK00000000, GFMC00000000 and
GFMJ01000000). The non-assembled reads were mapped
to the RPRO genome (Rhodnius-prolixus-CDC_SCAF-
FOLDS_RproC3.fa) and proteome (Rhodnius-prolixus-
CDC_PEPTIDES_RproC3.2.fa) using BLAST (Basic Local
Alignment Search Tool) [47] algorithms (BLASTn and
BLASTx, respectively). Non-redundant mapped reads to
either database were included as singletons into the as-
sembled dataset (full_dataset). A non-redundant database
(nr_dataset) was built discarding alternative isotigs be-
longing to the same isogroup or unigene, by keeping the
largest isotig (transcript) per isogroup. The dataset used in
this work is available at http://201.131.57.23:8080/data/
triatoma.

Transcriptome completeness analysis
The assembled dataset for each species was used to
identify the proportion of the core eukaryotic genome
coverage. We used HMM profiles for 458 core eukaryotic
proteins as provided by the Core Eukaryotic Genome
Dataset (CEGMA) [48] and HMMER searches with the
hmmscan command and the -T 40 and –domT 40 filters,
as described in [49]. Following the same approach, a
Benchmarking Universal Single-Copy Orthologs (BUSCO)
sets for arthropod [50] was used to assess transcriptome
datasets completeness.

Comparative genomics datasets
We included three hemipteran species whole-genomes
for comparison: the complete predicted-peptide sets of
RPRO (Rhodnius-prolixus-CDC_PEPTIDES_RproC3.1.fa)
and CLEC (Cimex-lectularius-Harlan_PEPTIDES_ClecH
1.2.fa) available in VectorBase [51] and the predicted-pep-
tide set of ACPI (aphidbase_2.1b_pep.fasta) from
AphidBase [52].
A whole set of known immune-related gene sequences

(“immunity-genes reference dataset”) of D. melanogaster,
Aedes aegypti, Anopheles gambiae and other insects, in-
cluding triatomines were retrieved from ImmunoDB
[36], IIID [53], GenBank [54], VectorBase [51], UniProt
[55], FlyBase [56] and Ensembl [57] databases. In
addition, high-confidence immune-related orthologs of
Bombyx mori, Tribolium castaneum and Apis mellifera
were retrieved from published literature [35, 38, 40]
(Additional file 1: Table S1).

Immune-related homologs search
The “immunity-genes reference dataset” was used as queries
to perform BLAST searches against TTTs transcriptomes

and RPRO, CLEC and ACPI predicted-peptide sets. For this
purpose, we used multiple BLAST algorithms (tBLASTn,
BLASTn, BLASTp) using a cut-off e-value of 1.0e−5. BLAST
outputs were retrieved, listed and compiled in the order of
descending sequence identity percentage and score, and as-
cending e-value. Additionally, BLAST-hits with considerably
short alignment lengths compared with the genes of the
“immunity-genes reference dataset” were filtered. Then, the
best 10 BLAST-hits were selected for detection of conserved
protein-domain structures.
To search for immune-related genes of the “immunity-

genes reference dataset” that produced no hits through
BLAST inquiries, we conducted a tBLASTn search
against all contigs and unassembled reads of the TTTs
transcriptomes. Further, we performed HMM profile-
based searches for those unidentified immune-related
genes in TTTs and the other hemipterans (RPRO, CLEC
and ACPI). We generated amino acid alignments of the
unidentified immune-related genes with MUSCLE [58].
Hidden Markov models of these alignments were built
using HMMER [59]. These HMM profiles were used to
perform searches (hmmscan) against the six-frame trans-
lated sequences of the TTTs transcriptomes and the
hemipteran predicted-peptide sets.
To detect conserved protein-domain structures, the

immune-related sequences of TTTs and other hemipterans
identified were analyzed using InterProScan [60]. The do-
main signatures recognized were visually inspected and
compared against the genes of the “immunity-genes refer-
ence dataset” to corroborate their architecture similarities.
The immune-related homologs identified were catego-

rized into the following major immune categories: micro-
bial recognition and activation (GNBPs, PGRPs, CTLs,
TEPs, SRs and CLIPs), signaling (Toll, Jak-STAT and Imd
signaling pathways), effectors (AMPs, melanization, NO
and ROS), regulation (Toll, Jak-STAT and Imd signaling
regulators), antioxidant system (catalases and peroxi-
dases), RNA interference (RNA interference machinery)
and coagulation (Additional file 1: Tables S2-S8).

Phylogenetic analysis
The amino acid sequences of defensin and lysozyme ho-
mologs identified were aligned separately using MUSCLE
[58]. To compare the obtained results with previously de-
scribed triatomine defensins, the sequences of defensin A
(GenBank: AY196130), defensin B (GenBank: AY196131)
and defensin C (GenBank: AY196132) of RPRO [61], T.
brasiliensis (TBRA) defensin 1 (GenBank: AAV48636),
defensin 2 (GenBank: ABA10770), defensin 3 (GenBank:
ACH57150), defensin 4 (GenBank: ACH57151) [62, 63],
and defensin (GenBank: ABD61004) of TINF were in-
cluded in the alignment. Two outgroup sequences were
added to the defensin dataset: defensin 1 of A. gambiae
(VectorBase ID: AGAP01129) and defensin C of A. aegypti
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(VectorBase ID: AAEL003832). In the same way, the se-
quences of lysozyme A (GenBank: ABX11553), lysozyme B
(GenBank: ABX11554) of RPRO [64], TBRA lysozyme 1
(GenBank: AAU04569) [62], and lysozyme 1 (GenBank:
AAP83129) and lysozyme 2 (GenBank: ABI94387) [65, 66]
of TINF were included in the alignment. Two outgroup se-
quences were added to the lysozyme dataset: lysozyme 2 of
A. gambiae (VectorBase ID: AGAP007343) and lysozyme
A of A. aegypti (VectorBase ID: AAEL003723). Maximum
likelihood analyses were carried out using PhyML v3.0 [67]
running 1000 bootstrap samples. The output trees were
visualized and optimized with FigTree v1.4.3 [68].

Results
Transcriptome datasets metrics
Between 112 and 202 Mbp of filtered raw sequence data
were generated for each triatomine species. De novo as-
sembly yielded 31,175; 29,024; and 35,629 transcripts for
TPAL, TDIM and TINF, respectively. Selection of the
largest transcript for each isogroup (unigene) yielded non-
redundant datasets with 29,789; 27,652; and 34,646 tran-
scripts for TPAL, TDIM and TINF, respectively. BLASTx
matches were identified for 71–74% of RPRO predicted
proteome. Transcriptome completeness assessment for
the TTTs transcriptomes indicated coverages of 86.9% in
TPAL, 85.8% in TDIM and 82.2% in TINF with BUSCO
[50], and higher than 90% for CEGMA dataset [48]. The
datasets supporting the results of this article are available
at http://201.131.57.23:8080/data/triatoma.

Microbial recognition
Peptidoglycan and gram-negative bacteria-binding proteins
We identified PGRP-like homologs containing both
peptidoglycan recognition protein (IPR015510) and N-
acetylmuramoyl-L-alanine amidase (IPR002502) domains
in TTTs, and the presence of three PGRP with identical
protein signatures in RPRO, which were previously iden-
tified [33] (Fig. 1, Additional file 1: Table S2). We also
recognized a PGRP-like gene (CLEC005283) in CLEC
(PGRP-LF), which was previously related to functions
other than microbial recognition [31]. As previously
reported, we were unable to detect PGRP-like genes in
ACPI [30].
GNBP-like homologs with beta-1,3-glucan-binding

N-terminal (IPR031756) and/or concanavalin A-like
lectin/glucanase (IPR013320) domains were observed
in all hemipterans, except TDIM (Fig. 1, Additional
file 1: Table S2).

Lectins
Several CTLs homologs containing C-type lectin fold
(IPR016187) domains were identified in all hemipterans
(Fig. 1, Additional file 1: Table S2).

Thioester-containing proteins
Notably, we could not identify TEPs in TTTs; however,
one TEP encoding gene containing immunoglobulin E-
set (IPR001599) and α2-macroglobulin thiol-ester bond-
forming (IPR019565) domains were detected in RPRO
and at least two different TEP homologs with similar
protein signatures were observed in CLEC and ACPI
(Fig. 1, Additional file 1: Table S2).

Cellular receptors
We detected homologs containing a Dscam-domain
(IPR033027) in RPRO, CLEC and ACPI. Conversely,
sequences lacking this domain but containing an
immunoglobulin-like fold (IPR013783) and a fibronec-
tin type III (IPR003961) domains were identified in
TPAL and TINF.
Scavenger receptors class B (SR-B) homologs, character-

ized by a CD36 (IPR002159) domain were the most abun-
dant SR class in all hemipterans, except TINF. The SR-B
croquemort receptor was not detected in any species, except
ACPI (Fig. 1, Additional file 1: Table S2). Scavenger recep-
tors class C (SR-C) encoding genes were identified exclu-
sively in CLEC. However, only one of them (CLEC000453)
contains the characteristic extracellular sushi/SCR/CCP
(IPR000436) domain (Fig. 1, Additional file 1: Table S2).

CLIP-serine proteases
We identified sequences containing serine protease
(IPR001254) and peptidase S1 (IPR009003) domains
in all hemipterans. However, homolog genes with a
proteinase regulatory CLIP (IPR022700) domain were
observed only in RPRO (RPRC003090; RPRC009383) and
CLEC (CLEC010998; CLEC006847; CLEC001617) (Fig. 1,
Additional file 1: Table S2).

Signaling
Toll signaling pathway
Previously, several Toll signaling proteins were reported
in RPRO [32, 33] and we recognized most of the canon-
ical components of the Toll signaling pathway in triato-
mine bugs (TTTs and RPRO). Of these, we detected
homologs of the extracellular cytokine spätzle, the Toll
receptor, the death-domain containing adaptor proteins
Myd88 and Tube, and the NF-kB/Rel transcription fac-
tor Dorsal (Fig. 2, Additional file 1: Table S3). We also
corroborated that canonical components of this signal
cascade are conserved in CLEC and ACPI [30, 31] (Fig. 2,
Additional file 1: Table S3). In addition, we identified ho-
mologs of Cactus in most hemipterans; necrotic homologs
were identified only in CLEC and ACPI but wntD
was not found in any hemipteran. These molecules
are responsible for the negative regulation of the
Toll pathway in the absence of pathogenic challenges
(Fig. 1, Additional file 1: Table S5).
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Jak-STAT signaling pathway
Domeless receptor homologs with both fibronectin type III
and immunoglobulin-like fold domains were detected only
in CLEC and ACPI (Fig. 2, Additional file 1: Table S3). We
did not detect homologs of the hemocyte-released cyto-
kine Unpaired-3 (Upd-3) in any of the hemipterans.
However, homologs of Janus kinase (Jak), containing a
serine-threonine/tyrosine-protein kinase catalytic domain
(IPR001245) and homologs of STAT with transcription
factor STAT domain (IPR001217) were observed in all
hemipterans, except TINF and TDIM, respectively.

We also identified several homologs of negative regula-
tors, as SOCS36E, PIAS and Ptp61F. Of these, homologs of
Ptp61F with a PTPase (IPR000242) domain were present
in all hemipterans (Fig. 1, Additional file 1: Table S5).

Imd signaling pathway
We were unable to detect key components of the Imd
pathway in all hemipteran species. Of these, as de-
scribed for ACPI, RPRO and CLEC, the death-domain
protein Imd, FADD (Fas-Associated protein with
death-domain) and the caspase DREDD (death-related

Fig. 1 Presence/absence of immune homologs in hemipterans. Homolog tables presented according to the immune categories in which they
participate. Homologs are presented in each first column (corresponding names could be seen in the abbreviations list). The presence of
homologs in each species is represented by colored squares in subsequent columns. Brown squares represent T. pallidipennis (TPAL), orange T.
dimidiata (TDIM), blue T. infestans (TINF), pink R. prolixus (RPRO), green A. pisum (ACPI) and red C. lecticularis (CLEC). The absence of homologs
corresponds to blank squares/spaces. The conserved immune-related homologs in all the hemipterans are indicated with yellow circles. Names in
red font correspond to immune-related homologs absent in all hemipterans
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ced-3/Nedd2-like protein) were not detected in any
TTT species. However, homologs the three E2 ubiqui-
tin conjugating enzymes: Uev1a, Ubc13 (Bendless),
Ubc5 (Effete) and the E3 ubiquitin ligase Inhibitor of
Apoptosis Protein (IAP2) were present in all hemip-
terans, except for Effete in ACPI (Fig. 2, Additional file
1: Table S3). Homologs of the NF-kB/Rel transcription
factor Relish, with Rel homology, DNA-binding do-
main (IPR011539) were observed in CLEC and all
triatomine bugs, except TPAL. As previously reported,
we were unable to detect Relish genes in ACPI [30]
(Fig. 2, Additional file 1: Table S3).
We detected several negative regulators of the Imd

signaling cascade. Homologs of Caspar with UBX
(IPR001012) and UAS (IPR006577) domains were
identified in all hemipterans, except TPAL and TDIM
(Fig. 1, Additional file 1: Table S5). Homologs that alter
the stability of the Imd pathway members such as dUSP36
and POSH were observed in ACPI, CLEC and RPRO,
but not in TTTs. In addition, all components of the
SKPA/SLMB/DSL1 complex were identified in all he-
mipterans, except for SKPA in CLEC (Fig. 1, Additional
file 1: Table S5).
Homologs of the transcriptional repressor Zfh1 (Zn finger

homeodomain 1) with zinc finger C2H2-type (IPR013087)
and homeobox (IPR001356) domains were identified in all
hemipterans. Similarly, homologs of the caspase inhibitor

Dnr1 (Defense repressor 1) were not identified only in
TDIM and CLEC (Fig. 1, Additional file 1: Table S5). While
homologs of the transcription factor caudal with a helix-
turn-helix (IPR000047) motif and multiple homeobox
(IPR001356; IPR020479; IPR009057; IPR017970) domains
were observed in all hemipterans, but not in TTTs (Fig. 1,
Additional file 1: Table S5). Likewise, homologs of the deubi-
quitinase Trabid [69] with zinc finger, RanBP2-type
(IPR001876) and OTU (IPR003323) domains were present
in RPRO and ACPI. A Trabid homolog sequence containing
an OTU domain, but not zinc finger motifs, was detected in
CLEC. No Trabid homologs were detected in TTTs. While
homologs of Pickle, a Drosophila negative regulator that
selectively inhibit Relish [70] were not detected in any
hemipteran (Fig. 1, Additional file 1: Table S5).

Immune effectors
Antimicrobial peptides
A number of defensin homologs, containing both knot-
tin scorpion toxin-like (IPR003614) and defensin inver-
tebrate/fungal (IPR001542) domains, were identified in
all hemipterans, except ACPI (Fig. 1, Additional file 1:
Table S4). ACPI genome apparently has no genes encod-
ing for defensins [30]. The maximum likelihood tree,
based on defensin homolog sequences, showed the pres-
ence of seven clades (A-G) (Fig. 3). In clade A, genes
encoding defensin A and B of RPRO (DefA-RPRO,

Fig. 2 Immune signaling pathways. Diagram of the Imd, Jak-STAT and Toll signaling pathways according to their homolog members identified
in the hemipterans. The color-divided pies indicate the presence of the immune signaling homologs among the six species. Brown represents
T. pallidipennis (TPAL), orange T. dimidiata (TDIM), blue T. infestans (TINF), pink R. prolixus (RPRO), green A. pisum (ACPI) and red C. lecticularis
(CLEC). Names in red font correspond to immune-related homologs absent in all hemipterans
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DefB-RPRO) were grouped with three sequences of
RPRO (RPRC004803, RPRC012185 and RPRC012186)
with high bootstrap support (770). A gene encoding
defensin 4 of TBRA (Def4-TBRA) was located at the
basal position of this clade. In clade B, a gene encoding
defensin 3 of TBRA (Def3-TBRA) was grouped with
defensin sequences of TINF (TINF_isotig04372_3), TPAL
(TPAL_isotig05779_3) and TDIM (TDIM_isotig05524_2)
with medium bootstrap support values (551–679). In
clade C, both defensin homolog sequences of CLEC
(CLEC002659 and CLEC002658) were grouped with two
TPAL sequences (TPAL_H9TUR5Q01A3A1J_6 and TPA-
L_isotig06282_6) with variable bootstrap values (234–998).
Two genes encoding defensins of TBRA (Def1-TBRA and
Def2-TBRA) were located at the basal position of the A, B
and C clades, with variable bootstrap values (229–559). In
clade D, a defensin from the gut of TINF (Def-TINF) was
grouped with a TINF (TINF_isotig02032_4) and TPAL
(TPAL_isotig06064_6) sequences with medium bootstrap

support (533). Clade E grouped four TPAL se-
quences (TPAL_H9TUR5Q02GXUIT_1, TPAL_H9TU
R5Q02FK5RG_1, TPAL_contig00741_1, and TPAL_i-
sotig06040_4) and a sequence of TDIM (TDIM_iso-
tig02233_4) with a bootstrap support value of 725.
Clade F grouped a gene encoding defensin C of
RPRO (DefC-RPRO) with another sequence of RPRO
(RPRC012184), as well as three TDIM sequences
(TDIM_IAZY42G01CCHB3_3, TDIM_H9TUR5Q02H4M
R4_2 and TDIM_H9TUR5Q02FZCNK_2) with high boot-
strap support (953). In clade G, four sequences of RPRO
(RPRC012183, RPRC012180, RPRC012259 and RPRC012
177) grouped separately from other defensin sequences of
RPRO and were supported by high bootstrap value
(1000). A RPRO sequence (RPRC012182) was located
separate from the other defensin clades. Dipteran
defensin 1 of A. gambiae (Def-AGAM) and defensin
C of A. aegypti (Def-AAED) were clustered in an
outgroup branch.

Fig. 3 Defensin phylogenetic analysis. Maximum Likelihood cladogram of hemipteran defensins. Branch color indicates the different hemipteran
species. Brown branches correspond to T. pallidipennis (TPAL), orange to T. dimidiata (TDIM), blue to T. infestans (TINF), pink to R. prolixus (RPRO)
and red to C. lecticularis (CLEC). No defensin homologs were identified in A. pisum (ACPI). The black color branches correspond to genes
encoding defensin A, B and C of RPRO (DefA-C-RPRO), defensin 1, 2, 3 and 4 of T. brasiliensis (TBRA) (Def1-4-TBRA) and defensin of TINF
(Def-TINF) as well as defensin sequences of A. gambiae (Def-AGAM) and A. aegypti (Def-AAED) that were used as outgroups. The gray shading
enclosing the branches represents the clusters formed. Branch labels show the bootstrap samples supporting that branch
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Lysozyme homologs, containing Lysozyme-like (IPR02
3346) domains, were identified in all hemipterans (Fig. 1,
Additional file 1: Table S4). The maximum likelihood
tree, based on lysozyme homolog sequences, showed the
presence of seven clades (A-G) (Fig. 4). In clade A, all
lysozyme homolog sequences of CLEC (CLEC009914,
CLEC003818, CLEC013272 and CLEC003819) were
grouped with low bootstrap support (286). Clade B,
grouped a gene encoding lysozyme A of RPRO (LysA-
RPRO) with one sequence each of RPRO (RPRC015441)
and TDIM (TDIM_H9TUR5Q01CQN5O_5) with high
bootstrap support (1000). A sequence of TDIM (TDI-
M_isotig05675_5) was located at the basal position of
this clade. In clade C, a gene encoding lysozyme 1 of
TINF (Lys1-TINF) and a sequence of TINF (TINF_i-
sotig04514_1) were grouped with medium bootstrap
support (451). A gene encoding lysozyme 1 of TBRA
(Lys1-TBRA) was located at the basal position of the
B and C clades, with medium bootstrap support value

(617). In clade D, a gene encoding lysozyme 2 of
TINF (Lys2-TINF) was grouped with two sequences
of TINF (TINF_isotig04526_5 and TINF_isotig0452
0_6), with high bootstrap support values (965–992).
Clade E clustered sequences of TPAL (TPAL_isotig05
649_2 and TPAL_isotig05202_3) and TDIM (TDIM_is
otig05522_6, TDIM_isotig04659_6) with high boot-
strap support (960). A RPRO (RPRC015442) and
TINF (TINF_isotig01507_3) sequences were located at
the basal position of this clade, with medium boot-
strap support (481–673). All lysozyme homolog se-
quences of ACPI (ACYPI008509, ACYPI009125 and
ACYPI002175) were grouped with variable bootstrap
values (376–999) in clade F. Clade G clustered a gene en-
coding lysozyme B of RPRO (LysB-RPRO) and RPRO
(RPRC015440) and TPAL (TPAL_isotig05093_2) sequences,
with variable bootstrap support (494–997). Dipteran lyso-
zyme 2 of A. gambiae (Lys-AGAM) and lysozyme A of A.
aegypti (Lys-AAED) were clustered in an outgroup branch.

Fig. 4 Lysozyme phylogenetic analysis. Maximum Likelihood cladogram of hemipteran lysozymes. Branch colors indicate the different hemipteran
species. Brown branches correspond to T. pallidipennis (TPAL), orange to T. dimidiata (TDIM), blue to T. infestans (TINF), pink to R. prolixus (RPRO),
red to C. lecticularis (CLEC) and green to A. pisum (ACPI). The black branches correspond to genes encoding lysozyme A and B of RPRO
(LysA, B-RPRO), lysozyme 1 of T. brasiliensis (TBRA) (Lys1-TBRA) and lysozyme 1 and 2 of TINF (Lys1-TINF) as well as lysozyme sequences of
A. gambiae (Lys-AGAM) and A. aegypti (Lys-AAED), which were used as outgroups. The gray shading enclosing the branches represents
the clusters formed. Branch labels show the bootstrap samples supporting that branch
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We also identified prolixicin homologs in all triatomine
bugs and CLEC, but we failed to detect prolixicin homo-
logs in ACPI (Fig. 1, Additional file 1: Table S4).
No homologs of cecropin, attacin, andropin, drosomy-

cin, drosocin, listericin and metchnikowin were identified
in any hemipteran (Fig. 1, Additional file 1: Table S4).

Melanization
We found PPO homolog sequences, containing hemocyanin
C-terminal (IPR005203) and immunoglobulin E-set
(IPR014756) domains, in TTTs (Fig. 1, Additional
file 1: Table S4). We corroborate the presence of
previously identified PPO homologs, containing the
aforementioned domains and a tyrosinase copper-
binding (IPR002227) domain, in RPRO, CLEC and ACPI
[30, 31, 33] (Fig. 1, Additional file 1: Table S4).

Nitric oxide
We identified a nitric oxide synthase (Nos) homolog se-
quence, containing a nitric oxide synthase N-terminal
(IPR004030) domain, in TINF, but not in TDIM and
TPAL. Also, Nos homologs with a eukaryote nitric-oxide
synthase (IPR012144) domain, were identified in RPRO,
CLEC and ACPI (Fig. 1, Additional file 1: Table S4).

Reactive oxygen species
Duox homologs were not detected in TTTs. But, we identi-
fied homolog sequences, containing a Dual oxidase perox-
idase (IPR034821) and Haem peroxidase (IPR010255;
IPR019791) domains, in RPRO and ACPI; as well as a
number of previously reported homologs of Duox enzymes
in CLEC [31]; although, only one (CLEC009522) of these
sequences contains a Haem peroxidase and a Dual oxidase
peroxidase domains (Fig. 1, Additional file 1: Table S4).
Homologs of NADPH oxidase family (Nox), contain-

ing (NADPH) oxidase 5 (IPR029648) domains, were
identified in all hemipterans except TPAL and TINF
(Additional file 1: Table S4). In addition, we detected ho-
mologs of the phospholipase C-β (PLCβ), containing
phosphoinositide phospholipase C (IPR001192) domains,
in all hemipterans (Fig. 1, Additional file 1: Table S4).

Antioxidant system
Antioxidant system
Homologs of a Drosophila catalase, with multiple catalase-
like and catalase immune-responsive (IPR010582) domains
were observed in all hemipterans, except TINF (Fig. 1,
Additional file 1: Table S6). CysGPx homologs (that partici-
pate in the elimination of hydrogen and organic peroxides),
containing both glutathione peroxidase (IPR000889) and
thioredoxin-like fold (IPR012336) domains, were detected
only in TPAL and TDIM. Several TPx homologs, contain-
ing thioredoxin-like fold and peroxiredoxin C-terminal
(IPR019479) domains, were identified in all hemipterans.

Additionally, numerous Haem peroxidase homologs, with
peroxidase (IPR010255; IPR019791) domains and Drosoph-
ila peroxiredoxin-2540 homolog sequences, containing
both alkyl hydroperoxide reductase subunit C/thiol specific
antioxidant (IPR000866) and peroxiredoxin C-terminal
(IPR019479) domains, were detected in all hemipterans
(Fig. 1, Additional file 1: Table S6).

RNA interference
siRNA pathway
We recognized key components of the siRNA path-
way in all hemipterans. Of these, Dcr-2 homologs,
with Dicer dimerization (IPR005034), helicase ATP-
binding (IPR014001), P-loop NTPase (IPR027417),
PAZ (IPR003100) and ribonuclease III (IPR000999)
domains, were identified in RPRO, CLEC and ACPI,
but not in TTTs. R2D2 homologs, with a double-stranded
RNA-binding (IPR014720) domains, were observed in
CLEC and all triatomine bugs except TDIM. In triatomine
bugs, we identified Ago2 homologs with Piwi (IPR003165),
ribonuclease H-like (IPR012337) and PAZ domains. While
homologs of these molecules containing other Ago-
related (IPR032474; IPR014811; IPR032472) domains
were detected in CLEC and ACPI (Fig. 1, Additional
file 1: Table S7).
We also identified double-stranded RNA-binding do-

main Loqs homologs in TPAL, TDIM, and ACPI, while
sequences with the characteristic staufen C-terminal
(IPR032478) domain were observed in TINF, RPRO and
CLEC. Additionally, other key enzymes from several
RNAi-related pathways were detected in all hemipterans
(Fig. 1, Additional file 1: Table S7).

Coagulation
We detected Hemolectin homologs, containing both co-
agulation factor 5/8 C-terminal (IPR000421) and von
Willebrand factor, type D (IPR001846) domains, in
RPRO, CLEC and ACPI, but not in TTTs. Homolog
sequences of Fondue were not identified in any hemip-
teran (Fig. 1, Additional file 1: Table S8).

Discussion
Here, using as reference immune molecules described in
established invertebrate immunology models [1, 36], we
present a compressive description of the humoral and
cellular innate immune components of four important
Chagas disease vectors (TPAL, TDIM, TINF and RPRO),
along with two other hemipterans phylogenetically re-
lated (CLEC and ACPI). Key homologs of constitutive
and induced immune responses were identified in all the
studied hemipterans (Fig. 1). However, compared to other
insects; important differences were observed (Fig. 2). Our re-
sults in the TTTs extend previous observations in other he-
mipterans lacking several components of the Imd signaling
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pathway. Further comparison with other hexapods, using
published data, revealed that lacking Imd canonical compo-
nents is common in several hemimetabolous species.
Transcriptome analysis of organisms with no sequenced

genomes could provide useful preliminary gene cata-
logues. Although we cannot exclude that genes expressed
at low levels or restricted to few cells could not be de-
tected, this possibility was reduced by the normalization
of the libraries and their high coverage values assessed
using two approaches (CEGMA and BUSCO). Almost
two-thirds of the de novo TTT transcriptomes mapped to
the RPRO genome and predicted proteome [33], and three
quarters of the RPRO proteome had homologous matches
in TTT datasets. Nevertheless, although the constructed
TTT-immune landscape appears patchy, the presence of
canonical immune homologs in at least one of the triato-
mines could be considered as extant in TTTs as a group;
this was further supported by their presence in the
RPRO genome. While their presence only in RPRO
(different genera) could not be interpreted as present
in all triatomine bugs. The use of the available ge-
nomes of CLEC [31] and ACPI [71] ensured the most
complete data available for meaningful comparative
analysis with other hemipterans.
Overall, we identified hemipteran homologs belonging

to the major immune categories (microbial recognition
and activation, signaling, effectors, regulation, antioxi-
dant system, RNA interference and coagulation), but
with particular compositions that could be attributed to
lifestyle and environmental exposures of these insects.
Conserved microbial recognition GNBPs in all hemip-

terans is consistent with the long ancestry of these recep-
tors, while the presence of PGRPs in all hematophagous
hemipterans, but not in ACPI could be indicative of their
involvement in surveillance and activation of immune
signaling against pathogens encountered in their different
environs. Likewise, hemipterans possess cellular receptors
as Dscam and different classes of scavenger receptors in-
volved in cellular internalization of foreign agents [20, 21].
This hemocyte response also involves CTLs that are con-
served in hemipterans, and participate in the defense
against flagellated parasites [72, 73]. In triatomine bugs,
these pathogen-binding molecules facilitate the recruit-
ment of hemocytes for the encapsulation and melaniza-
tion of pathogens [74].
TEPs share similarities with vertebrate complement

factors C3/C4/C5 and have thioester sites for microbial
recognition in a common [23]. TEP1 of A. gambiae par-
ticipates in the defense against bacterial and Plasmo-
dium infections [75, 76]. At least one member of the
TEP family was detected in RPRO, CLEC and ACPI, but
none in TTTs, which reflects an apparent low propor-
tion of these recognition-molecules in hemipterans
[30, 77, 78]. In contrast, TEPs are subject to rapid

lineage-expansions in other insects such as Drosophila
[34] and mosquitoes [37, 79]. Remarkably, Musca domes-
tica possesses the largest TEP repertoire of the sequenced
dipterans. This genic expansion is related to the coexist-
ence of these insects with a wide diversity of microorgan-
isms [80]; the low representation of TEPs in hemipterans
could be related to a limited exposure to pathogens mainly
due to restricted diets.
Similarly, although we detected several serine prote-

ases in all hemipterans, serine proteases with CLIP do-
main were detected in low proportions. In other insects,
CLIPs participate in the regulation of extracellular path-
ways involved in the proteolytic activation of PPO and
the Toll signaling pathway [81, 82], and represent large
families of genes [36–38, 83]. The relative paucity of
CLIP-domain contrast with an enrichment of protease
inhibitor such as pacifastins (IPR008037), previously
detected in Triatoma species (Martinez-Barnetche et al.,
unpublished observations). In arthropods, pacifastins are
upregulated after immune challenge and act as downregu-
lators of the melanization by preventing PO activation
[84]. Nevertheless, the significance of this finding remains
uncertain.
As expected, genes responsible for constitutive pri-

mary effector mechanisms, widely conserved in insects,
such as PPO enzymes responsible for the de novo syn-
thesis of melanin, were present in all hemipterans. Mela-
nization plays an important role in the elimination of a
variety of pathogens, as well as in facilitating wound
healing [85, 86]. In addition, this reaction is related to
hemocyte-mediated processes such as phagocytosis of
bacteria and parasite encapsulation [87]. We also de-
tected PLCβ homologs and numerous NADPH enzymes,
responsible for the production of ROS. In triatomines,
oxygen intermediates constitute a primary defense line
against trypanosomatid parasites [88, 89]. ROS also play
a key role in the regulation of intestinal bacteria, which
undergo dramatic increases after blood meals [90]. In
this context, antioxidants are particularly important for
hematophagous insects continuously exposed to ROS,
due to the release of heme after blood-feeding [88]. On
the other hand, prolonged exposure to ROS leads to
oxidative stress and cell damage [91], and the presence
of enzymes responsible for the removal of hydrogen and
organic peroxides, such as catalases, GPx and TPx, indi-
cates the important role of these redox mechanisms for
cellular homeostasis in hemipterans.
As in other insects, in hemipterans NO could act as a

signaling and cytotoxic molecule after the damage pro-
duced by bacteria and parasites [8, 92–94]. NO is active
in the hemolymph and the digestive tract of triatomines,
where it contributes to resists trypanosomatid parasites
[9, 94]. In addition, NO triggers the production of other
effector molecules such as AMPs [8, 92, 95].
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The synthesis of AMPs is consequence of the activa-
tion of NF-kB and it is the hallmark of the induced
humoral immune response in insects [4, 27]. As in other
insects, the role of AMPs in triatomines is the defense
against microbial agents, including T. cruzi [64]. Except
for ACPI, we found defensin homologs in most hemip-
terans. The phylogenetic analysis revealed divergence be-
tween defensins homologs expressed in different tissues
among species (Fig. 3). A group of RPRO defensins
(clade A) appears related to DefA and DefB of RPRO
that are upregulated in the fat body and midgut after
immune challenge [61]. Similarity, a set of defensin se-
quences of TDIM and RPRO (clade F) seems related to
DefC of RPRO that is also involved to immune functions
[61]. While, a cluster of sequences of TINF, TPAL and
TDIM (clade B and C) appears related to TBRA defen-
sins (Def1–3) which are induced in the triatomine saliv-
ary glands and digestive tract after feeding [62, 63]. Both
CLEC defensins appear to be related with TPAL se-
quences (clade C). Other not previously described TINF
and TPAL sequences (clade D) grouped with a defensin
expressed in the gut of TINF. Interestingly, a RPRO
basal taxon (RPRC012182) and a set of defensins of this
species (clade G) were grouped apart from other hemip-
terans, including the rest of RPRO sequences. A similar
separation pattern was observed for a group of TPAL
and TDIM sequences (clade E) that seem closely related,
although the role of these groups of defensins is unclear.
Prolixicin homologs were only identified in triatomine

bugs and CLEC. This AMP, related to the diptericin-
attacin family, is expressed by the fat body and midgut
of triatomines in response to bacterial infections, al-
though it is not toxic for T. cruzi [96]. Lysozymes were
conserved in all hemipterans. The function of lysozyme
is still not clear in triatomines. These enzymes exhibit
organ-dependent expression and are reportedly involved
in both digestive and immune functions [64–66]. The
phylogenetic analysis exposed separate clusters of CLEC
(clade A), ACPI (clade F) and TTTs lysozyme sequences
that seem to be related to their digestive and immune
defense functions (Fig. 4). A group of RPRO and TDIM
sequences appears related to LysA of RPRO associated
to immune-related functions (clade B). This molecule is
predominantly expressed in the intestinal tract after in-
gestion of T. cruzi in a blood meal, and after injection of
bacteria into the haemocel [63, 64]. LysB of RPRO that
is expressed primarily in hemocytes and fat body after
bacterial challenge [64] grouped with other not previously
described RPRO and TPAL sequences (clade G) indicating
their possible participation in immunity. A TINF lysozyme
sequence, appears related to Lys1 of TINF and Lys1 of
TBRA (clade C), which are upregulated in the stomach
after feeding [62, 65]. This upregulation may reflect their
digestive functions or their induction in response to the

drastic increase of bacterial populations in this organ after
a blood meal [90]. Other two TINF lysozyme sequences
clustered with Lys2 (clade D) expressed in the midgut of
TINF, with not yet elucidated its physiological function
[66]. While, a set of TPAL, TDIM, TINF and RPRO lyso-
zymes grouped separately (clade E) from the other se-
quences, but their roles is still unknown.
In contrast, no homologs of other Drosophila AMPs

such as cecropin, attacin, andropin, drosomycin, drosocin,
listericin and metchnikowin were identified in any hemip-
teran, corroborating previous observations in RPRO [97].
Although, the majority of AMPs, such as defensins, cecro-
pins, proline-rich peptides and attacins have been found
in several insect orders [98], some AMPs have been iden-
tified only in certain orders [99, 100]. While some AMPs,
such as cecropins of M. domestica, exhibit significant du-
plication rates [101], it is possible that differences in insect
AMPs repertoires could be consequence of different
selection pressures exerted by exposure to pathogens and
habitat conditions.
The Toll and Jak-STAT signaling cascades with most of

their canonical components were documented in all he-
mipterans, corroborating previous observations in the
RPRO, CLEC and ACPI genomes [30–33]. These ancestral
pathways are widely conserved and participate in the de-
velopment of bilaterally symmetric animals (such as
worms, mollusks, arthropods and vertebrates) [102, 103].
In Drosophila, both Toll and Jak-STAT pathways serve a
dual function in development and immunity [1].
Conversely, signaling canonical components Imd, FADD

and DREED of the Imd pathway were not detectable in all
studied the triatomines. The Imd signaling pathway is re-
sponsible for intestinal immune responses in dipterans. In
Drosophila, intestinal diptericin, cecropin, drosocin and
attacin regulated by this pathway, are constitutively
expressed [104, 105], and the gut microbiota maintains
basal their expression levels [104, 106, 107]. In mosqui-
toes, the growth of gut-dwelling bacteria induced by blood
meals increases their expression through activation of Imd
[105]. Thus, although we did not include microbial chal-
lenged insects in the preparations of our transcriptomes,
blood-fed individual were included, and along with a basal
expression, we expect similar inductions in these insects.
As transcriptome datasets were normalized, the possibility
that our transcriptomes were unable to detect at least one
transcript of Imd pathway canonical members was min-
imal. The absence of these molecules in TTT is consistent
previous observations in the RPRO, CLEC and ACPI ge-
nomes [30, 31, 33], which we corroborated by examining
these genomes datasets.
Orthologs of Imd, FADD and DREED are highly con-

served in a number of holometabolous insects from the
orders Diptera, Hymenoptera, Lepidoptera and Coleop-
tera [34–42]; although these insects exhibit considerable
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variations in the size and diversity of immune gene fam-
ilies [35–37]. In contrast, the absence of these Imd com-
ponents appears to be a common feature in insects with
incomplete metamorphosis (hemimetabolous), such as
Anasa tristis (Hemiptera: Coreidae) [108], Diaphorina
citri (Hemiptera: Liviidae) [77, 109], Bemisia tabaci
(Hemiptera: Aleyrodidae) [110, 111] and Pediculus
humanus (Phthiraptera: Pediculidae) [112]. Even in che-
licerates (Tetranychus, Metaseiulus and Ixodes) [113,
114] and ametabolous hexapods of the subclass Collem-
bola (Folsomia candida and Orchesella cincta) (without
morphological transformations during their develop-
ment) [115] appear to lack these key immune signaling
molecules.
It has been suggested that the absence of key immune

signaling components, particularly in the Imd pathway,
may be the result of largely free-of-microbes diets (phloem
sap or blood) that do not require specific defenses within
the digestive tract, and do not exert selective pressures to
maintain the high cost of immune defense [30].
In addition, these insects need to harbor populations

of obligate symbionts that synthesize essential amino
acids and vitamins that are poorly represented in their
restricted diets [30, 116–119]. In triatomines, extracellu-
lar symbionts are mainly acquired through the con-
sumption of feces of conspecifics during their first life
stages and inhabit the midgut lumen, where they play
digestive roles (hemolysis) [90, 120]. As depletion of
symbionts results in drastic physiological and patho-
logical alterations [121], it has been suggested that lack-
ing a complete Imd (mainly responsible for the intestinal
immune response) is an adaptation to ensure functional
symbiosis. Nevertheless, other insects with obligate sym-
biotic relationships employ AMPs as coleoptericin to
control symbiont populations [122, 123]. The induction
of the coleoptericin family members is mainly regulated
by the Imd pathway [124].
Hemimetabolous insects hatch as nymphs, morpho-

logically similar to adults and grow progressively
through molts until the adult stage. Adults differ from
nymphs for the presence of functional wings and geni-
talia. In contrast, the holometabolous insects hatch as
larvae and undergo drastic anatomical changes to pupa
and adult. Among these, they suffer the complete remod-
eling of the larval midgut, which is then replaced by a new
pupal epithelium that matures to the adult epithelium
[125]. The destruction of larval intestinal epithelium is di-
rected by the hormone 20-hydroxyecdysone (ecdys-
one) and mediated by processes of programmed cell
death, involving the activation of caspases and regu-
lation of IAP2, a key component of the Imd pathway
[126]. In Drosophila, Imd is expressed at high levels
during the pupariation stage, when massive apoptotic
events occur [127].

The overexpression of Imd results in the activation of
reaper in adult flies [127]. Reaper is a key pro-apoptotic
gene in Drosophila [128]. Induction of reaper occurs in
a stage-specific manner during larval midgut histolysis
[126]. At this time, intestinal cells are exposed to the mi-
croorganisms present in the gut during the larva-pupa
transition, coinciding with the release of different anti-
microbial components into the intestine [129–132]. This
may also contribute to the protection of the pupa and
the adult from the bacterial threats that could originate
during midgut remodeling [130]. This intestinal immune
process is thought to be regulated, but is still not
described. Although other proteins linked to the Imd
cascade were identified in hemipterans, these may repre-
sent homologs involved in more general cellular pro-
cesses such as ubiquitination and apoptosis [126, 133],
but are not true Imd pathway orthologs. Thus, we
speculate that these proteins, along new components
(Imd, FADD, DREDD) that constitute the Imd signaling
pathway were recruited by holometabolous insects in
response to pathogenic bacterial threats during the in-
testinal remodeling in the course of metamorphosis.
This concept is phylogenetically sound, as ametabolous
and hemimetabolous insects (lacking Imd) are more
ancient than holometabolous insects [134, 135].
Although it is difficult to establish the absence of genes

from transcriptomes, the completeness of our assemblies
(BUSCO and CEGMA assessments), and the datasets
normalization from insects expected to respond to midgut
microbiota, support the absence of Imd components in
TTTs. Nevertheless, although Imd, FADD and DREED are
absent in the genomes of another Reduviid (RPRO) and the
hemipterans CLEC and ACPI, further evidence is needed to
corroborate our assumption. The high-resolution genomic-
scale data derived from 1 K (Insect Transcriptome Evolu-
tion) with more than a thousand of insect-transcriptomes
from all recognized taxonomic orders [135] and the 5000
arthropod genomes initiative (i5K) may represent useful
resources to prove our hypothesis [136].

Conclusions
We provide evidence for the presence of major constitu-
tive and inducible immune components in four important
Chagas disease vectors (T. pallidipennis, T. dimidiata, T.
infestans and R. prolixus) and two related hemipterans (C.
lecticularis and A. pisum). Homologs involved in micro-
bial recognition and immune activation (GNBPs, PGRPs,
CTLs, TEPs, SRs and CLIPs) were documented in most
species. But differences, like low proportions of TEPs and
CLIPs, attributable to lifestyle and limited pathogen ex-
posure were observed.
Conserved constitutive immune components respon-

sible for de novo synthesis of melanin (PO), nitric oxide
(Nos), and ROS production (PLCβ and NADPH enzymes)
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in all hemipterans reflect the relevance of these effector
molecules in insect defense. A number of catalases, GPx
and TPx reveal the importance of antioxidant mechanisms
in hemipterans.
Several AMPs were found in most species; although

differences in AMP repertories were detected. Lyso-
zymes related to digestive and immune defense func-
tions were identified in all hemipterans. Defensins were
detected only in the hematophagous hemipterans, exhi-
biting divergence according their differential expression
in insect tissues. In contrast, no cecropins and attacins
were detected in hemipterans, corroborating previous
observations. Similarly, homologs of other Drosophila
AMPs were not detected in any hemipteran species.
Most of the canonical components of the Toll and

Jak-STAT signaling cascades are conserved in the
studied insects. In contrast, key components of the
Imd pathway (Imd, FADD and DREED) were absent
from all hemipterans. Orthologs of Imd, FADD and
DREED were documented in a number of holometab-
olous insects that undergo complete larval midgut
remodeling of during metamorphosis. Conversely, the
lack of Imd, FADD and DREED appears to be a com-
mon feature in more ancient insects with incomplete
metamorphosis (hemimetabolous insects), including he-
mipterans. We speculate that these Imd signaling mem-
bers were recruited by holometabolous insects in response
to pathogenic bacterial threats during midgut remodeling.
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Additional file 1: Table S1. Immunity-genes reference dataset. Dataset
of immunity-genes sequences retrieved from GenBank, VectorBase, UniProt,
FlyBase and Ensembl databases and published information used to query
for immune-related homologs in TTTs transcriptomes and RPRO, CLEC and
ACPI predicted-peptide sets. Table S2. Immune-related homologs involved
in immune recognition and activation (PGRPs; GNBPs; Lectins; TEPs;
Scavenger receptors; Clip-domain serine-proteases) and their
respective transcriptome/genome sequence-IDs in the six hemipteran
species. Table S3. Immune-related homologs involved in immune
signaling (Toll, Jak-STAT and Imd pathways) and their respective
transcriptome/genome sequence-IDs in the six hemipteran species.
Table S4. Immune-related homologs involved in immune effectors
(antimicrobial peptides; PPOs; nitric oxide synthase; NADPH enzymes)
and their respective transcriptome/genome sequence-IDs in the six
hemipteran species. Table S5. Immune-related homologs involved in
immune regulation (immune negative regulators) and their respective
transcriptome/genome sequence-IDs in the six hemipteran species. Table S6.
Immune-related homologs involved in antioxidant mechanisms (Catalases;
Peroxidases) and their respective transcriptome/genome sequence-IDs in the
six hemipteran species. Table S7. Immune-related homologs involved in RNA
interference (RNAi machinery components) and their respective
transcriptome/genome sequence-IDs in the six hemipteran species.
Table S8. Immune-related homologs involved in coagulation (Fondue
and Hemolectin proteins) and their respective transcriptome/genome
sequence-IDs in the six hemipteran species. (XLSX 53 kb)
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