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Endogenous regeneration aims to rebuild and reinstate tissue function through enlisting

natural self-repairing processes. Promoting endogenous regeneration by reducing

tissue-damaging inflammatory responses while reinforcing self-resolving inflammatory

processes is gaining popularity. In this approach, the immune system is recruited as

the principal player to deposit a pro-reparative matrix and secrete pro-regenerative

cytokines and growth factors. The natural wound healing cascade involves many immune

system players (neutrophils, macrophages, T cells, B cells, etc.) that are likely to play

important and indispensable roles in endogenous regeneration. These cells support

both the innate and adaptive arms of the immune system and collectively orchestrate

host responses to tissue damage. As the early responders during the innate immune

response, macrophages have been studied for decades in the context of inflammatory

and foreign body responses and were often considered a cell type to be avoided.

The view on macrophages has evolved and it is now understood that macrophages

should be directly engaged, and their phenotype modulated, to guide the timely

transition of the immune response and reparative environment. One way to achieve

this is to design immunomodulating biomaterials that can be placed where endogenous

regeneration is desired and actively direct macrophage polarization. Upon encountering

these biomaterials, macrophages are trained to perform more pro-regenerative roles

and generate the appropriate environment for later stages of regeneration since they

bridge the innate immune response and the adaptive immune response. This new

design paradigm necessitates the understanding of howmaterial design elicits differential

macrophage phenotype activation. This review is focused on the macrophage-material

interaction and how to engineer biomaterials to steer macrophage phenotypes for better

tissue regeneration.

Keywords: macrophage, biomaterial, immunomodulation, regeneration, wound healing, phenotype, macrophage

polarization, mechanotransduction

INTRODUCTION

Our knowledge of macrophages has a long-standing history (Figure 1). When macrophages were
first discovered by Élie Metchnikoff, a Russian zoologist, in 1882, they were described as phagocytes
that could accumulate at the point of inflammation and clear out invading pathogens (Metchnikoff,
1883). Metchnikoff identified a close connection between the mononuclear phagocytic cells in
the spleen, lymph nodes, bone marrow and connective tissue, and he grouped them under the
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FIGURE 1 | (A) Macrophage origin: from the time Metchnikoff discovered macrophages (Metchnikoff, 1883), to the establishment of the reticuloendothelial system

(Aschoff, 1924) and mononuclear phagocyte system (Langevoort, 1970; van Furth et al., 1972a), to the current consensus of macrophage heterogeneity (Lichanska

and Hume, 2000; Gordon and Taylor, 2005; Chorro et al., 2009; Wynn et al., 2013; Epelman et al., 2014). (B) Macrophage-biomaterial response: a PubMed search

with key words “macrophage” and “biomaterial” reveals the increasing popularity of this topic over time and our constantly evolving knowledge (Homsy, 1970;

Anderson and Miller, 1984; Badylak et al., 2008; Madden et al., 2010; Sadtler et al., 2016).

term “macrophage system” (van Furth et al., 1972b). This
observation and the later founded phagocytosis theory laid a
foundation for innate immunity (Metchnikoff, 1907; Tauber,
2003; Gordon, 2008; Underhill et al., 2016), which earned
Metchnikoff aNobel Prize in 1908. Since then, our understanding
of macrophage origin, classification and function continues
to evolve. In 1924, Acshoff developed the concept of the
reticuloendothelial system (RES) to describe macrophages and
other phagocytic cells (Aschoff, 1924). This concept was
criticized for only considering cell function rather than their
origins, and it was later replaced by the ontogeny-based term
“mononuclear phagocyte system (MPS)” in 1969 (Langevoort,
1970; van Furth et al., 1972b; Van Furth, 1980). This widely
accepted MPS model proposed that tissue macrophages were
terminally differentiated from bone marrow progenitors and
blood monocytes (Langevoort, 1970; van Furth et al., 1972b;
Van Furth, 1980). However, toward the end of the 20th century,

mounting evidence suggested that certain tissue macrophages
could proliferate locally (Sawyer et al., 1982; Czernielewski and
Demarchez, 1987; Ajami et al., 2007; Chorro et al., 2009).
Instead of originating only from bone marrow, researchers found
that most tissue macrophages’ existence can be traced back
to the embryonic stage (Chorro et al., 2009; Epelman et al.,
2014). Therefore, macrophage heterogeneity was established and
explored further over the last two decades, and hypotheses of
macrophages’ divergent origins started to prevail (Lichanska and
Hume, 2000; Gordon and Taylor, 2005; Wynn et al., 2013). Still,
many questions aboutmacrophages have yet to be answered, such
as the contribution of recruited monocyte-derived macrophages
in the replenishment of tissue-resident macrophages and the
functional differences between these two populations during an
inflammatory response (Gordon and Taylor, 2005).

Macrophages play a pivotal role in tissue regeneration during
injuries and diseases (Wynn et al., 2013). They coordinate with
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the rest of the immune system to create a pro-regenerative
niche at the diseased site, and they recruit progenitor cells
to support and promote healing (Martin and Leibovich,
2005; Eming et al., 2014). For instance, during the early
stage of acute wound healing, macrophages work side by
side with the other innate immune cells (e.g., neutrophils)
to debride the wound and construct a provisional matrix
(Eming et al., 2014). Together, these effector cells produce
chemokines and growth factors to mobilize mesenchymal stem
cells, fibroblasts as well as keratinocytes to restore the tissue
(Mantovani et al., 2004). However, this endogenous regenerative
ability diminishes with age and can also be disrupted in
pathological conditions (Wells and Watt, 2018). In the case
of diabetes, patients develop non-healing wounds because of
the dysregulation in macrophage function, which leads to a
perpetuating inflammatory environment and prevents reparative
cell infiltration (Eming et al., 2014). These wounds have
malfunctioning local milieus that deviate from those of healthy
individuals’ in both biochemical components (e.g., accumulation
of inflammatory cytokines) and mechanical properties (e.g.,
degraded extracellular matrix) (Schultz and Wysocki, 2009;
Christman, 2019). To repair damaged tissue by salvaging the
body’s natural healing ability, one emerging approach uses
immunomodulatory biomaterials to promote immune-mediated
tissue regeneration (Rice et al., 2013; Yu et al., 2016b). These
materials are designed to actively engage the immune system
and manipulate the infiltrating cells, especially macrophages,
to perform regenerative functions. This immunomodulatory
method thereby reconstructs a local pro-reparative niche and lays
down a foundation for endogenous regeneration.

In recent years, more and more research points to
macrophages’ parts in bridging innate immunity with adaptive
immunity and how this bridging role can be leveraged by
immunomodulating biomaterials for promoting endogenous
repair (Sadtler et al., 2016; Wolf et al., 2019). To this end,
a comprehensive understanding of macrophage-biomaterial
response is essential. Many excellent reviews cover macrophage
mechanotransduction (McWhorter et al., 2015; Mennens
et al., 2017; Adams et al., 2019; Jain et al., 2019; Meli et al.,
2019; Gruber and Leifer, 2020) and its biomedical applications
(Brown et al., 2014; Springer and Fischbach, 2016; Andorko
and Jewell, 2017; Spiller and Koh, 2017; Li J. et al., 2018)
from various angles. However, no existing review articles
provide a current view of macrophage-material interaction
from a practical bioengineering perspective. In this review,
we synthesize the up-to-date understanding of macrophage
biology and macrophage-material response. We also present
a pragmatic guidebook for researchers to design biomaterials
that can guide context-dependent macrophage polarization for
optimal endogenous tissue regeneration.

MACROPHAGE HETEROGENEITY AND
PLASTICITY

Macrophages are highly heterogeneous immune cells with great
diversity in lineages, anatomical distribution, and functional

subsets (Wynn et al., 2013). The idea that maintenance of
tissue-resident macrophages in mice relies on the recruitment
and differentiation of blood monocytes was once mainstream
(van Furth et al., 1972b; Wynn et al., 2013; Ginhoux and
Jung, 2014). However, recent fate-mapping studies challenged
this idea by comprehensively demonstrating that most tissue-
resident macrophages are derived from yolk sacs and fetal
livers in the embryonic stage, and they can self-renew to
persist into adulthood independent of monocytes (Ginhoux
et al., 2010; Schulz et al., 2012; Hashimoto et al., 2013; Wynn
et al., 2013; Yona et al., 2013). Only some highly specialized
macrophage populations, such as those in the skin, intestine, and
splenic marginal zone, require continuous repopulation by bone-
marrow-derived precursors (Schulz et al., 2012; Tamoutounour
et al., 2013; Yona et al., 2013; Bain et al., 2014). This dual origin
theory of tissue macrophages also holds true in humans (Bajpai
et al., 2018).

Macrophage plasticity is another hallmark that supports
multifaceted roles for macrophages in different tissues, organs
and disease states (Mosser and Edwards, 2008). Besides the
control of intrinsic differentiation pathways, macrophages are
also subject to the influence of the local microenvironment
and perform context-based functions (Gosselin et al., 2014;
Lavin et al., 2014; Wills et al., 2017). For example, when
peritoneal macrophages were engrafted into donor lungs,
these macrophages upregulated lung macrophage-specific genes,
demonstrating that differentiated tissue-resident macrophages
retain their plasticity and that local tissue cues can alter
macrophage function (Lavin et al., 2014). However, while
macrophage plasticity can dictate its function, it is also possible
to have functionally and developmentally distinct macrophage
populations coexisting in the same tissue, such as large and small
peritoneal macrophages (Ghosn et al., 2010). Therefore, when
designing biomaterials to engage macrophages, it is essential
to characterize macrophages with a comprehensive paradigm
that takes into account their origin, plasticity, and overall
heterogeneity within tissues.

Macrophage phenotype is difficult to define because of
inherent heterogeneity in this cell population and their plasticity
in response to environmental changes (Figure 2). When
researchers first tried to understand macrophage phenotype, a
modular approach mirroring T helper type 1 and T helper type 2
polarization was used to divide macrophage phenotypes into M1
and M2 (classical activation and alternative activation) (Nathan
et al., 1983; Stein et al., 1992; Mills et al., 2000; Mills, 2012,
2015). This paradigm was useful for early in vitro study as it
clearly defined the activation cytokines and expected functional
changes (e.g., surface receptors, ligands, produced cytokines) for
each phenotype. As more evidence accumulated, a few disparate
macrophage phenotypes emerged that could not simply be
grouped into “M2” (Edwards et al., 2006). Therefore, the M1/M2
dichotomy was further expanded to include subcategories like
M2a,M2b, andM2c (Mantovani et al., 2004;Martinez et al., 2008;
Biswas and Mantovani, 2010). This categorical view still ran the
risk of oversimplifying the intricate population of macrophages
by force-fitting them into defined categories. Over the past
decade, scientists conducting epigenetics, gene expression, and

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 3 December 2020 | Volume 8 | Article 609297

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Liu and Segura The Macrophage-Biomaterial Interplay

FIGURE 2 | (A) Evolution of macrophage phenotype models: from the historical M1/M2 (Classical vs. Alternative) dichotomy (Nathan et al., 1983; Stein et al., 1992;

Mills et al., 2000; Mills, 2012), to an M1/M2 spectrum with multiple M2 sub-categories (Mantovani et al., 2004; Stout and Suttles, 2004; Martinez et al., 2008; Biswas

and Mantovani, 2010; Martinez and Gordon, 2014), to the macrophage color wheel model (Mosser and Edwards, 2008), there is an increasing appreciation for the

complexity of macrophage phenotype. (B) Rapid improvement in tools to characterize macrophage phenotype enables researchers to better understand macrophage

biology in the context of tissue or materials. IHC, immunohistochemistry; RT-PCR, Real time polymerase chain reaction; ELISA, enzyme-linked immunosorbent assay;

ChIP, chromatin immunoprecipitation; AFM, atomic force microscopy.

functional studies discovered new macrophage phenotypes that
the traditional M1/M2 model failed to characterize (e.g., tumor-
associated macrophages) (Mosser and Edwards, 2008; Xue et al.,
2014; Malyshev and Malyshev, 2015). Thus, a color wheel model
with different “shades” of activation was proposed to account
for both fundamental functions and the context-specific roles
macrophages perform (Mosser and Edwards, 2008; Ginhoux
et al., 2016). In other words, macrophage phenotype should be
seen as a dynamic and not a static process (Mosser and Edwards,
2008; Wills et al., 2017).

Given the fluidity of macrophage phenotype and the plasticity
of the cells, it’s very hard to both accurately define them and
comprehensively characterize them. As with many biological

assays, common tools used to study macrophage phenotype
only capture a snapshot at the moment of sampling. In
reality, macrophages are constantly adapting to the changing
environment and their phenotypes should not be viewed as an
end-point definition (Mosser and Edwards, 2008). A universal
language on how to define macrophages has yet to be widely
accepted and adopted (Murray et al., 2014), especially in in
vivo settings because of the many factors at play. For example,
macrophages in wounds exhibit a complicated phenotype with
features found in both M1 and M2 macrophages (Daley et al.,
2010; Novak and Koh, 2013). Thus, the term “macrophage
phenotype” and the phenotype definitions should be considered
with careful deliberation. When researchers refer to phenotype
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results from different studies or report their findings, a multi-
aspect description needs to be provided to capture the full
picture of activated macrophages, such as the origin of the cells,
the systemic and local milieu, the combination of markers and
functions they share, and the timing of activation.

A DOUBLE EDGE SWORD IN VIVO

Macrophages are central to many disease stages and serve
multifaceted roles during physiological and pathological
processes (Gordon, 1995). Because of their plasticity,
macrophages are highly susceptive to environmental stimuli
and they act as a double edge sword in vivo (Wynn et al., 2013).
In a normal, healthy adult, macrophages play integral roles in
maintaining tissue homeostasis, inflammation and repair. On
one hand, they are the diligent “janitors,” clearing out dead cells
and extraneous cellular debris as part of the regular metabolic
process (Mosser and Edwards, 2008). Distinct tissue-resident
macrophages perform tissue-specific homeostatic functions,
such as the clearance of apoptotic neutrophils and erythrocytes
in the spleen and liver. If a timely removal of these cells by
macrophages fails, severe results ensue, such as neutropenia,
splenomegaly, and reduced body weight (Gordy et al., 2011).
On the other hand, macrophages act as the primary sensor of
danger signals and the first responders in the innate immune
system for host defense (Gordon, 1995). In the case of acute
wound healing, macrophages govern the inflammation stage
and orchestrate regeneration (Leibovich and Ross, 1975). Within
minutes of injury, tissue-resident macrophages recognize danger
signals, like damage-associated molecular patterns, and help
initiate the local inflammatory response (Minutti et al., 2016).
Monocyte-derived macrophages are then recruited to the
wound by the local presence of inflammatory chemokines and
cytokines, such as monocyte chemoattractant protein-1 (MCP-
1), tumor necrosis factor-alpha (TNF-α), and interferon-gamma
(IFN-γ), and they further amplify the inflammatory response
(Krzyszczyk et al., 2018). These new-comers actively attempt
to phagocytose foreign materials and produce proteases (e.g.,
matrix metalloproteinases/MMPs) to break down the damaged
matrix (Ginhoux and Jung, 2014). They also secrete various
factors (e.g., chemokines, cytokines) to coordinate support
cells and assist tissue reconstruction. Selective depletion of
macrophages in mice during the inflammatory phase impairs
wound vascularization and contraction (Mirza et al., 2009; Lucas
et al., 2010). Conversely, removing macrophages during the
tissue formation phase leads to severe hemorrhage in wound
tissues (Mirza et al., 2009; Lucas et al., 2010). Both cases further
demonstrate that macrophages are central players in wound
healing. When pathological conditions occur, macrophages’
homeostatic and reparative functions can be overridden,
which has led to a causal association of macrophages with
many diseases.

Disturbances in macrophage function contribute to a broad
spectrum of pathologies, such as cancer and inflammatory
disorders (Wynn et al., 2013). For diabetes patients, the
underlying pathologies, like elevated glucose, are believed to

promote a pro-inflammatory macrophage phenotype (Wen et al.,
2006; Mirza and Koh, 2011; Bannon et al., 2013). These cells
accumulate in the wound bed and contribute to the uncontrolled
production of pro-inflammatory cytokines, chemokines and
proteases, as well as growth factors (Eming et al., 2010). An
overabundance of MMPs, as an example, can break down critical
extracellular matrix (ECM) proteins and prevent new tissue
formation (Wysocki et al., 1993). Overall, the imbalance of these
key molecules, like pro-inflammatory cytokines, forms a vicious
cycle by maintaining a macrophage pro-inflammatory phenotype
and preventing regenerative cell infiltration. A predominance of
pro-inflammatory macrophages is considered a major hallmark
for non-healing wounds, and restoring the properly-regulated
transition in macrophage phenotypes remains key to the
development of a potential solution (Willenborg and Eming,
2014).

Macrophage-directed therapies are promising for the
treatment of a range of diseases (Springer and Fischbach,
2016; Spiller and Koh, 2017; Li R. et al., 2018). Generally,
the treatments can be categorized into 4 types: (1) exogenous
macrophage supplementation; (2) delivery of molecules to
modulate endogenous macrophage phenotypes or alter their
numbers; (3) delivery of biomaterials to modulate endogenous
macrophage phenotypes; (4) a selective combination of 1-3. The
second approach has been most studied. Researchers using this
approach delivered key molecules (e.g., recombinant interleukin-
4/IL-4, TNF-α neutralizing antibody) to recruit endogenous
macrophages and induce their pro-regenerative function or block
pro-inflammatory signaling pathways or products (Salmon-Ehr
et al., 2000; Goren et al., 2007). However, several disadvantages
have arisen with these methods. Given that the details regarding
timing and specific roles of each macrophage phenotype are still
yet to be fully elucidated, an optimal dosage to elicit desired
phenotypes in a timely manner is hard to achieve. Additionally,
the delivery of molecules or cells directly to the wound bed
also ignores the importance of the microenvironmental context
in shaping macrophage responses (Gosselin et al., 2014; Lavin
et al., 2014). In a pro-inflammatory milieu, excessive amounts
of proteases might expedite the degradation of active molecules,
and exogenous activated M2 macrophages could be skewed to
perform M1 function. To achieve long-lasting healing outcomes,
it is crucial to first address the aberrant microenvironment.
A combined method, with immunomodulatory biomaterials
to reconstruct the local environment, will be better suited to
fine-tune macrophage response and achieve better regeneration.

MACROPHAGE-MATERIAL RESPONSE:
WHAT DO WE KNOW AND WHAT SHOULD
WE DO?

The design of biomaterial scaffolds that are capable ofmodulating
the local microenvironment requires a closer look at the
macrophage-material interaction and the resulting changes
in macrophage phenotype. This interaction has been studied
extensively in the context of foreign body response since the
early 1970s (Coleman et al., 1974). A foreign body response
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(FBR) is characterized by the persisting existence of immune
cells, particularly macrophages, and the encapsulation of the
implanted material by fibrotic tissues (Anderson et al., 2008).
Macrophages oversee the inflammation process of the host
reaction to implants (Figure 3). They function to clear out debris
and foreign materials via phagocytosis, produce enzymes to
remodel the provisional matrix, and secrete signaling molecules
to recruit support cells, such as fibroblasts. In an attempt
to minimize the impact of a foreign implant on the body,
macrophages fuse into foreign body giant cells (FBGC), and
actively seek to degrade the implant. If this process fails, FBGCs
work with fibroblasts to deposit collagen layers and wall off the
implant by forming a dense fibrotic capsule around it (Anderson
et al., 2008). FBR can render implanted biomaterials or medical
devices non-functional by preventing drug release, reducing
blood supply, and causing contraction and pain. Surprisingly,
even now it is still unclear which macrophage phenotype plays a
major role in initiating FBR. M1 macrophages are closely related
to inflammation and reduced M1 presence has been observed
to attenuate FBR (Goreish et al., 2004). In addition, multiple
studies proved that a higher M2 to M1 ratio was associated
with more constructive remodeling and implant vascularization
(Badylak et al., 2008; Brown et al., 2012; Spiller et al., 2014).
Conversely, immunoregulatory cytokines (e.g., platelet-derived
growth factor/PDGF, transforming growth factor-beta/TGF-β),
inflammatory cytokines (e.g., TNF-α), and chemokines (e.g.,
MCP-1) are implicated in the formation of FBR, connecting
both M1 and M2 macrophages to this process (Kao et al., 1995;
Hernandez-Pando et al., 2000; Gretzer et al., 2006; Rodriguez
et al., 2009). Taken together, these results suggest that either both
M1 and M2 macrophages contribute to FBR collaboratively, or
a hybrid M1-M2 phenotype exists throughout FBR. The latter
hypothesis is further proof that the M1/M2 dichotomy falls short
in accurately categorizing macrophage phenotypes.

Given the impact of FBR on implants, traditional strategies
for biomaterial design focus on evading or suppressing
inflammation, especially macrophage response, in order to
mitigate FBR. For example, surface hydrophilicity can be
used to overcome non-specific protein absorption and reduce
FBGC formation (Quinn et al., 1997; Jenney and Anderson,
1999; Voskerician et al., 2003; Collier et al., 2004). However,
growing evidence has shown that macrophage engagement
during implantation can be harnessed to improve implant success
rates (Spiller et al., 2014; Yu et al., 2016a) and that a timely
transition from M1 to M2 phenotype benefits tissue remodeling
(Badylak et al., 2008; Brown et al., 2012; Spiller et al., 2014;
Yu et al., 2016a; Witherel et al., 2020). Many approaches
to promote this M1-M2 shift, like a sequential delivery of
immunomodulatory cytokines IFN-γ and IL-4, have achieved
some positive outcomes (Mokarram et al., 2012; Spiller et al.,
2015). This evolving knowledge base of macrophage-material
interaction has contributed to a new era of immune-modulating
materials where material design is centered around desired
immune responses.

During macrophage-material interaction in vivo, the
material itself acts as a temporary niche for macrophages
to reside in, and the properties of the material weigh in on

macrophage phenotypes. As discussed in the previous section,
macrophages are known to adapt to microenvironmental
features, such as biochemical and physical signals. The molecular
mechanisms behind common soluble factors, like IL-4 and
lipopolysaccharides (LPS), have been extensively studied,
while new information continues to emerge with the advance
of biotechnologies (Martinez and Gordon, 2014; Ramirez
et al., 2017). Remarkably, emerging evidence suggests that
long-ignored physical cues play an important modulating role
in macrophage activation, but the signaling pathways have
yet to be fully elucidated (McWhorter et al., 2015; Jain et al.,
2019) (Table 1, refer to Supplementary Table 1 for more detail
information). A broad range of material properties, such as pore
size (Madden et al., 2010; Garg et al., 2013; Sussman et al., 2014;
Wang et al., 2014), shape and geometry (Matlaga et al., 1976;
Veiseh et al., 2015), stiffness (Blakney et al., 2012; Sadtler et al.,
2019), topography (Chen et al., 2010; Wang et al., 2016; Shayan
et al., 2018) and surface modification (e.g., hydrophilicity,
integrin engagement) (Brodbeck et al., 2002; Antonov et al.,
2011; Blakney et al., 2012; Swartzlander et al., 2015; Cha et al.,
2017), have been proven to modulate macrophage behavior and
tune implantation outcomes. However, a lot of these studies
simply observed correlations between material designs and
macrophage phenotypes without exploring further the molecular
mechanism behind them. For instance, poly (2-hydroxyethyl
methacrylate-co-methacrylic acid) hydrogel scaffolds with pore
diameters of 30–40µm showed maximum vascularization and
minimal fibrotic response following implantation (Madden et al.,
2010). This outcome was coupled with an increased number
of macrophages in the implants expressing both nitric oxide
synthase 2 (NOS2, M1 marker) and macrophage mannose
receptor (MMR, M2 marker) at the same time (Madden et al.,
2010). A similar study using the same scaffold system revealed
that the pro-angiogenic 34µm porous implants had more
macrophages accumulating in the pores with a primarily M1
marker expression (NOS2 and IL-1R1) (Sussman et al., 2014).
Another work using expanded polytetrafluoroethylene scaffolds
demonstrated that larger intranodal distance (4.4µm) induced
a significantly thinner capsule in vivo but promoted early
proinflammatory cytokine production and gene transcription
by monocytes/macrophages in vitro (Bota et al., 2010). These
studies highlight the potential of using scaffolds with tunable
pore sizes to guide macrophage phenotypes, but the results
did not consistently point to one particular optimal pore size
inducing a preferable macrophage phenotype to achieve desired
outcomes. This is partly due to the complex in vivo environment
and varying experimental settings, such as the different materials
and animal models used, and the limited biomarkers selected for
macrophage characterization. Ultimately, material design needs
to target a clear mechanotransduction pathway of macrophages
so that it can be translatable between material systems and
disease applications.

In the past two decades, well-defined in vitro systems
have been employed to more specifically understand the
mechanotransduction mechanisms that lead to phenotypic
macrophage changes to common mechanical signals (Figure 4).
For example, preventing bone marrow-derived macrophages
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FIGURE 3 | Macrophages are central players during the host response to biomaterials. They closely interact with other cells and persist at the material-body interface

throughout the inflammation and regeneration stages. TGF-β, transforming growth factor-beta; PDGF, platelet-derived growth factor; CXCL4, chemokine (C-X-C motif)

ligand 4; LTB4, leukotriene B4; IL, interleukins; PMNs, polymorphonuclear leukocytes; TNF-α, tumor necrosis factor-alpha; M-CSF, macrophage-colony stimulating

factor; GM-CSF, granulocyte macrophage colony stimulating factor; MCP-1, monocyte chemoattractant protein-1; VEGF, vascular endothelial growth factor; FGF,

fibroblast growth factor. The list of molecules is not comprehensive.

TABLE 1 | Modulating macrophage phenotype by physical cues.

Physical cues Rationale

Stiffness Stiffness-dependent changes generally include enhanced adhesion and spreading, increased actin and cytoskeletal stiffness,

increase in proliferation and migration as well as increased phagocytosis. But the connection between stiffness and macrophage

phenotype remains complicated

Surface topography Surface topography, such as roughness and micropatterns, can guide macrophage behavior by modifying their adhesion, spreading,

elongation, and motility on the surface. Specifically, using topography design to force macrophages into elongated cell shape is

shown to promote a pro-regenerative M2 phenotype

Surface modification Surface modification like coating or modifying surface chemistry directly alters how macrophages engage with the material. There is a

clear role for integrin-mediated regulation of macrophage migration, phagocytosis, and activation, but the precise mechanisms still

remain relatively unknown

Geometry Scaffold geometry affects macrophage phenotype by spatially confining macrophages and limiting their spreading, thereby leads to

an alteration in actin polymerization, chromatin compaction, and epigenetic alterations

Hemodynamic loads Macrophages reside within mechanically active tissues and are constantly exposed to dynamic external forces, such as stretch and

cyclic strain. These forces can cause macrophages to elongate along the direction of force, therefore affecting their phenotypes.

However, there is still no consensus on the mechanism of mechanical forces in influencing macrophage function

or RAW264.7 cells from spreading by spatial confinement,
such as using micropatterned surface, microporous substrates
or cell crowding, reduced LPS-stimulated transcriptional
programs and cytokine expression (Jain and Vogel, 2018).
The study elegantly illustrated that confining macrophages in
a small pore limited actin polymerization and thus lowered
the nuclear translocation of the actin-dependent transcription
co-factor, myocardin-related transcription factor-A, which
downregulated the inflammatory response (e.g., less pro-
inflammatory cytokine secretion, lower phagocytic potential
of macrophages). Spatial constraints also led to the chromatin

compaction and epigenetic alterations (e.g., lower histone
deacetylase 3 levels, increased H3K36-dimethylation). Although
the results of these studies shed light on some potential
pathways that guide macrophage response to mechanical
stimuli, macrophages cultured on a two-dimensional surface
still cannot fully recapitulate macrophages’ structures and
function in 3D culture or in vivo (Van Goethem et al., 2011).
Therefore, future studies on mechanotransduction mechanisms
of macrophages should turn to 3D systems with a range of
independently controlled properties in order to achieve a
far-reaching physiological significance.
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FIGURE 4 | The fate of macrophages can be greatly affected by material properties, both those inherent to the selected materials and the additional engineered

functionality. Potential macrophage mechanotransduction pathways have been probed for a few properties, such as surface patterning (McWhorter et al., 2013),

substrate stiffness (Patel et al., 2012; Scheraga et al., 2016; Gruber et al., 2018), spatial confinement (Jain and Vogel, 2018), and interstitial fluid (Li R. et al., 2018),

while others remain to be elucidated. TRPV4, transient receptor potential cation channel subfamily V member 4; RhoA, ras homolog family member A; Cdc 42, cell

division cycle 42; MLCK, myosin light-chain kinase; HDAC, histone deacetylase 3; MRTF-A, myocardin-related transcription factor-A.

MACROPHAGE-CENTERED
IMMUNOMODULATORY BIOMATERIALS
FOR FUNCTIONAL REPAIR

The ultimate purpose of regenerative materials is to restore
normal tissue function. This goal cannot be achieved solely
by engaging one or two key cell types. To obtain functional
recovery, the material must synergize with the systemic and
local immune responses, as well as coordinate with the
microenvironment and supporting cells. Because macrophages
bridge innate immunity and adaptive immunity, a new
paradigm was established to harness macrophage responses
by immunomodulating biomaterials for endogenous repair
(Sadtler et al., 2016; Wolf et al., 2019). A recent study
demonstrated that synthetic porous scaffolds eliciting a Th2
adaptive immune response can achieve regenerative healing
through a macrophage/IL-33 mechanism (Griffin et al., 2020).
It’s worth noting that although the specific peptide that this
study used was a poor activator of macrophage innate immune
signaling in vitro, when the peptide was presented in porous

scaffolds in vivo, an IL-33-related type 2 myeloid cell recruitment
and an antigen-specific immunity were induced to support tissue
remodeling and skin regeneration. This further illustrated that
material design should target the immune system as a whole,
rather than one cell type, to deliver an optimal outcome.

Macrophages, as key facilitators of functional tissue repair,
remain in the center of design for immunomodulatory
biomaterials. In order to ensure that material designs achieve
the designated goals of promoting the desired macrophage
phenotype, material composition (e.g., natural vs. synthetic),
scaffold physical properties (e.g., microstructure and viscous
vs. elastic mechanical properties), and additional cues (e.g.,
chemokines, nanoparticles) must be carefully considered
(Figure 5). The backbone material sets the cornerstone for
the general immune response and the following design
options. Naturally derived materials, like ECM components or
decellularized tissues, have inherent cell-binding motifs (e.g.,
integrins, CD44) and can selectively promote a range of immune
responses based on their composition (Badylak et al., 2008;
Boddupalli et al., 2016; Sadtler et al., 2019). As an example,
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FIGURE 5 | Design principles for macrophage-centered immunomodulatory biomaterials:(1) select material composition that best suits the application; (2) design

scaffold properties to elicit desired macrophage-governed inflammatory response; (3) combine with additional cues to maximize therapeutic effect, such as stem cells

or nanoparticles.

heparin and other sulfated polysaccharides have the ability to
bind growth factors and some cytokines, many of which directly
activate macrophages and, thus, dictate their phenotype (Capila
and Linhardt, 2002). This ability has been exploited in one
study to sequester heparin-binding factors in diabetic wounds
to reduce inflammation and promote wound healing (Lohmann
et al., 2017). Synthetic materials, such as polyethylene glycol
(PEG), have high plasticity for chemical modification and are less
immunogenetic. These substrates can serve as “clean slates” to
release molecules or present factors spatially and/or temporally
(Cha et al., 2017). Functional handles can also be incorporated
into the scaffolds to further direct macrophage responses. For
instance, different adhesion receptor engagement, like αVβ3
integrin, can be leveraged to alter macrophage phenotype (Kao
et al., 2001; Antonov et al., 2011). In terms of scaffold properties,
a few parameters impacting macrophage phenotype should be
considered, including substrate stiffness, surface hydrophobicity,
surface modification, and scaffold microstructure (McWhorter
et al., 2015; Jain et al., 2019). While some features can be
combined in one scaffold, it is often difficult to separately
control mechanical and biochemical properties. For example,
in chemically crosslinked hydrogels, the substrate stiffness is
tied up with material degradation, ligand density and mesh size.
Increasing stiffness by additional cross-linkages also leads to
a slower degradation rate, a smaller mesh size/diffusion rate,
and an increased local ligand density. Therefore, modulating
macrophage response with scaffold stiffness in these systems
cannot be easily decoupled with the other confounding factors.
Also, when manipulating matrix properties, care should be
taken to consider not only macrophage response, but also
macrophages’ coordination with other cell types to achieve

synergistic responses. In the case of scaffold porosity, a smaller
pore size may be in favor of M2 macrophage response, but
larger pore size could be beneficial for the growth of blood
vessels, which in the long run supports the implant success
rate (Madden et al., 2010; Feng et al., 2011). Additionally, to
avoid any unwanted pro-inflammatory macrophage activation,
biomaterials should also be verified that they are substantially
free of known toxic or harmful materials, such as endotoxins or
residual cellular debris (Lieder et al., 2013).

In our lab, a new class of injectable biomaterials using
hydrogel building blocks was designed to improve cellular
infiltration and modulate host response (Griffin et al., 2015).
A microporous annealed particle (MAP) scaffold is formed
by interlinking the particles together, which contains an
interconnected network of void space with channels that are
on the length-scale of cells. Such a scaffold offers enormous
tunability by virtue of its granular nature, where a bottom-
up approach to design starts at the individual particle. These
building blocks have been fabricated using a variety of synthetic
and natural backbone materials (e.g., PEG, hyaluronic acid)
with a range of chemical modifications to allow for particle
crosslinking, cargo delivery (e.g., growth factor, stem cells,
DNA), and to influence cellular behavior (e.g., RGD). For
example, particles are frequently engineered with RGD peptides
to promote cellular infiltration and migration throughout the
scaffold, while the inclusion of growth factors offers additional
cues to traversing cells (Truong et al., 2019). The shape, size,
and stiffness of the particles composing a MAP scaffold not only
dictate bulk mechanical properties of the scaffold, but also set
the internal landscape of the void space that is sensed by the
cells. By ranging size, stiffness, and RGD concentration, one
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study was able to develop particles with an optimal combination
that, when used as a MAP scaffold, demonstrated superior
gene transfection capabilities (Truong et al., 2019). Yet the
power of granular biomaterials extends beyond the design of
individual particles. Including multiple particle species into a
single scaffold can offer a higher level of material tunability.
By incorporating particle heterogeneity, a scaffold may serve
more than one primary function, such as promoting stem cell
growth while simultaneously inhibiting bacterial growth (Cai
et al., 2018). MAP scaffolds can also be designed with spatial
heterogeneity, where physical or chemical gradients can be
maintained during injection due to the jamming properties
of granular materials (Darling et al., 2018; Riley et al., 2019).
Remarkably,MAP gels have already demonstrated great promises
in promoting functional tissue repair in wound healing and
stroke with a reduced inflammatory response (e.g., reduced
CD11b+ immune cell infiltration) (Griffin et al., 2015, 2020;
Sideris et al., 2016; Nih et al., 2017; Darling et al., 2020).
Specifically, in stroke infarct areas filled with MAP gels, there
is a much higher ratio of infiltrating pro-reparative arginase
1+ (Arg-1+) macrophage comparing to no treatment control
(Sideris et al., 2019). Taken together, these results supported that
MAP scaffold is not only appealing as a tool for elucidating
the mechanotransduction pathways of macrophages, but also
as a potent immunomodulatory platform for macrophage-
targeting therapies.

A LOOK INTO THE FUTURE

Modern biomaterials continue to emerge and evolve, unlocking
infinite potentials for tailoring macrophage-centered therapies.
These materials are promising because they can offer a controlled
and tunable microenvironment, incorporating mechanical, and
biochemical properties, as well as their temporal and spatial
presentation. Although research on new biomaterials and
material designs for immunomodulation are burgeoning in
recent years, a refocus on directing macrophage behavior to
achieve suitable immune responses needs to be emphasized.
An optimal biomaterial design should act synergistically with
additional mechanical cues, molecules, or cells (that are
delivered or found endogenously) to coax macrophages into
pro-regenerative phenotypes. These macrophages, together with
tissue-resident cells and recruited immune cells, can collectively
orchestrate the regenerative process.

There is still much to be learned about macrophages
and their roles in endogenous repair, such as the different
contribution of tissue-resident macrophages and their bone
marrow-derived counterparts during healing and host responses.
A common nomenclature of dynamic macrophage phenotype,
taking into account both macrophages’ heterogeneity and
plasticity, should also be unified to benefit both in vitro and
in vivo studies. Currently, the investigation of macrophage
mechanotransduction pathways remains an important area
of research, as it can direct new material design strategies to
harness macrophage activity for endogenous tissue regeneration
and disease treatment. Armed with the booming knowledge
of macrophage and macrophage-material response, the next
generation of macrophage-centered immunomodulatory
biomaterials should be able to conquer broader land and achieve
more and more successful translation into clinical settings.
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