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Many studies in the fields of genetic epidemiology and applied population genetics are predicated on, or require, an
assessment of the genetic background diversity of the individuals chosen for study. A number of strategies have been
developed for assessing genetic background diversity. These strategies typically focus on genotype data collected on
the individuals in the study, based on a panel of DNA markers. However, many of these strategies are either rooted in
cluster analysis techniques, and hence suffer from problems inherent to the assignment of the biological and statistical
meaning to resulting clusters, or have formulations that do not permit easy and intuitive extensions. We describe a
very general approach to the problem of assessing genetic background diversity that extends the analysis of molecular
variance (AMOVA) strategy introduced by Excoffier and colleagues some time ago. As in the original AMOVA strategy,
the proposed approach, termed generalized AMOVA (GAMOVA), requires a genetic similarity matrix constructed from
the allelic profiles of individuals under study and/or allele frequency summaries of the populations from which the
individuals have been sampled. The proposed strategy can be used to either estimate the fraction of genetic variation
explained by grouping factors such as country of origin, race, or ethnicity, or to quantify the strength of the
relationship of the observed genetic background variation to quantitative measures collected on the subjects, such as
blood pressure levels or anthropometric measures. Since the formulation of our test statistic is rooted in multivariate
linear models, sets of variables can be related to genetic background in multiple regression-like contexts. GAMOVA can
also be used to complement graphical representations of genetic diversity such as tree diagrams (dendrograms) or
heatmaps. We examine features, advantages, and power of the proposed procedure and showcase its flexibility by
using it to analyze a wide variety of published data sets, including data from the Human Genome Diversity Project,
classical anthropometry data collected by Howells, and the International HapMap Project.

Citation: Nievergelt CM, Libiger O, Schork NJ (2007) Generalized analysis of molecular variance. PLoS Genet 3(4): e51. doi:10.1371/journal.pgen.0030051

Introduction

Genetic and genetic epidemiologic studies involving large
numbers of individuals and/or populations are being pursued
more and more often as a result of the development of high-
throughput genotyping technologies and the creation of
genotype data repositories such as the dbSNP (http://www.
ncbi.nlm.nih.gov/SNP) and the International HapMap Project
databases (http://www.hapmap.org). Many of these studies are
concerned with the identification and characterization of the
relationships of the populations and/or subsets of individuals
in those populations on the basis of their genomic profiles or
‘‘genetic backgrounds’’ (i.e., whether or not these popula-
tions/individuals carry the same sets of genetic variations [1–
8]). In addition, genetic epidemiologic studies are often
conducted to identify relationships between specific sets of
genetic variations possessed by individuals and phenotypic
endpoints they might have, such as a disease. The collection
of variations that an individual possesses that contribute, e.g.,
to his or her disease susceptibility, may vary from population
to population (e.g., as defined geographically, ethnically,
racially, or linguistically). This may be due to the underlying
heterogeneity of disease pathogenesis, the origins of the
variations both in terms of time and place, and the frequency
with which those variations are transmitted across popula-
tions (e.g., via migration patterns, interpopulation matings,
etc.). Thus, the genetic background of an individual—at least
with respect to relevant disease-contributing variations—is as
crucial in these types of investigations as it is in other types of

population genetic studies. In addition, it has been shown
that, due to phenomena such as varying degrees of admixture
and/or cryptic relatedness in the study population, ignoring
genetic background in epidemiologic studies testing associ-
ations between particular genetic variations and a phenotype
can result in false positive and false negative results [9–19],
which underscores the importance of genetic background
analysis even in very simple genetic association studies.
Many innovative analytical methods have been developed

recently to assess and accommodate genetic background
heterogeneity [20–37]. The vast majority of these methods
involve some form of cluster analysis, although some more
recent methods do not (e.g., [29,32]). For example, hierarch-
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ical clustering strategies can be used to assess genetic
background clustering, and, like other cluster analysis
methods, require the construction of a measure of the
similarity or dissimilarity (genetic distance) between all pairs
of the N individual genomes or population allele frequency
profiles (e.g., between-group variation, FST) comprising a
sample. The resulting N 3 N similarity or distance matrix is
then explored statistically to identify clusters of individuals
or populations that exhibit greater or lesser similarity.
Problems inherent to this approach involve the choice of a
similarity metric, deciding which cluster method is most
appropriate (e.g., single linkage, complete linkage, etc.), the
determination of the optimal number of clusters represent-
ing the data, and the biological meaning of the clusters.

With respect to the choice of a similarity metric for cluster
analysis, the simplest marker-based method for the assess-
ment of genetic similarity between two individuals is to
calculate the fraction of alleles shared identical by state (IBS)
by those individuals over all the loci for which the individuals
have been genotyped. If N individuals have been genotyped,
then all N3N pairs of individuals can be assessed in this way.
In addition to providing a foundation for some cluster
analysis methods, graphical displays of the similarity matrix
can be produced that allow visual assessment of the potential
that subgroups of individuals with similar genetic back-
grounds exist in the data. This approach has been used
widely, and is often referred to, when presented in graphical
form as a dendrogram, or as an allele-sharing ‘‘tree of
individuals’’ (e.g., [7,38–40]). One problem, however, with the
simple IBS sharing measure of genetic background similarity
is that it does not account for allele frequencies. Consider, for
example, two individuals who share rare alleles. These
individuals are more likely to have arisen from the same
(unique) population in which those alleles arose. In this
situation one may want to consider ‘‘weighting’’ allele sharing
at each locus by the frequency of the shared (or unshared)
alleles. Pairwise measures of genetic similarity that accom-
modate allele frequencies have been put forward and are

used often in ecological and nonhuman population genetics
analysis settings (e.g., [41–45]).
Cluster analysis approaches can be extended by making

more explicit and rigorous assumptions about the ancestral
populations from which the individuals in a sample arose.
Thus, specific ancestry informative markers (AIMs), which
show large frequency differences between ancestral popula-
tions, can be used to quantify the degree of admixture among
individuals in a sample [18,46–49]. When an individual
genotyped on such markers possesses variations that are
more frequent in one of the chosen ancestral populations,
then that individual’s ancestral relationship to this popula-
tion can be inferred. Obviously, one needs to have identified
the appropriate AIMs in advance of such analyses and this
requires assumptions about the ancestral populations con-
tributing to the individual genetic backgrounds reflected in a
sample.
In the following we describe a flexible alternative to cluster

analysis–based methods for the statistical assessment of
genetic background similarities among populations or indi-
viduals. The proposed method does not necessarily rely on
AIMs, but does require genotype information on at least a few
hundred (possibly less when including AIMs) genetic markers
(null loci) such as microsatellites, single nucleotide poly-
morphisms (SNPs), and/or insertion–deletion polymorphisms.
Although one can use markers that are not completely
independent in the sense that they have alleles in linkage
disequilibrium, this practice may require the use of a greater
number of markers to make up for the lack of independence
of the markers. Null loci can include genotype data available
from, e.g., a previous genome-wide association or linkage
studies involving the subjects or populations of interest, and
could thus allow for a retrospective analysis of sample genetic
background structure without additional genotyping. As in
cluster analysis, the proposed method involves the construc-
tion of a genetic similarity matrix. However, it does not
require cluster analysis to test hypotheses about the relation-
ships of the individuals or populations in a sample. Rather,
the method assumes that interest lies in testing the relation-
ship between a particular grouping factor (e.g., race, country
of origin, cohort, or geographical locale) or quantitative
measure (such as age, cholesterol level, or weight) and
variations in the genetic similarities of the individuals or
populations collected. Therefore, it does not require the
determination of the optimal number of clusters or, e.g.,
principal components, representing the data.
The proposed method is similar to the analysis of

molecular variance (AMOVA) method introduced by Excoff-
ier and colleagues, but is more flexible and provides a much
more intuitive and generalizable derivation of relevant test
statistics [50]. The description of the AMOVA procedure
provided by Excoffier et al.[50] includes relevant sum-of-
squares calculations to formulate analysis of variance
(ANOVA)-like hypothesis-oriented test statistics that consider
differences between groups of individuals or populations
with respect to genetic background. As described in the
Methods section, the proposed approach builds off an
analysis method we have termed multivariate distance matrix
regression analysis and can be used to test hypotheses about
not only categorical or grouping factors and genetic back-
ground, but quantitative traits as well [51,52]. In addition, the
formulation of the proposed test statistics can be adapted for
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Author Summary

Humans exhibit great genetic diversity. Understanding the factors
that contribute to and sustain this diversity is an important research
area. Not only can such understanding shed light on human origins,
but it can also assist in the discovery of genes and genetic factors
that contribute to debilitating diseases. Statistical analysis methods
that can facilitate the identification of factors contributing to or
associated with human genetic diversity are growing in number as
new high-throughput molecular genetic assays and technologies
are developed. We consider the use of an analysis method termed
generalized analysis of molecular variance (GAMOVA), which builds
off of previously proposed analysis methods for testing hypotheses
about the factors associated with genetic background diversity. We
apply the method in a wide variety of settings and show that it is
both flexible and powerful. GAMOVA has great potential to assist in
population-based human genetic studies, as it can be used to
address questions such as: Is a sample of affected cases and
unaffected controls from a homogeneous population, or is there
evidence of heterogeneity that could affect the results of an
association study? Is there reason to believe that the ancestry of a
set of individuals influences the traits that they have?



use in multiple regression-like test settings, so that the
relationships of multiple factors to genetic background can
be explored. As a result of the connections between the
proposed approach and the AMOVA approach of Excoffier et
al. [50], we have labeled the proposed approach generalized
molecular analysis of variance (GAMOVA).

In addition to the AMOVA procedure, the proposed
GAMOVA procedure also has some similarities to the
Mantel-based test statistic approach reviewed and extended
by Smouse et al. [53]. The Mantel test is used to test the
relationship between the entries or cells in two (or more)
distance/similarity matrices. Thus, one could have a genetic
background similarity matrix computed from different
populations whose relationship to, e.g., a geographic distance
matrix computed for the populations is of interest. The
proposed GAMOVA procedure considers the relationship
between the N3N entries (or cells; where N is the number of
individuals or populations being studied) in a genetic
background distance matrix and information, represented
as N-dimensional vectors, on the N individuals or populations
whose genetic background distances are reflected in the
matrix.

Below we apply the GAMOVA procedure to three data sets
available in the public domain to address some prevailing
questions: (1) an analysis of the Foundation Jean Dausset-
Centre d’Etude du Polymorphisme Humain (CEPH)–Human
Genome Diversity Project (HGDP) Cell Line Panel, (2) an
analysis of the morphological data made available by Howells
[54,55] on human craniometric characters, and (3) an analysis
of the International HapMap Project data addressing ques-
tions about the similarity of the individual chromosomes
possessed by the subjects genotyped as part of the project. In
addition, we also consider aspects of the power of the
GAMOVA procedure via simulation studies.

Results

Analysis of the CEPH-HGDP Cell Line Panel Dataset
We considered the use of the proposed GAMOVA analysis

to analyze the CEPH-HGDP Cell Line Panel data [56] in a
number of ways. We constructed several distance matrices
over 1,040 subjects collected from 51 worldwide populations
based on: (1) individual IBS allele sharing and (2) Lynch-
Ritland (LR) frequency weighted allele-sharing distance, and
(3) the standard between-population genetic distance meas-
ure FST (see Methods). We then considered the relationship
between additional information collected on those individ-
uals (and/or populations) and variation in the similarity
among the individuals and populations using the proposed
GAMOVA procedure. The additional information included,
for each individual, which of the 51 populations or ethnic
groups they were from, the geographic location of that
population (i.e., one of the five or seven global world regions
associated with populations), and its distance from Addis
Ababa in Africa [8]. In addition to the analyses based on
individuals, geographic location and distance from Addis
Ababa were also considered in analyses involving the 51
populations as a whole. By considering the distance of each
population from Addis Ababa we could address hypotheses
about global historical migration patterns and the impact
these migration patterns have on genomic diversity, as has

been recently pursued through the use of different statistical
methods [6,57].
To visually assess the potential for genetic background

clustering we first constructed neighbor-joining trees based
on the IBS distance matrix of the CEPH-HGDP individuals.
We color-coded each branch (representing an individual)
based on: (1) which of 5 major geographic regions (Figure 1A,
left panel) and (2) which of 51 populations an individual was
from (Figure 1B, right panel). Figure 1 shows a fairly dramatic
clustering of the individuals that is roughly consistent with
the population of origin for each individual. Note that, as
observed by Rosenberg et al. [1], the Mozabite (the population
labeled with a ‘‘6’’), a Berber ethnic group living in the Sahara
in Northern Africa, clusters with Middle Eastern populations
(assigned labels ‘‘4,’’ ‘‘5,’’ and ‘‘7’’).
We then considered two analyses designed to assess how

much of the genetic background variation exhibited by the
CEPH-HGDP individuals and ethnic groups could be ex-
plained by the world regions each individual or population
was associated with, as well as the distance of that world
region from Addis Ababa, using the GAMOVA procedure. We
created simple 0–1 indicator variables that reflected which
world region an individual or population was associated with
and used these indicator variables as independent or
predictor variables in the GAMOVA regression procedure
(see the Methods section for details) along with distance from
Addis Ababa as a continuous variable. Table 1 provides the
results assuming either a seven-world region breakdown
(Table 1; East Asia, Africa, Oceania, Central and South Asia,
America, the Middle East, and Europe) or a five-world region
breakdown (Table 1; Eurasia, East Asia, Oceania, America,
and Africa) as defined previously [1]. We also compare
GAMOVA regression models that did not consider (Table 1)
distance from Addis Ababa as a predictor to contrast the
results with the findings of models that included it (Table 1).
The top half‘ of Table 1 reflects the analysis of the IBS allele

sharing among individuals and suggests that approximately
9%–11% of the variation in the similarity of individual
genetic backgrounds can be explained by world region either
in conjunction with the distance of that world region from
Addis Ababa or not. Approximately 68%–72% of the
variation in genetic background similarity of the populations
as a whole, assuming the FST measure of genetic distance,
could be explained by world region and distance of those
world regions from Addis Ababa (Table 1; bottom half). This
clearly reflects the greater diversity among individual
genomes within a population than allele frequency differ-
ences between populations as a whole.
It is also interesting to note that, as found by others [6,57],

the distance from Addis Ababa is the strongest predictor of
genetic background similarity among the individuals and
populations, but the world regions explain variation in
genetic background similarity over and above this measure,
suggesting that diversity among individuals within popula-
tions situated within the same world region is not completely
captured by their distance from Addis Ababa. Also of note is
the strength of the contributions of the various world regions
to variation in genetic background similarity, which reflect
factors such as the populations’ individual demographic
histories and selective environmental pressures. For example,
Africa is the strongest contributor to individual genetic
background similarity after accounting for each world
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region’s distance from Addis Ababa (Distance considered/IBS
Matrix portion of Table 1), which is consistent with the deep
genetic structure of this continent [58]. On the other hand,
the strongest contributor to pairwise population distances
(FST) after accounting for geographic distance from Addis
Ababa (Distance considered/FST portion of Table 1) was
found to be America, consistent with findings by Ramachan-
dran et al. [58].

We also considered analyses that took into consideration
all the populations studied, assuming both the IBS allele-
sharing measure of genetic background similarity and the LR
allele frequency-weighted measure (Table 2). Overall, the
individual populations that the study subjects were from
could explain approximately 16%–19% of the variation in
genetic background similarity exhibited by the individuals in
the CEPH-HGDP database. Interestingly, the analyses using
the IBS and LR measures did not agree perfectly—although
they are similar—suggesting that allele frequency weighting
can make a difference in assessing individual genetic back-
ground similarity. In addition, our GAMOVA analysis
suggests that individuals from three populations in the
Americas (the Surui, the Karitiana, and the Pima) have the
most divergent genomes from the other individuals’ genomes,
which has been observed by others as well (e.g., [1,58]).

Analysis of the Craniometric Data Collected by Howells
We also considered analyses involving morphological data

made available by Howells [54,55] on human craniometric

characters collected on individuals from ten worldwide
populations. We computed the median of each of 43
craniometric measures for males and females separately from
each of these populations. We combined the data with the
genetic data on the CEPH-HGDP subjects by geographically
matching the countries and regions represented in the
CEPH-HGDP with those for which we had craniometric data
in a fashion identical to the one outlined by Roseman [59].
The median values for each of the 43 craniometric measures
were then considered as a regressor or covariate in a
GAMOVA analysis of the genetic distance matrix computed
for the ten corresponding CEPH-HGDP populations. The
goal was to test associations between craniometric features of
the people within the populations and genetic background
similarities those people might have with people in other
populations. We want to emphasize that many of the
craniometric measures are correlated so that associations
between any one of these measures and genetic background
suggest that other measures may also be associated with
genetic background, just not necessarily independently of the
others.
Table 3 describes the results of the analyses for males and

females. The cranial feature most strongly associated with
genetic background similarity is the nasion-bregma subtense
(FRS), which ‘‘explains’’ ;54% and ;49% of the variation in
genetic background similarity for males and females, respec-
tively. Other measures, such as glabella projection, minimum
cranial breadth and basion-prosthion length for males, and

Figure 1. Neighbor-Joining Trees Depicting the Genetic Relationships of 1,040 Individuals from 51 World Populations Collected by the CEPH-HGDP

(A) Individuals are color coded according to which of five major geographic regions of the globe they are collected from.
(B) Individuals are color coded according to which of the 51 populations they are associated with (1: Biaka Pygmy, 2: San, 3: Mbuti Pygmy, 4: Druze; 5:
Bedouin, 6: Mozabite, 7: Palestinian, 8: Kalash, 9: Pima, 10: Columbian, 11: Karitiana, 12: Surui, 13: New Guinea, 14: Yakut).
doi:10.1371/journal.pgen.0030051.g001
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brasion-prosthion length and dacryon subtense for females,
were found to be also associated with variation in population
genetic profile similarity over and above the FRS. The
multicollinearity among the 43 measures precluded fitting a
GAMOVA model with all 43 measures as predictors, so only
those measures that had associations with genetic background
similarity that were independent of the others were consid-
ered in Table 3 (i.e., as in standard multiple regression
contexts). A strong association between the frontal bone
curvature FRS with genetic background has also been
reported by Roseman and Weaver using a principal compo-
nents analysis [60]. As found by others (e.g., [61]), our analysis
suggests that certain morphological features, namely cranio-

metric features, segregate with genetic background across
different global populations much like, e.g., skin color [62].

Analysis of the HapMap Dataset
We next considered the application of the GAMOVA

procedure to the analysis of the large-scale genotyping effort
associated with the International HapMap Project (http://
www.hapmap.org; [63]). The data consist of genotypes at over
a million SNP loci on 209 individuals associated with four
different population groups (Northern European, West
African, Japanese, and Han Chinese). Computational meth-
ods were used to ‘‘phase’’ individuals based on the genotype
data (i.e., probabilistically assign unique chromosome pairs to
each individual based on linkage disequilibrium patterns) by

Table 1. GAMOVA Analysis Estimates of the Poportion of Variation in Genetic Background Similarity Explained by Seven or Five World
Regions, Respectively, Including and Excluding Geographic Dstances (between Each Population and Addis Ababa, See Text)

Distance from

Addis Ababa

as a Predictor

Matrix Seven-World Region Breakdown Five-World Region Breakdown

Seven

Regions

SS Pseudo-F p Prop Cum

Prop

Five

Regions

SS Pseudo-F p Prop Cum

Prop

Distance

considered

IBS Geographic

distances

8.018 39.235 0.0001 0.0365 0.0365 Geographic

distances

8.018 39.235 0.0001 0.0365 0.0365

IBS Africa 5.205 26.088 0.0001 0.0237 0.0601 Africa 5.205 26.088 0.0001 0.0237 0.0601

IBS East Asia 4.804 24.625 0.0001 0.0218 0.0820 East Asia 4.804 24.625 0.0001 0.0218 0.0820

IBS Oceania 2.433 12.613 0.0001 0.0111 0.0930 Oceania 2.433 12.613 0.0001 0.0111 0.0930

IBS Central and

South Asia

1.128 5.873 0.0001 0.0051 0.0982 America 1.064 5.539 0.0001 0.0048 0.0979

IBS America 1.117 5.847 0.0001 0.0051 0.1032 Eurasia 0.474 2.470 0.0001 0.0022 0.1000

IBS Middle East 0.847 4.447 0.0001 0.0039 0.1071

IBS Europe 0.010 0.050 1 0 0.1071

Distance not

considered

IBS America 6.786 33.016 0.0001 0.0309 0.0309 America 6.786 33.016 0.0001 0.0309 0.0309

IBS East Asia 6.179 30.927 0.0001 0.0281 0.0589 East Asia 6.179 30.927 0.0001 0.0281 0.0589

IBS Africa 5.245 26.911 0.0001 0.0238 0.0828 Africa 5.245 26.911 0.0001 0.0238 0.0828

IBS Oceania 2.310 11.978 0.0001 0.0105 0.0933 Eurasia 2.310 11.978 0.0001 0.0105 0.0933

IBS Central and

South Asia

1.243 6.479 0.0001 0.0057 0.0990 Oceania 0.000 0.000 1 0 0.0933

IBS Europe 0.785 4.104 0.0001 0.0036 0.1025

IBS Middle East 0.000 0.000 1 0 0.1025

Distance

considered

FST Geographic

distances

0.048 28.379 0.0001 0.3575 0.3575 Geographic

distances

0.048 28.379 0.0001 0.3575 0.3575

FST America 0.018 13.450 0.0001 0.1362 0.4937 America 0.018 13.450 0.0001 0.1362 0.4937

FST Africa 0.012 10.356 0.0001 0.0883 0.5820 Africa 0.012 10.356 0.0001 0.0883 0.5820

FST East Asia 0.010 9.762 0.0001 0.0706 0.6527 East Asia 0.010 9.762 0.0001 0.0706 0.6527

FST Oceania 0.007 8.034 0.001 0.0507 0.7034 Eurasia 0.007 8.034 0.001 0.0507 0.7034

FST Middle East 0.002 2.606 0.0916 0.0159 0.7193 Oceania 0.000 0.002 0.9472 0.0000 0.7034

FST Europe 0.001 1.126 0.3287 0.0069 0.7261

FST Central and

South Asia

0.000 0.000 1 0 0.7261

Distance not

considered

FST America 0.046 26.757 0.0001 0.3441 0.3441 America 0.046 26.757 0.0001 0.3441 0.3441

FST Africa 0.023 17.180 0.0001 0.1677 0.5118 Africa 0.023 17.180 0.0001 0.1677 0.5118

FST East Asia 0.014 13.633 0.0001 0.1063 0.6181 Eurasia 0.015 14.999 0.0001 0.1144 0.6262

FST Oceania 0.008 9.032 0.0171 0.0605 0.6786 East Asia 0.007 7.814 0.0297 0.0523 0.6786

FST Central and

South Asia

0.001 1.110 0.3321 0.0074 0.6860 Oceania 0.000 0.000 1 0 0.6786

FST Europe 0.000 0.305 0.7015 0.0021 0.6881

FST Middle East 0.000 0.000 1 0 0.6881

Note: Estimates are based on IBS allele-sharing information across 1,040 individuals (top half) genotyped on 783 markers, and pairwise genetic distances (FST) between 51 populations
(bottom half).
SS, sum of squares from the analysis; Pseudo-F,statistic measuring the influence of the population on individual genetic background similarities; p, p-value associated with the pseudo-F
based on 1000 data permutations; Prop, proportion of variation in the genetic background similarity matrix explained by the population; Cum Prop,: cumulative proportion of variation
explained by the population.
doi:10.1371/journal.pgen.0030051.t001
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the HapMap investigators; see the description of the phasing
procedures at the International HapMap Project Web site.
We undertook an analysis investigating the fraction of genetic
similarity explained by the four population subgroups on a
per-chromosome basis using a simple IBS measure of
genotype similarity for the 209 individuals, as well as
individual chromosomal similarity based on the 209 3 2 ¼
418 chromosomes obtained from the phase-resolved data.
The goal of this analysis was to determine how much of the
similarity or distances between the multilocus diploid
genomes, on a per-chromosome basis, could be explained
by the population groups associated with the HapMap
individuals. We also wanted to determine how much of the
similarity or distances between the individual chromosomes
(with each person contributing two to the total pool of 2093

2 ¼ 418) could be explained by the population groups
associated with the Hapmap individuals.
Table 4 describes the results and suggests that roughly

20%–22% of the individual chromosomal similarity can be
explained by the populations associated with each chromo-
some (i.e., assigned haplotypes) (left half of Table 4) and
roughly 28%–30% of the individual chromosomal similarity
based on each individual’s diploid genotype can be explained
by the population origins of the subjects. We note that the
percentages are consistent across the chromosomes, as one
might expect. In addition, the Yoruban population has the
most divergent chromosomes, followed by the Northern
Europeans. The distinction between the Han Chinese and
Japanese chromosomes, although significant, is much weaker,
as expected, since the residual variation after accounting for
African and European background effects is very small. In
addition, whereas the effect of Chinese origin was more
significant on individual chromosome similarity, the effect of
Japanese origin was more significant on genotyping similarity.

Power Estimation
We also considered the power of the proposed GAMOVA

procedure to detect varying degrees of differentiation
between two populations using simulated data. We chose
simulation settings that were consistent with those recently
described by Patterson et al. [64]. We simulated four different
settings/datasets with two populations each, whose pairwise
genetic distances ranged from FST ¼ 0 to FST ¼ 0.01 (see
Methods). We performed a GAMOVA analysis on these data
with known group membership taken as a predictor variable.
These analyses were repeated for a total of 1,000 simulations
in each setting. Results were binned in groups having
different FST statistics calculated for each data set (i.e.,
knowing the assumed FST used to generate the data may differ
from the FST calculated from the simulated sample). Figure 2
shows the relationship of FST between the two populations to
power of GAMOVA to detect that level of differentiation at a
type-I error rate of 0.05. In general, GAMOVA shows
excellent power at very low FST values around 0.0002, which
is in the range of the least differentiated human populations
described in literature (e.g., for different geographic regions
of Iceland, a homogenous genetic isolate [14]). As noted by
Patterson et al. [64], we found that at a fixed data size (D ¼
number of markers 3 number of subjects), genetic differ-
entiation is easier to detect for larger sample sizes, even
though a smaller number of markers is used, than for smaller
sample sizes using a larger number of markers.T
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Discussion

As DNA sequencing and genotyping costs decrease, a
greater number of population scientists, geneticists, clinical
researchers, and epidemiologists will seek to identify and
characterize genetic variations that underlie phenotypic
variations as well as the biological relationships among
individuals. Flexible analysis tools that can be used to test
appropriate hypotheses will thus be needed for these
investigations. We have proposed an analysis procedure,

GAMOVA, that not only extends an analysis of variance
approach that is used widely [50] for assessing relationships
between genetic variations, phenotypic variations, and the
population origins of individuals, but also complements
widely used cluster analysis approaches for these purposes
[20,23]. Specifically, the proposed GAMOVA approach can be
used to test hypotheses about the relationship between
variables collected on individuals or populations (such as
particular phenotypes or population-level migration pat-
terns) and variation in the genetic similarity or distance of

Table 3. GAMOVA Analysis Investigating the Relationship between Craniometric Measures Collected by Howells and Genetic
Background

Gender Measure SS Pseudo-F p Prop Cum Prop Comment

Male FRS 0.0129 9.298 0.002 0.5375 0.54 nasion-bregma subtense

GLS 0.0044 4.611 0.030 0.1837 0.72 glabella projection

WCB 0.0032 5.364 0.004 0.1316 0.85 minimum cranial breadth

BPL 0.0013 2.813 0.039 0.0530 0.91 basion-prosthion length

NAS 0.0010 2.950 0.081 0.0400 0.95 nasio-frontal subtense

FRC 0.0008 4.521 0.093 0.0326 0.98 nasion-bregma chord

OCC 0.0006 �16.485 0.974 0.0246 1.00 lambda-opisthion chord

OBH 0.0000 �0.313 0.673 0.0014 1.00 orbit height

Female FRS 0.0114 6.676 0.009 0.4881 0.49 nasion-bregma subtense

BPL 0.0058 5.760 0.016 0.2507 0.74 basion-prosthion length

SOS 0.0022 2.917 0.068 0.0962 0.84 supraorbital projection

MDH 0.0017 3.149 0.103 0.0727 0.91 mastoid height

DKS 0.0018 17.017 0.021 0.0785 0.99 dacryon subtense

OCC 0.0003 55.968 0.008 0.0134 1.00 lambda-opisthion chord

FMB 0.0002 �1.059 0.744 0.0086 1.01 bifrontal breadth

SS, sum of squares from the analysis; Pseudo-F, statistic measuring the influence of the population on individual genetic background similarities; p, p-value associated with the pseudo-F
based on 10,000 data permutations; Prop, proportion of variation in the genetic background similarity matrix explained by the population; Cum Prop, cumulative proportion of variation
explained by the population.
doi:10.1371/journal.pgen.0030051.t003

Table 4. Percentage of the Variation in the Dissimilarity of Individual Chromosomes or Diploid Genotypes Explained as a Function of
the Population Designations of the 209 Subjects Genotyped as Part of the HapMap Project

Chromosome Chromosomes Diploid Genotypes

Total Yoruban CEPH Chinese Total Yoruban CEPH Japanese

1 22.15 14.15 7.61 0.39 29.20 18.37 10.06 0.59

2 23.43 14.78 8.24 0.41 30.39 19.05 10.74 0.61

3 22.29 14.53 7.40 0.37 29.12 18.77 9.77 0.57

4 21.90 14.79 6.73 0.38 28.71 19.22 8.91 0.59

5 21.31 13.44 7.46 0.41 28.10 17.57 9.90 0.63

6 21.21 13.37 7.46 0.37 28.03 17.58 9.85 0.59

7 21.14 13.35 7.39 0.40 27.85 17.41 9.82 0.62

8 21.76 14.27 7.09 0.40 28.57 18.65 9.31 0.60

9 20.89 12.67 7.79 0.43 27.50 16.59 10.24 0.67

10 21.83 13.45 7.96 0.42 28.66 17.51 10.52 0.63

11 20.79 13.36 7.01 0.42 27.42 17.51 9.26 0.65

12 21.85 13.62 7.84 0.38 28.80 17.83 10.37 0.59

13 20.79 12.91 7.47 0.41 27.48 17.01 9.85 0.62

14 21.68 13.58 7.68 0.42 28.54 17.74 10.17 0.63

15 23.61 14.16 9.02 0.43 30.67 18.41 11.60 0.66

16 21.81 13.92 7.49 0.40 28.68 18.19 9.89 0.60

17 23.25 15.34 7.54 0.37 30.17 19.79 9.81 0.57

18 19.64 13.02 6.21 0.41 26.06 17.13 8.28 0.64

19 20.96 13.50 7.08 0.38 27.54 17.59 9.33 0.61

20 21.67 14.10 7.14 0.43 28.42 18.34 9.43 0.65

21 20.16 12.81 6.93 0.41 26.59 16.77 9.21 0.60

22 21.49 13.68 7.38 0.43 28.34 17.89 9.76 0.69

doi:10.1371/journal.pgen.0030051.t004
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those individuals or populations as characterized by individ-
ual genotype or allele frequency data.

Our applications of the proposed GAMOVA procedure
suggest that it can be used to address a number of population
genetic questions concerning the relationships of individuals
at the DNA sequence level; e.g., it can be used to directly
quantify the degree to which certain factors, such as race, self-
reported ethnicity, admixture, migration patterns, and
anecdotally derived connections between individuals and
populations, are associated with the genetic similarity of
individuals and populations. The exploration of such
relationships has been the hallmark of applied population
genetics research for decades [65–68]. However, one partic-
ularly important area of application for the proposed
procedure is in the area of genetic epidemiology, and genetic
association studies in particular, for at least two reasons.
First, it is well known that the polygenic and/or multifactorial
nature of many traits and diseases can influence the
identification of the individual loci contributing to the
expression of those traits and diseases if not accounted for
appropriately [69,70]. Second, it is also well known that
population stratification or genetically distinct subdivisions
within a population sampled for an association study can lead
to both false positive and false negative results if ignored [12–
16,18,69]. In these two contexts, the proposed GAMOVA
approach can be used to test hypotheses about the relation-
ship between a phenotype of interest and genetic background
similarity among the subjects to be used in an association
study (provided that they have been genotyped on an

appropriate set of markers to assess genetic background
[28,71,72]). If an association is found, then steps can be taken
to accommodate the influence of genetic background on the
trait or disease in question as described by many researchers.
The steps that can be taken to control for genetic background
heterogeneity within the context of the GAMOVA analysis
could involve identifying the leading eigenvalues of the
distance/similarity matrix and using the corresponding
eigenvectors as regressor variables or covariates in an
appropriate linear model relating the specific genetic
variation in question to the phenotype of interest [29,64].
Properties of the GAMOVA procedure, i.e., its robustness,

power, level accuracy, etc., have been studied in some very
general contexts, such as those involving genetic association
analyses, gene expression analyses, and DNA sequence–based
association studies [51,52], as well as in the simulation studies
presented here. For population genetic analyses, our simu-
lations suggest that the GAMOVA procedure is sensitive
enough to detect very low levels of population structure in
epidemiological samples. In addition, the use of permutation
tests provides a very robust method for testing hypotheses
demonstrating that the procedure is powerful in many
different settings. In addition, virtually all of these studies
document the flexibility of the method.
In addition to the applications showcased here, as well as

those outlined by Wessel and Schork [51] and Zapala and
Schork [52], we have routinely made use of the GAMOVA
analysis to test for, e.g., differences across studies due to
laboratory effects or genotyping artifacts, genotyping quality
shifts over time, and genetic background differences between
subjects from an original and replication sample [73]. Finally,
the GAMOVA procedure is also applicable to the identifica-
tion of informative markers for specific cohorts or commun-
ities under study, since one can use the procedure to test the
effect of each SNP on variation in a genetic background
similarity matrix for informativeness without requiring
knowledge about the ancestral history of the subjects under
study.
There are, however, a few limitations inherent in the

proposed GAMOVA approach that may provide fertile
ground for further research. For example, the choice of a
similarity or distance measure is crucial. Although the IBS and
LR measures for individual genetic similarity and the FST and
related measures for population-level genetic similarity (e.g.,
[6]) are the standards, it is unclear which of these measures are
the most powerful to use in the GAMOVA procedure (or even
other methods relying on distance measures besides GAMO-
VA). In this context the power of the proposed GAMOVA
approach in different population analysis settings and locus
effect scenarios deserves detailed attention. However, since
the procedure is rooted in the derivation of traditional
ANOVA, regression, and general linear models, many of the
same intuitions and findings related to the power of these
modeling procedures apply. For example, the proposed
procedure assesses the question of how much of the variation
in the similarity/dissimilarity exhibited by a group of
individuals can be explained by another factor, which is
analogous to questions concerning how much of the variation
in a quantitative particular trait is explained by a certain
factor in regression and ANOVA contexts.
A final concern with the proposed approach, which is an

issue with all analysis methodologies that involve high-

Figure 2. Relationship between the Genetic Differentiation among Two

Populations as Measured by Wright’s FST and the Average (6S.E.M.)

Power of the GAMOVA Procedure to Detect that Differentiation

Results are based on 1,000 simulation studies involving four sets of two
equally sized populations, each generated according to varying genetic
differentiation. Known group membership was used as predictor in the
GAMOVA analysis. For a constant data size (number of markers 3
number of subjects), genetic differentiation can be detected at lower FST

values in larger populations with fewer markers compared to smaller
populations with more markers (squares: 32 individuals, 32768 markers;
triangles: 64 individuals, 16384 markers; circles: 128 individuals, 8192
markers; stars: 256 individuals, 4096 markers).
doi:10.1371/journal.pgen.0030051.g002
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dimensional data types, involves missing genotype data. One
can handle missing genotype data in a number of ways. First,
one could restrict the construction of the similarity measure
to only those individuals with complete data—which may
result in a substantially reduced sample—or simply construct
the measure with the data that are available on each pair of
subjects. This latter approach will be problematic if a number
of individuals are missing genotype data at the most heavily
weighted (e.g., functional or informative) loci. Another
approach to handling missing data would involve imputing
or assigning individuals genotype data based on linkage
disequilibrium information. This approach would only be as
useful as the strength of the linkage disequilibrium between
alleles at the loci with missing data and those without. The
approach we took to handling missing data was to use
whatever genotype information was available on the subjects
for the similarity calculations.

Finally, we note that a web-based GAMOVA tool is
available from the authors at http://polymorphism.scripps.
edu/;cabney/cgi-bin/mmr.cgi.

Materials and Methods

Computing a similarity matrix. As noted, the proposed procedure
requires the computation of a ‘‘distance’’ matrix that reflects the
dissimilarity of the genetic backgrounds of the individuals or
populations being analyzed. There are many possible measures that
could be used to construct such a matrix, and we considered two
methods for computing the similarity of individuals’ genetic back-
grounds based on genotype data collected on them. The resulting
similarity measure can be translated into a distance or dissimilarity
measure as described later. The first similarity measure is widely used
and is based on simple IBS allele sharing [38] and can be calculated as
the fraction of alleles shared identical by state for each pair of
individuals in a sample over all the loci for which the individuals have
been genotyped:

1
2L

XL
l¼1

r̂IBS; l ð1Þ

where r̂IBS is the individual, locus-specific allele-sharing value and L¼
number of loci considered in the calculations.

The second similarity measure essentially considers weighting loci
in the computation of IBS-based allele sharing by allele frequency
and was introduced by Lynch and Ritland [44]. The LR regression-
based method-of-moments estimator has been shown to have some
desirable properties relative to other methods, especially in the case
of populations consisting of individuals with a low degree of
relatedness [45,74], and has been widely discussed in the population
genetics and behavioral ecology literature (e.g., [75–77]). The LR
estimator uses a regression approach to infer relationships (i.e., one
individual of a pair serves as a ‘‘reference’’ individual and the
probabilities of the locus-specific genotypes of the second individual
are then conditioned on those of the reference individual). The LR
coefficient of relatedness is:

r̂xy ¼
paðSbc þ SbdÞ þ pbðSac þ SadÞ � 4papb

ð1þ SabÞðpa þ pbÞ � 4papb
ð2Þ

where pa and pb equal the frequencies of alleles a and b in the
population. The reference individual is assumed to have alleles a and
b (such that if this individual is homozygous, Sab¼1, if heterozygous, Sab
¼ 0), and the proband has alleles c and d. Multilocus estimates of
genetic background similarity can be obtained by summing the single
estimates, weighted by the inverse of their sampling variance:

r̂xy ¼
1

Wr;x

XL
l¼1

Wr;xðlÞr̂xyðlÞ ð3Þ

where

Wr;xðlÞ ¼
1

Var½r̂xyðlÞ�
ð1þ SabÞðpa þ pbÞ � 4papb

2papb
; ð4Þ

which is computed under the assumption that the two individuals in
question are unrelated (i.e., have 0.0 relatedness).

The similarity matrices were transformed into a dissimilarity or
‘‘distance’’ matrix by subtracting the components of the matrix from
1.0 if the IBS measure is used, or subtracting them from 1.0 after each
component in the matrix is divided by the theoretical or empirical
maximum of the similarity measure to scale the entries to lie between
0 and 1.

Multivariate distance matrix regression analysis. Once one has
computed a distance matrix it can be subjected to a regression
analysis testing hypotheses regarding, e.g., whether or not variation in
the level of similarity/dissimilarity exhibited by pairs of individuals
reflected in that matrix can be explained by other features those
individuals posses (e.g., whether they are from a particular ethnic
group or a specific country). To describe the regression model, we
assume that each of N individuals or study subjects has been
genotyped at L unlinked polymorphic loci (bi- or multiallelic) and
thatM grouping or phenotypic variables have been collected on the N
subjects. These grouping or phenotypic variables could include
information about the country of origin (coded using dummy
variables, such as a 1 assigned to individuals from a particular
country, and 0 assigned to individuals from a different country), the
continental origin of that country and its distance from Addis Ababa,
and craniometric diversity data, as we have considered.

We note that the proposed regression procedure, which is an
extension of the procedure described by McArdle and Anderson [78]
and a general reformulation of the AMOVA procedure discussed by
Excoffier et al. [50], does not require that the distance matrix used
have metric properties. Let this distance matrix and its elements be
denoted by D¼ dij (i,j¼ 1,. . .,N), for the N subjects. The possibility that
N � L will not pose problems in the proposed regression analysis
setting. Let X be an N 3 M matrix harboring information on the M
grouping or phenotypic variables, which will be modeled as predictor
or regressor variables whose relationships to the values in the
genomic similarity matrix are of interest. Compute the standard
projection matrix, H ¼ X(X9X)�1X9, typically used to estimate
coefficients relating the predictor variables to outcome variables in
multiple regression contexts. Next, compute the matrix
A ¼ ðaijÞ ¼ ð�½1=2�d2ijÞ and center this matrix using the transforma-
tion discussed by Gower [79] and denote this matrix G:

G ¼ I � 1
n
119

� �
A I � 1

n
119

� �
ð5Þ

An F-statistic can be constructed to test the hypothesis that the M
regressor variables have no relationship to variation in the genomic
distance or dissimilarity of the N subjects reflected in the N 3 N
distance/dissimilarity matrix as [78]:

F ¼ trðHGHÞ
tr½ðI �HÞGðI �HÞ� ð6Þ

If the Euclidean distance is used to construct the distance matrix
on a single quantitative variable (i.e., as in a univariate analysis of that
variable) and appropriate numerator and denominator degrees of
freedom are accommodated in the test statistics, the F-statistic above
is equivalent to the standard ANOVA F-statistic [78]. The distribu-
tional properties of the F-statistic are complicated for alternative
distance measures computed for more than one variable, especially if
those variables are discrete, as in genotype data. However, permu-
tation tests can then be used to assess statistical significance of the
pseudo F-statistic [80,81]. The M regressor variables can be tested
individually or in a step-wise manner. All matrix-based regression
analyses we have performed in this paper used 10,000 permutations
to calculate p-values, except for the analysis of the CEPH-HGDP data
in Table 2, for which we used 1,000 permutations. In addition, one
can calculate the percentage of variation in similarity/distances
within the distance matrix explained by the regressor variables, r2,
through the formula:

r2 ¼ trðHGHÞ
trðGÞ ð7Þ

Graphical display of similarity matrices. Similarity matrices of the
type we have described can be represented graphically in a number of
ways (e.g., heatmaps and trees) that can facilitate interpretation. We
considered trees that are constructed such that individuals with
greater genomic similarity are placed next to each other (i.e., they are
represented as adjacent branches of the tree) and less similar
individuals are represented as branches some distance away from
each other, using the module neighbor of the program PHYLIP v.
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3.64 (http://evolution.genetics.washington.edu/phylip.html) to con-
struct a neighbor-joining tree. By color coding the individual
branches based on the phenotype values possessed by the individuals
they represent, one can see if there are patches of a certain color on
neighboring branches, which would indicate that phenotype values
cluster along with genetic similarity (e.g., using HyperTree v.1.0.0,
http://www.kinase.com/tools/HyperTree.html).

The CEPH-HGDP Cell Line Panel.We used genotype data from the
publicly available CEPH-HGDP Cell Line Panel [56], which have been
investigated recently in numerous studies (e.g., reviewed in [4]). The
datasets used here include 377 and 783 autosomal microsatellites
typed on 1,040 people from 51 populations distributed worldwide
(China and United States Han subjects were pooled). We included the
same 1,040 subjects as originally described in Rosenberg et al. [1],
with the exception of 16 duplicated or mislabeled samples [5]. In
addition, we also used geographic data (i.e., the distance from Addis
Ababa to each of the 51 CEPH-HGDP populations), kindly provided
by Dr. François Balloux [8], and pairwise FST values [82] between 51
populations based on 783 microsatellites kindly provided by Dr. Noah
Rosenberg [83].

The anthropometric data of Howells. We used craniometric
diversity data (the median across the subjects of each of 45 features
for each gender) gathered on 489 males and 459 females from ten
populations (nine populations for females) made available through
the work by Howells [54,55]. The craniometric data was paired
according to geographic regions with genetic data from 415 subjects
from 19 populations from the CEPH-HGDP panel genotyped on 783
markers as described in Table 1 of Roseman [59]. Pairwise FST
between the ten populations (merged from an original 19 CEPH-
HGDP populations to represent the locations sampled from, for the
craniometric data) was calculated according to standard formulae
[82] for diploid data using genotypes at 786 microsatellite loci from
the CEPH-HGDP. The pairwise FST analysis produced a 10 3 10
genetic distance matrix that we used in the proposed GAMOVA
procedure to determine if relationships exist between the 45 cranial
measurements and genetic background similarity.

The HapMap data set. We downloaded the ;700,000 SNP markers
from the phase I data available on the 209 individuals genotyped as
part of the International HapMap Project (http://www.hapmap.org;
[60]). These 209 individuals included 60 individuals of Northern
European descent (i.e., the ‘‘CEPH-HGDP’’ derived individuals), 44
individuals of Japanese descent, 45 individuals of Han Chinese
descent, and 60 individuals of West African descent (i.e., the
‘‘Yoruban’’ population-derived individuals). Since these 209 individ-
uals had been phased (i.e., assigned haplotypes), we considered the
data as providing both 209 multilocus genotypes on each of the 22
autosomes, as well as providing 418 individual chromosomes, from
each of the four populations, and analyzed it in this light.

Power estimations. A Python computer program was used to
generate four sets of two populations, each with M markers and N
subjects with the same constant data size (D ¼ N 3 M ¼ 220) as
discussed by Patterson et al. [64]. Allele frequencies of all biallelic loci
for the first population were generated by assuming they followed a
beta-distribution with parameters 0.75 and 0.75. For the second
population, for each locus, the allele frequencies of the first
population were modified by adding random numbers so that the
two populations would exhibit certain genetic distances based on
Wright’s FST measure of population differentiation ([82], Formula
5.12). For each of the four sets, 1,000 populations were simulated with
FST values that ultimately were randomly distributed between 0 and
0.01. We assigned hypothetical individuals in the simulated samples
alleles at each of the M loci based on the allele frequencies. A
GAMOVA analysis was then performed on an IBS distance matrix
constructed from the allelic profiles of the simulated individuals as
described above with known population membership taken as a
predictor variable. Permutations (1,000) of the data were performed
to determine the significance of each pseudo-F statistic from the
GAMOVA analysis.
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