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Abstract: Antimicrobial resistance (AMR) is a significant threat to global health. The conventional
antibiotic pool has been depleted, forcing the investigation of novel and alternative antimicrobial
strategies. Antimicrobial peptides (AMPs) have shown potential as alternative diagnostic and
therapeutic agents in biomedical applications. To date, over 3000 AMPs have been identified, but
only a fraction of these have been approved for clinical trials. Their clinical applications are limited to
topical application due to their systemic toxicity, susceptibility to protease degradation, short half-life,
and rapid renal clearance. To circumvent these challenges and improve AMP’s efficacy, different
approaches such as peptide chemical modifications and the development of AMP delivery systems
have been employed. Nanomaterials have been shown to improve the activity of antimicrobial
drugs by providing support and synergistic effect against pathogenic microbes. This paper describes
the role of nanotechnology in the targeted delivery of AMPs, and some of the nano-based delivery
strategies for AMPs are discussed with a clear focus on metallic nanoparticle (MNP) formulations.

Keywords: antimicrobial peptides; antimicrobial resistance; nanotechnology; nanocarriers; drug
resistance; nanoparticles; drug delivery systems

1. Introduction

Antibiotics have been used for decades to cure infectious diseases and enabled most
of modern medicine. Without antibiotics, even routine medical procedures can lead to
life-threatening infections. The first widely used antibiotic, penicillin, was discovered in
1928. In 1945, Alexander Fleming warned that bacterial resistance had the potential to ruin
the miracle of antibiotics [1]. Shortly thereafter, beta-lactam antibiotics were discovered
and proved to be effective against penicillin-resistant microbes [2,3]. This was followed
by the methicillin-resistant Staphylococcus aureus (MRSA) [4]; since then, resistance has
been reported against almost all known antibiotics to date [5]. In the high-priority list of
antibiotic-resistant strains that require urgent attention are Enterococcus faecium, Staphy-
lococcus aureus (S. aureus), Klebsiella pneumoniae (K. pneumoniae), Acinetobacter baumannii,
Pseudomonas aeruginosa (P. aeruginosa), and Enterobacter species (ESKAPE). The ESKAPE are
among the 12 microorganisms that are listed as critical to medium priority pathogens by
the World Health Organization (WHO). These bacteria place a significant burden on the
healthcare systems and global economic costs [2,3]. Efforts to impede the spread of these
pathogens have been hindered by their ability to resist antibacterial drugs.

As it stands, the misuse and overuse of these drugs are the major contributing fac-
tors toward antibiotic resistance, which often reduces the efficacy of newly discovered
antibiotics and their derivatives [6]. Antibiotic-resistant infections account for about
700,000 mortalities per year, which is estimated to increase to over 10 million deaths by
2050, making AMR a global health crisis [7]. AMR occurs naturally, but the process has
been accelerated by the misuse of antibiotics in both humans and animals. As reported
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by WHO, increased hospitalization, higher medical costs, and elevated mortality have
been associated with AMR. AMR threatens the successful treatment of infections caused
by drug-resistant microbes [8]. Infectious diseases such as pneumonia, tuberculosis, gonor-
rhea, malaria, HIV/AIDS, and salmonellosis are becoming increasingly difficult to manage
as known potent antimicrobial agents are becoming less effective. In this context, the loss
of antimicrobial potency due to resistance in addition to the lack of new and alternative
antimicrobial agents underscores the requirement for novel therapeutic agents.

AMPs of natural and artificial origin have gained attention in recent years due to
their biological activities as potential alternatives to conventional antimicrobial agents
that can combat pathogenic and drug-resistant microorganisms [9]. These biomolecules
serve as a natural first-line of defense system against invading pathogens, working either
individually or synergistically with the innate immune system to inhibit the growth of
pathogenic microorganisms. AMPs are divided into four categories based on their struc-
tural conformation and characteristics. This class of peptides (AMPs) are stable over a wide
pH range, can work in synergy with immune cells, and possess effective antimicrobial
activities against all kinds of pathogens including viruses. The discovery of defensins
among other identified AMPs have been a major breakthrough as alternative molecules for
use against antibiotic-resistance and in the development of novel antimicrobial agents [10].

Over 14 manually curated AMP databases have been developed to provide informa-
tion and enable researchers to synthesize AMPs with better therapeutic index. Examples of
these databases include the Database of Antimicrobial Activity and Structure of Peptides
(DBAASP v3.0) [11], The Antimicrobial Peptide Database (APD3) [12], dbAMP [13], Yet
Another Database of Antimicrobial Peptides (YADAMP), etc. To give insight into the
growing number of available AMPs, the APD3 for example is composed of 3257 AMPs
from six kingdoms (bacteria, archaea, protists, fungi, plants, and animals) with a broad
spectrum of antimicrobial activities [14].

AMPs have been used in the treatment of microbial infections emerging from bac-
teria, fungi, and viruses [15]. The two most studied AMPs of human origin are the
cathelicidin LL-37 and defensins. The antiviral effect of defensins has been demonstrated
against human viral infections [16–18]. The recombinant human β-defensins (mouse β-
defensin 3) showed antiviral activity against influenza A virus in both in vitro and in vivo
studies [17]. Several studies have also demonstrated the immunomodulatory [19,20], an-
timicrobial [21], and wound-healing activities of the human LL-37 [22]. Of note, LL-37
interacts with keratinocytes through the P2X7–SFK–Akt–CREB/ATF1 signaling [23,24]
and COX-2 [25] pathways as well as with fibroblasts through the P2X7R pathway [26] and
the protein kinase/ERK pathway, supporting its healing effect in polymicrobial-infected
wounds [27,28].

Despite the health properties offered by AMPs, they have some limitations, which
ultimately delay their progress into clinical trials [15]. Chemical modification of the AMPs
and the use of delivery systems have been reported to improve their pharmacokinetics [29].
Nanotechnology-based delivery systems are now being considered as effective alternatives
to increase the therapeutic efficacy of the AMPs by preventing proteolysis, increase AMP
accumulation at the infection sites, and reduce bystander toxicity [30]. The review paper
summarizes the nano-delivery systems for AMPs, current progress, and their applications.

2. Antimicrobial Agents and their Activity

The correlation between microorganisms and infectious diseases is well established.
Therefore, molecules that can kill, inhibit, or slow down the growth of these pathogens
are vital for treatment of microbial infections. After the discovery of Penicillium notatum
by Sir Alexander Fleming in 1928, several other antimicrobial agents were identified, and
their mechanisms of antimicrobial activity have also been thoroughly investigated. Some
of the antimicrobial agents and their modes of action are shown in Figure 1; they exert
their antimicrobial actions by interfering with various cellular and metabolic processes
of the microorganisms. Actions of antibacterial agents can either be bacteriostatic if the
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antimicrobial activity involves growth inhibition or bactericidal if the activity involves
membrane disruption leading to death of the bacteria [31]. Sulfonamide and spectinomycin
inhibit folate and protein synthesis, respectively; and are classified as bacteriostatic agents.
Antibacterial agents such as vancomycin and penicillin are bactericidal agents due to their
killing effect on bacteria. Other classifications of antibacterial agents are based on the mech-
anism of inhibition, origin, composition, and spectrum activity [32]. While these agents
were initially considered highly potent against certain microorganisms, the development
of microbial resistance has been reported for nearly all these antibiotics. To make matters
worse, the rate of discovering new antimicrobial agents has also been declining.
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Figure 1. Examples of antimicrobial agents and their modes of action. These compounds are classified according to their
cellular or molecular targets.

The misuse and overuse of antibiotics is the main cause of AMR, and have led to
the increasing resistance of human and animal pathogens to these antimicrobial agents.
The mode of microbial resistance toward the antimicrobial agents include (a) alteration
or modification of the drug, the drug target, and drug binding, (b) inactivation of drugs,
(c) blockage or decrease in drug uptake or penetration, (d) increase in drug efflux, and
(e) the degradation of the drug. In 2015, 8.7% and 24.3% AMR were reported for MRSA
and Streptococcus pneumoniae, respectively [33], and the mechanism of bacterial resistance
was through drug inactivation, increased efflux, and ribosomal protection [34].

3. Overview and Properties of AMPs

AMPs, also known as host defense peptides, are short amino acid sequences or
biomolecules, ranging from 12 to 100 amino acids in length. AMPs possess antimicrobial
activities against various microorganisms and are crucial to both the innate and the ac-
quired immune systems as a defense mechanism [35]. Some of these AMPs have also been
shown to have antimicrobial activities against multidrug-resistant (MDR) bacterial strains.
They are cationic and amphiphilic in nature [36], and these characteristics play a major role
in the mechanism by which they intercalate with the phospholipid bilayer of the micro-
bial cell membrane, leading to membrane depolarization and cell permeabilization [37].
Consequently, this will cause the release of biologically important cellular contents and
subsequently result in microbial death [38,39].

AMPs are classified based on their sequence composition, structure, and origin; typical
AMP structural conformations are highlighted in Figure 2 and Table 1. The structural
and physicochemical properties of AMPs, which include charge, hydrophobicity, and
amphipathicity, dictate their specificity against the target microorganisms [40].
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Figure 2. Structural conformations of AMPs. (A) α-helical, (B) β-sheet, (C) αβ-peptides, and
(D). Non-αβ peptides or extended structure. Images were deciphered by Schrodinger software
v2020-3 after structural retrieval from the Protein Data Bank (PDB) at https://www.rcsb.org/ (ac-
cessed on 20 May 2021) using the PDB IDs: 2K6O, 1ZMM, 1FD3, and 1G89 for A to D, respectively.
AMPs are colored by properties.

The antimicrobial activity of these peptides appears to be more rapid when compared
to conventional antimicrobial drugs [41,42], which together with new drugs are faced with
the challenge of AMR. In light of this, there is a likelihood of AMPs succeeding where
the conventional antimicrobial agents have failed and can possibly overcome microbial
resistance due to their unique target interactions. AMPs execute their antimicrobial activ-
ities through attacks on the microbial membrane and as such would most likely require
restructuring in the microbial membrane to bring about resistance to AMPs [43]. The
mechanism of AMP internalization is largely dependent on the molecular properties and
membrane composition. Binding and interaction occurs through the electrostatic force of
attraction between the negatively charged bacterial membrane and the positively charged
amino acids of the AMPs, which is followed by hydrophobic interactions between the am-
phipathic AMP domains and the phospholipids in the microbial membrane [41]. However,
challenges such as proteolytic degradation, tissue toxicity, low stability, and difficulties
associated with up-scaling must be met for AMPs to be considered as potential alternative
to conventional antimicrobial drugs [44]. Modified AMPs in combination with drug de-
livery systems can lead to the development of novel antimicrobial agents with improved
therapeutic efficacy against MDR microbes [45,46].

Table 1. Classifications of some AMPs with specific examples.

Groups Characteristics Examples Mode of Action Refs

α-helical peptides Amidated C-terminus,
N-terminal signal peptides

FALL-39
Magainins Cecropins Pore formation

[47]
[48,49]

[50]

β-sheet cationic with disulfide bridges
β-defensins

Membrane disruption
[51,52]

plectasin [53]
protegrins [54]

Extended AMPs or
Non-αβ peptides

Contains proline, arginine,
tryptophan, glycine or histidine

rich amino acids

Indolicidin Membrane disruption
Disruption of

intracellular function

[55]
Bactenecins [56]

Histatins [57]

Loop peptides

Dodecapeptides
Tachyplesins
Protigrin-1

Bactenecin-1
Ranalexin

Brevinin 1E
Lactoferricin

Disruption of bacterial
membrane

[58]
[59,60]

[61]

3.1. Mechanism of Action of AMPs

AMPs exert their antimicrobial activity on pathogenic microbes through different
mechanism of actions. Their mechanisms are largely associated with the nature, structure,
and sequence composition of the AMPs. Amphiphilicity, charge, and secondary structures
of AMPs have all been associated with their different modes of action [62], suggesting
that the mechanism by which the AMPs interact or disrupt the microbial membranes

https://www.rcsb.org/
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differ. As such, the way AMPs interact with microbial membranes is key not only to their
antimicrobial action but also their application in therapeutics [63]. Other than membrane
disruption, other mechanisms of action such as direct killing and immune modulation have
been reported for AMPs [64]. The AMP’s ability to target the microbial membrane can occur
in various ways, most notably through aggregation, barrel-stave, toroidal pore formation,
and carpet model, as shown in Figure 3 [65]. All these mechanisms are extensively reviewed
elsewhere [66,67].
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3.2. Challenges of AMPs and the Role of Carriers for Improved Therapeutic Efficiency

Of all the AMPs identified, a limited number have made it to the clinical trials, and
very few have been approved by the US Food and Drug Administration (FDA). Challenges
such as systemic toxicity, proteolytic susceptibility, rapid clearance by the kidney, and short
half-life have been mitigating against their implementation [68]. Chemical modification
and delivery strategies have been suggested to overcome these challenges, and these have
significantly improved their therapeutic index [29,69]. The focal point for this paper is to
review the use of nano-based systems as drug carriers for AMPs.

3.3. Nano-Delivery Systems for AMPs

Enhancements of the properties of AMPs such as stability, toxicity, half-life, and release
profile can be achieved by using delivery vehicles [70]. AMPs can be easily attached or
encapsulated into delivery vehicles by covalent and non-covalent methods. This section
will briefly review different vehicles or carriers for AMPs, with more emphasis on polymeric
and metallic nanocarriers.
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Nanotechnology-based systems through the use of nanomaterials at a size range of
1–100 nm emerged as ideal delivery systems for the AMPs. Various nanomaterials, includ-
ing metallic (gold nanoparticles (AuNPs), silver nanoparticles (AgNPs), gold nanodots
(Au-nanodots)) and polymeric (chitosan, poly (lactic-co-glycolic acid) or PLGA) NPs have
been widely explored for the delivery of AMPs, which include but are not limited to
surfactin [71], cecropin [72], and a pro-apoptotic peptide [73]. The success of nanocar-
riers was also demonstrated with other antimicrobial agents, which include AgNPs for
ampicillin [74], silicon NPs for LL-37 [75], polymeric NPs (PLGA NPs) for colistin [76],
plectasin [77], and chitosan/PGA NPs for the delivery of nisin [78], vancomycin, LL-37,
cryptdin-2, and temporin B [79]. In addition, microgels, polyelectrolyte complexes, and
macroscopic hydrogels have also been extensively studied for AMP delivery. These systems
have been used to study the protection of antimicrobial agents against proteolytic degrada-
tion in vivo as well as to study controlled and stimuli-responsive drug release. For instance,
the controlled release of Ponericin G1 (GWKDWAKKAGGWLKKKGPGMAKAALKA-
AMQ) was demonstrated using polyelectrolytes [80]. With the use of nanogels, the con-
trolled release of encapsulated bradykinin in poly-2-hydroxyethyl methacrylate NPs was
studied using one-pot dispersion polymerization [81]. When compared to free AMP, the
encapsulated AMP showed sustained release and improved bactericidal effect against
S. aureus. In another study, a hydrogel composed of nanofiber RADA16 (self-assembling
peptide with the sequence: Ac-RADARADARADARADA-CONH2) was prepared in the
presence of Tet213 (KRWWKWWRRC), and the antimicrobial activity of free RADA16 and
RADA16-Tet213 was determined. In addition, the sustained release of Tet213 by RADA16
over the course of 28 days was also accounted for. At the end of the study, RADA16-Tet213
was effective against S. aureus. The hydrogel RADA16-Tet213 showed sustained AMP
release and supported cell growth in bone mesenchymal stem cells of Sprague–Dawley
rats [82]. Zetterberg et al. also investigated the use of the PEG-stabilized liposome as
an AMP carrier. Protease susceptibility and the antimicrobial effects of the melittin lipo-
some were compared to free melittin after repeated exposure to E. coli. Melittin liposomes
demonstrated significant bactericidal activity upon second exposure when compared to
free melittin, showing time-dependent release of AMP from the liposomes. In addition,
melittin encapsulated within liposomes was totally protected against trypsin degrada-
tion [83]. Taken together, the results of these studies show that the use of carriers could
facilitate the transition of AMPs from research laboratory into a clinical trial followed by
widespread clinical use.

4. NPs with Antimicrobial Activity and Their Mode of Action

The search for novel antimicrobial agents has increased geometrically due to an
increased incidence of microbial infections and AMR [84]. Research advancement has also
led to an increased use of NPs for biomedical applications due to their broad spectrum
of activities against microorganisms. In vitro studies have shown the bactericidal activity
of various nanomaterials against both Gram-positive and Gram-negative bacteria [85–87],
and similar findings were made using in vivo studies in mouse models that were infected
with bacteria [88].

The antimicrobial activity of NPs has been reported for various MNPs such as zinc
oxide NPs, AuNPs, and AgNPs against a number of Gram-positive and Gram-negative
bacteria [89], fungi [90–93], and viruses [94–96]. Although most of the known polymeric
NPs are commonly used as drug carriers, NPs fabricated using these polymers have been
shown to possess endogenous activities. This applies to both passive (PLGA) as well as
those with known antimicrobial activity (chitosan). Drugs loaded on these systems had
improved biocompatibility and bio-activity. Drug-loaded PLGA-NPs exhibited higher
antibacterial activity compared to the drugs alone or the unloaded NPs [97,98]. Chitosan
NPs enhanced the delivery and efficacy of HIV-1 P24 protein-derived peptides [99]. Tri-
clabendazole, which is used for the treatment of fascioliasis, is poorly soluble in water. The
incorporation of this drug in chitosan NPs increased its bioavailability and stability at both
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low (pH 1.2) and high (pH 7.4) pH. The cytotoxic effects of the drug were significantly
reduced in these nanoformulations. Thus, these nanosystems have the potential to lead
to the development of orally ingested formulations for the treatment of fascioliasis [100].
This section will emphasize on MNPs with antimicrobial activity and their mechanism
of inhibition.

MNPs, which include AgNPs, AuNPs, and copper oxide NPs (CuO-NPs), have all
been investigated and confirmed to possess antimicrobial activity against bacteria, viruses,
and fungi [101–103]. Although the exact mode of action of these NPs remains unclear,
mechanisms such as reactive oxygen species (ROS) generation, metal ion release, and
electrostatic interaction between the MNPs and the bacterial cell membrane have all been
postulated. When compared to their respective salts, MNPs possess significantly higher
antimicrobial activities against MDR microbes [104]. The toxicity or antimicrobial effects
of AgNPs [105] and CuO-NPs [106] on microbes was size-dependent, suggesting its role
in the mechanism of microbial killing. The CuO-NP size was directly proportional to
their antimicrobial activity, and also small-sized monodispersed NPs showed a significant
increase in antibacterial activity [106].

Specifically, the antimicrobial effect of AgNPs has been extensively studied against
several microorganisms, and these are arguably some of the most promising MNPs used
for the treatment of bacterial infections [107]. Characteristics such as shape, size distribu-
tion, stability, and charge make them one of the most widely explored MNPs in science,
medicine, and physical science [108,109]. Figure 4 summarizes the mechanisms used in the
synthesis of NPs, of which the chemical reduction method under the bottom–up approach is
widely preferred over the top–down approaches. In recent years, green synthesis has been
adopted to replace the toxic chemical reducing agents by benign natural resources such
as microorganisms and plant extracts [110]. This method is safer and eco-friendly when
compared to physical and chemical methods of synthesis. The plant-mediated synthesis is
economical and make use of readily available and renewable plant materials such leaves,
stems, roots, etc. Moreover, synthesis occurs in just one step, since the phytochemicals are
able to act as reducing, capping, and stabilizing agents [110–112]. Previous studies have
confirmed the safety of the biogenic method for MNP synthesis with effective antimicrobial
activities against MDR bacteria [112,113].

The antimicrobial property of Acacia rigidula biosynthesized AgNPs was demonstrated
against Gram-positive and Gram-negative MDR bacteria. The effect of the AgNPs was eval-
uated against E. coli, P. aeruginosa, and Bacillus subtilis. Their safety profile was monitored
in a murine skin infection model. The outcome of this study suggested that the AgNPs
are compatible for use as a therapeutic agent against infectious diseases associated with
drug resistant and drug susceptible bacterial strains [98,114]. Due to their larger surface
area, the surface of the MNPs can be modified to assign a specific activity by changing
their surface composition. Lopez-Abarrategui et al. demonstrated that modification of
citrate-coated MnFe2O4-NPs with antifungal peptide (Cm-p5) enhanced their antifungal
activity in comparison to the free peptide and unmodified NPs. Cm-p5-MnFe2O4 com-
pletely inhibited Candida albicans (C. albicans) growth with a MIC of 100 µg/mL, compared
to that of citrate-coated MnFe2O4-NPs at 250 µg/mL. The NPs showed no antibacterial
activities against S. aureus and E. coli [115]. Therefore, MNPs could serve as excellent drug
carriers due to their low cytotoxicity, ease of preparation, the ability to modify their surface,
and good stability.
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Figure 4. Synthesis of organic and inorganic NPs and their antimicrobial mechanism. MNPs can be synthesized using
either a bottom–up or top–down approach (1). The methods of NP synthesis are broadly classified into physical, chemical,
and biological methods (2). The reduction of metallic salts by these methods leads to the formation of MNPs. Examples of
MNPs include AgNPs, AuNPs, and CuONPs (3). Various applications of MNPs include DNA labeling, biosensor, drug
delivery, anticancer, and antimicrobial properties (4). The possible mechanism of their antimicrobial activity involves release
of metallic ion when excited by laser (a) or in the presence of oxygen. The size of MNPs exhibited electronic effects and
thus improved surface attraction (b). These metallic radicals in addition to their penetrative ability can easily pass through
membrane channels (c). The MNPs triggers the generation of ROS inside the cells, which in turn leads to cellular damage. In
addition, MNPs inhibit the channel transport of solutes/ions (e). The accumulation of these metallic ions leads to membrane
depolarization and ultimately membrane leakage of cellular contents (f), mitochondrial dysfunction (g), DNA damage
(h), ribosome disassembly (i), and inhibition of the electron transport chain and ATP synthesis (j). Collectively, all these
processes can lead to cell death through apoptosis (k).

5. Nanocarriers of AMPs

NP–protein interaction possesses crucial application in biomedicine such as delivery
systems and theranostic agents [116]. However, the mechanism of recognition, specificity,
and selectivity are poorly understood and remain a challenge. This section discusses the
nanomaterials capable of transporting AMPs into the site of action in order to overcome
their afore-mentioned limitations and exact the expected therapeutic effect.

Studies have reported specific microbial resistance and their mechanisms against
AMPs [117–123]. Pathogens can rapidly evolve and confer resistance to AMPs in vitro [124].
Resistance evolution by Baydaa et al. was arguably the first study to explore the pharmaco-
dynamic and bacterial AMP resistance. The study showed that AMP resistance in S. aureus
and some strains resulted not only in increased MICs but also an altered Hill coefficient (κ),
resulting in steeper pharmacodynamic curves [125]. Although AMR is also observed in
AMPs, MDR against AMPs is not as prevalent when compared to antibiotics [126]. Several
approaches have been studied to improve the therapeutic use of AMPs. These include the
combination of AMPs with traditional antibiotics since both have shown synergistic effect
in the reduction of microbial resistance. Another method is the use of nanocarriers, which
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have been shown to reduce other side effects while exacting maximum suicidal activity
against microbial populations [127].

In a bid to prevent AMR or bypass drug resistance, AMPs are now being considered
as potential alternative for antibiotics. Nanomaterials, especially polymeric and MNPs,
provide one of the promising drug delivery systems, as highlighted in Figure 5 [128–130].
Aside from the fact that some nanomaterials possess antimicrobial activities and can inhibit
the growth of microbes through several mechanisms, they can also act as carriers for either
antibiotics or AMPs to overcome the defense mechanisms of microbes and further enhance
antimicrobial effects [131]. These materials can be functionalized with antimicrobial agents
to prevent and treat microbial infections as well as to improve the effectiveness of the
conventional drugs [132].
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Figure 5. Overview of AMP-loaded nanocarriers and their mode of action. Structurally, AMPs are classified into four
groups (1); different nanocarriers have been studied as effective carries of AMPs (2); different AMP nanoformulations
can be obtained through various chemistries between peptides and nanocarriers (3); exposure of microbes to these AMP
nanoformulations (4); via passive or active transportation (5); leading to bacterial membrane attack by the AMPs through
various AMP-dependent mechanisms (6) and ultimately bacterial death (7).

Nanomaterials such as MNPs (AuNPs, AgNPs), polymeric NPs, dendrimers, lipo-
somes, micelles, and carbon nanotubes have all been used as carriers or transporters of
drugs [133–136]. The function of these carriers is to decrease side effects, lower drug dosage,
maintain constant drug levels in the blood, maximize therapeutic index, and reduce drug
degradation and undesirable side effects [137]. MNPs display striking different size and
shape-dependent properties when compared to their bulk material. These properties in-
clude a wide surface plasmon resonance (SPR) band, which is directly correlated to particle
size, a large surface to volume ratio, biocompatibility, and low toxicity [138,139]. The
MNPs’ parameters such as charge, size, and surface composition have all been reported
to influence the activity of the NPs [140–142]. MNPs have been explored and utilized in
several biomedical applications such as therapy, drug and gene delivery, probes, sensors,
diagnostics, and photocatalyst.

MNPs have been shown to improve the antimicrobial activity of drugs by providing
support and synergistic effects against pathogenic microbes. Specifically, MNPs have
incredible physicochemical properties and have shown novel bioactivities, which can
be enhanced by attaching bioactive molecules [143]. The functionalization of MNPs is
achieved by conjugating different molecules through different mechanisms. MNPs em-
ployed in biological applications are usually modified with biocompatible polymers such
as polyethylene glycol (PEG), proteins/peptides (e.g., bovine serum albumin), and oligonu-
cleotides. The process of linking molecules to the surface of the MNPs can be achieved by
physisorption or by taking advantage of the metal’s affinity for the sulfhydryl group of
thiolated molecules. Electrostatic interactions and non-covalent conjugation can also be
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used to functionalize the MNPs with molecules that contain reactive groups such as hy-
droxyl, carboxylic group, and amine groups, which can be used to attach other biologically
active molecules.

The biologically active moieties can include small drug molecules [144] or proteins [145],
while targeted delivery/therapy can be achieved by conjugating target specific aptamers [146],
antigen/antibodies [147], or peptides [148]. Different conjugation chemistries have been
studied for effective drug loading and delivery. Examples of these chemistries include the
conjugation of RR-11a endopeptidase to liposomes using the amine/carboxyl chemistry [149],
the polyclonal Rabbit IgG conjugated to AuNPs using the amine/carboxylate chemistry [150],
S2P peptide (CRTLTVRKC) conjugated to chitosan NPs through the amine/carboxylate,
thiol/maleimide chemistry [151], liposome functionalized with adiponectin, globular domain
by thiol/maleimide chemistry [152], and the J18 RNA aptamer conjugated to AuNPs by the
base-pairing hybridization [153]. Immobilization of the biomolecules/AMPs on the NPs
can occur in two ways; i.e., the AMPs are either temporarily (reversible) or permanently
(irreversible) tethered on or within the NPs. The reversible chemistry ensures targeted
delivery and release of the AMPs in its native form, and their functions are independent of the
nanocarriers. The reversible nanosystems are usually responsive to biological stimuli, where
a change in pH or presence of an analyte will trigger release of the attached AMPs. In the
irreversible conjugation, the AMPs are permanently attached on the nanoparticle and act in
synergy with the NPs [154–156].

Several nanoconjugates with biologically active molecules have shown promising out-
comes for the treatment of some diseases. In a comprehensive study by Sibuyi et al., AuNPs
were used in the development of targeted nanotherapy for cancer. The AuNPs were bifunc-
tionalized with adipose homing (targeting) moiety and an AMP (DKLAKKLAK2/KLA)
with proapoptotic activity for the selective induction of apoptosis in target cells (Figure 6).
The homing peptide was conjugated to the AuNPs through an irreversible chemistry, while
the KLA used a reversible chemistry where a caspase-3 cleavage site (DEVD) was used
as a linker between the AuNPs and KLA. Upon internalization into the cells, the KLA is
detached from the AuNPs by caspase-3 and triggers cell death through apoptosis [157].
Similarly, KLA-loaded liposomes with the adipose homing peptide accumulated in the
white adipose tissues (WATs), resulting in body weight loss in obese mice models, as shown
by Hossen, et al. [158]. The bifunctionalized NPs showed potential of repurposing AMPs
for different applications by selectively targeted the cells that express the receptor for the
targeting peptide, i.e., the colon cancer cells [157] and the endothelial cells in the WATs of
obese mice [129].
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5.1. Antimicrobial Activity of AuNPs

AuNPs, in fact most MNPs, can have dual functions by serving as both drug trans-
porters and antimicrobial agents. Although the bactericidal effects of AuNPs were reported
against MDR Gram-negative bacteria [159], AuNPs are preferably used as carriers. The
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therapeutic effects of AuNPs are attributed to their size, shape, and surface composition.
The size and shape can be manipulated during synthesis by varying the ratios between
metal precursor and reducing agents; while the surface composition can be modified by at-
taching biomolecules through electrostatic interaction and covalent conjugation. Targeting
moieties such as antibodies are attached for target specificity purposes [160–162]. Anti-17β-
estradiol immobilization on AuNPs achieved ultrasensitive detection of 17β-estradiol [163].
Listeria monocytogenes polyclonal antibodies were also conjugated to AuNPs to improve the
stability of the secondary structure and the efficacy of the antibody [164].

Due to their optical properties, AuNPs can absorb light and convert it to thermal
energy, and it is often used in photothermal therapy. Pedrosa et al. reported the therapeutic
effect of metallic compound (TS265) functionalized AuNPs in doxorubicin-resistant cancer
cells. The combination therapy resulted in 65% cancer cell death after laser treatment, and
showed no cytotoxicity toward the normal cells [165]. A AuNP-based photothermal effect
was also used against pathogens. Accordingly, gold nanorods (AuNRs) functionalized with
either PEG (hydrophilic PEG-AuNRs) or polystyrene (hydrophobic PS-AuNRs) showed
minimal antibacterial activities against S. aureus and Propionibacterium acnes (P. acnes)
(≤85% reduction). Laser treatment enhanced the antimicrobial property of the AuNRs,
resulting in ≥99.9% reduction in bacteria numbers [166]. As a result of the AuNPs’ larger
surface area, multiple molecules can be attached on their surface through covalent and
non-covalent conjugations. This property, together with its superior biocompatibility
and targeting ability, make AuNPs a promising delivery vehicle for various biological
applications. AuNPs have been used in combination with chemotherapeutic drugs such
as methotrexate [167], doxorubicin [168], and oxaliplatin [169] to improve drug efficacy,
delivery, stability, and to ensure a rapid increase in intracellular drug concentration [170].

The use of AuNPs, among other nanomaterials, in the regulation of the immune system
by developing prophylactic and therapeutic vaccines are currently considered a promising
biomedical application. Based on AuNPs’ parameters, they can be used as immunogens or
as a vehicle for adjuvants and antigens [171,172] The size of AuNPs influences their uptake
and internalization by cells, 3 nm AuNPs were taken up by cells through pinocytosis
and were nontoxic, nonimmunogenic, and repressed ROS generation [173]. The uptake
of 60 nm AuNP by cells were through endocytosis. These NPs were also nontoxic and
repressed cellular responses induced by interleukin 1 beta (IL-1β) [174].

To investigate the role of drug-conjugated AuNPs, AuNPs were synthesized by the
green method using sophorolipid (SL) as a reducing and stabilizing agent [175]. The
antimicrobial activity of AuNPs-SL against S. aureus and Vibrio cholerae (V. cholerae) was
compared to AuNPs and SL. The results indicated that SL alone exhibited antimicrobial
activity against S. aureus but not V. cholerae. The AuNP-SL inhibited the growths of the
microorganisms more effectively, while the AuNPs showed no activity [164]. The syner-
gistic effect of AuNPs-SL used in combination with three antibiotics—namely, ampicillin,
kanamycin, and polymyxin—were further studied against S. aureus and V. cholerae. The
combined treatments had higher efficacy than the individual test agents, and the activity
was highest for ampicillin followed by polymyxin. The differences in their activity could
be attributed to the mechanism of the drugs, since both antibiotics interact and disrupt
cell wall synthesis. Kanamycin, on the other hand, induces cell death by interfering with
protein synthesis [164]. Additionally, the activity of the nanoconstructs can be channeled
by attaching targeting moieties onto the NPs and achieve target specific delivery.

Incorporating antibodies that target staphylococcal protein A (aSpa) into polydopamine
(PDA)-coated Au nanocages conjugated with daptomycin (Dap) improved targeting
and selectivity. As shown in Figure 7, there was a complete eradication of bacteria
treated with AuNP@Dap conjugates post 24 h laser exposure. Interestingly, the effects of
AuNP@Dap/PDA-aSpa were immediate and persistent from 0 to 24 h, while the untar-
geted AuNP@Dap/PDA had a delayed effect, indicating that targeting also plays a crucial
role by facilitating NP uptake and accumulation at the target site. The fact that ~50% of
bacteria were viable after exposure to AuNP@PDA constructs (with and without aSpa)
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as a result of photothermal effects of the Au nanocages suggests that the additive effects
observed with the AuNP@Dap conjugates are caused by Dap. The Au nanocages served as
both carriers and photothermal agents, resulting in synergistic antibacterial effects. The
AuNPs enhanced the potency of antibiotics conjugated to the nanocarriers and proved to be
effective therapy against intrinsically resistant biofilm infections by MDR pathogens [176].
Therefore, the studies confirmed the effectiveness of AuNPs as nanocarriers for antimicro-
bial agents and that they have the potential to improve the clinical efficacy of drugs even at
lower doses and prevent early drug clearance and degradation. The mechanisms by which
AuNPs exert their antimicrobial activity include inhibition of transcription and energy
metabolism. Simply put, AuNPs inhibit the ATPase function, which leads to ATP reduction
and collapse of the membrane potential. The other mechanism is the inhibition of protein
synthesis by binding to the ribosome subunit, preventing tRNA from binding [177].
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Figure 7. Synergistic effect of laser-induced and controlled release of Dap in S. aureus. Reprinted
with permission from Copyright © 2016 American Chemical Society: https://pubs.acs.org/doi/full/
10.1021/acsinfecdis.5b00117, accessed on 20 May 2021, further permissions related to the material
excerpted should be directed to the ACS.

5.2. AgNPs as Potent Antimicrobial Agents

AgNPs have been extensively studied and used commercially as antimicrobial agents.
Synergistic effects have been achieved when AgNPs were used together with other an-
timicrobial agents. The NP conjugates are more potent and have the potential to kill MDR
bacteria. The efficacy of Andersonin-Y1 against K. pneumoniae was improved after conjuga-
tion to AgNPs. The MIC of the AMP-tagged AgNPs was in the range of 5–15 µM when
compared to the AMPs, which had a MIC of 50 µM. Further insights into their antibacterial
mechanism by nuclear magnetic resonance spectroscopy and molecular dynamic simu-
lation suggested killing by membrane pore formation through the hydrophobic collapse
mechanism, thus proposing nanocarriers as potential antibiotic substitutes [130].

AgNPs have been functionalized with different molecules that have antimicrobial
activity in order to achieve synergistic antimicrobial effects [178–181]. These results were
further validated against E coli. Morphological changes, cellular uptake, and the mechanism
of antimicrobial activity were determined by scanning electron microscope, transmission
electron microscopes, and the lactate dehydrogenase assay (LDH), respectively. When
compared to the control, the treated cells exhibited irregular shape and size, cell lysis, and
cell membrane disruption, suggesting that the NPs caused the cells to rupture. In addition,
the LDH assay indicated reduced cellular activities in both bacterial strains, suggesting the
inhibition of the electron transport chain. This result was in agreement with the previously
proposed mechanism of antimicrobial activity of nanomaterials [182].

https://pubs.acs.org/doi/full/10.1021/acsinfecdis.5b00117
https://pubs.acs.org/doi/full/10.1021/acsinfecdis.5b00117
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To bypass the limitations of physical and chemical methods of MNPs synthesis,
green synthesis has been explored to produce biogenic NPs that are biocompatible. Plant-
mediated MNPs are synthesized using extracts from medicinal plants that are used in
disease treatments. Generally, AgNPs often have more pronounced antimicrobial proper-
ties [183,184] when compared to AuNPs [185]. For example, biogenic AgNPs from Salvia
africana-lutea (SAL) and Sutherlandia frutescens (SF) exhibited significant antibacterial activ-
ity against Staphylococcus epidermidis (S. epidermidis) and P. aeruginosa. The MIC values for
SAL-AgNPs was <0.75 mg/mL. However, the MIC values of the extract was >50 mg/mL
for both strains, suggesting that the NPs have enhanced antibacterial activities [183]. The
activity of the biogenic MNPs can be further improved by co-treatment or biofunctional-
ization with other antimicrobial agents [115]. The progression of nano-based drugs into
clinical trials provides evidence that nanomaterials can serve as good alternative strategies
for the treatment of infectious diseases.

5.3. Nanohybrids for Enhanced Biocompatibility and Efficacy

The combination of two or more nanomaterials (nanohybrids) with different physico-
chemical properties is becoming popular, as nanohybrids have been shown to have im-
proved pharmacokinetics and synergistic bioactivities. Several nanohybrid compositions
developed from inorganic/inorganic or inorganic/organic nanocomposites have been
explored for biomedical applications. Among inorganic NPs, AgNPs are widely explored
as broad-spectrum antimicrobial agents and are used in certified consumer products. In an
attempt to prolong their activity and enhance their stability, inorganic/inorganic nanocom-
posites were created from various metal precursors. Silver has been complexed with
various other metals such as copper oxide [186], gold [187], platinum [188], etc., to produce
AgNP nanohybrids with synergistic or unique properties that are superior to AgNPs alone.
The nanohybrids improved the efficacy of antimicrobial agents [189] when used as carriers
or in combination therapy. In an interesting study by Kazemzadeh-Narbat et al., titanium
oxide nanotube implants consisting of multiple layers of thin films were synthesized and
used for the time-dependent release of an AMP (HHC-36/KRWWKWWRR-NH2). This was
done by encapsulating the AMP with calcium phosphate and titania nanotube. The study
demonstrated the therapeutic efficacy of the nanotubes against S. aureus and P. aeruginosa
through the controlled release of AMP [190].

Similarly, the inorganic/organic nanocomposites present a benign strategy that can be
used to encapsulate the inorganic nanomaterial within the organic nanomaterial, which
may render the nanocomposite more bio-friendly, increasing its bioavailability and safety
profiles. Liposomes and chitosan NPs are some of the bioinert and biodegradable nano-
materials used to avoid the proteolytic degradation of drugs. Moorcroft et al. created
AuNR/AMP-liposome loaded hydrogels that are responsive to laser irradiation due to
the presence of AuNRs. The study demonstrates the controlled release of AMP liposomes
in response to laser irradiation (Figure 8a). IK8 (IRIKIRIK-CONH2), which is the AMP
used in this study, was shown to be potent against the test microorganisms (P. aeruginosa
and S. aureus). IK8 is susceptible to proteolytic enzyme degradation, leading to loss of
the antimicrobial activity. However, the entrapment of IK8 inside liposomes protected
the AMP from trypsin-induced degradation for up to 5 h (Figure 8b), and further encap-
sulation with AuNR in hydrogel allowed for the stimuli-responsive release of the AMPs.
Thus, the AuNR/AMP liposome-loaded hydrogel hybrids enhanced the AMP stability,
protected it from degradation, facilitated the controlled release of AMP, and facilitated the
retention of the nanomaterials within the hydrogel. The AuNR/AMP liposome-loaded
hydrogel showed dual and synergistic effects, resulting from the antibacterial effects of
IK8 and the photothermal activity of the AuNRs. A single dose was used in two cycles of
treatment [191].
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In an independent study, a similar strategy was used to develop pH-sensitive AuNP-
liposome-loaded hydrogels. Carboxyl-modified AuNPs (AuC) were used to stabilize
cationic liposomes (AuC-liposomes), which were then loaded into a polyacrylamide hy-
drogel, and the AuC-liposomes release profile was studied in S. aureus at pH 7.4 and
4.5. Higher uptake was observed at pH 4.5, suggesting that AUC-liposomes are possibly
released from the hydrogels at pH 7.4 and the AuC detaches from the liposomes at acidic
pH below the pKa of the carboxylic group. This proved that these systems can be used
to deliver antimicrobial agents for the treatment of bacterial infections. In vivo studies
showed that the formulation was also biocompatible and showed no toxicity when topically
administered daily on a skin of mice for 7 days [192].

6. Nanocarriers in Clinical Trials

Several functional nanomaterials that has been investigated in preclinical and clin-
ical studies led to the development of nanomedicines that are currently on the market,
most notably some clinically approved liposome drug formulations and metallic imaging
agents [193]. Most of the nanocarriers in preclinical and clinical trials as well in clinical
use are for cancer targeting [194]. Lipid and polymeric nanocarriers are the most widely
used, and examples of these carriers in clinical trials include LiPlaCis, a lipid-based nano-
formulation with cisplatin currently in phase II for refractory solid tumors and NK105
conjugated with paclitaxel currently in phase II for the treatment of gastric cancer [195].
Moreover, the utilization of nanotechnology-based treatments for diseases other than can-
cer has increased exponentially in recent years. Antimicrobial therapy is another pivotal
clinical focus that is being investigated for the advancement of nanomedicine. MNPs
can serve as carriers and also as potential antimicrobial agents. Specifically, AgNPs can
diffuse through the microbial cell membrane, leading to toxicity through Ag+ release. This

https://pubs.acs.org/doi/10.1021/acsami.9b22587
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nanomaterial has been extensively studied and used in medicine for decades. Due to their
activities, AgNPs with antimicrobial properties were approved by the FDA for wound
therapy [196,197]. Currently, there are nine ongoing clinical trials investigating AgNPs as
an antibacterial therapy in different diseases.

AMPs have been ascertained as outstanding alternative antimicrobial agents to over-
come AMR, and a growing body of evidence suggests that AMPs are swiftly gaining
more attention for their potential clinical application as they present remarkable benefits
over conventional antibiotics. AMPs are uniquely implicated in all life forms and display
significant roles in the innate immune system. Some AMPs are evolutionarily conserved,
which could be an indication that these molecules may be capable of restricting tendencies
for the development of microbial resistance.

Despite the therapeutic benefits of AMPs, only a few AMP-based formulations have
successfully progressed into clinical trials. [198]. AMPs in clinical trial are grouped based on
their mechanism of action on cell membrane of microbes (Temporin10a [199], Ruminococ-
cin C [200]), immune system (IDR-1002 [201]), and intracellular functions (HB-107 [202],
Buforin II [203]. Specific modifications to AMPs can be used to improve their delivery,
biological activity, and stability as well as reduce toxicity. Advances in nanotechnology
for drug delivery have been extensively reviewed. The successful application of nanotech-
nology to develop improved drug delivery systems has been demonstrated successfully,
and therefore, its application for the delivery of AMPs is also attainable and can lead to the
development of novel antimicrobial agents that can fight MDR.

It is further crucial to investigate the fundamental biological effect, biodistribution,
and pharmacokinetics of MNPs, most especially silver and other nano-based nanocarrier
for clinical applications.

Merits and Limitations of Nanocarriers

As described above, NPs have been involved in different applications in the field
of biomedicine and have proven to be effective drug delivery vehicles and a potential
alternative antimicrobial agent. Nanomaterials such as MNPs, liposomes, dendrimers,
polymeric, and carbon nanotubes have been widely implicated in the design of AMPs with
enhanced activity toward MDR microorganisms. However, drawbacks such as cytotoxicity,
conjugation protocols, stability profiles, and shelf-life have been reported for the AMPs.
Table 2 shows some of the nanocarriers that were used as vehicles for AMPs, together
with their limitations. Carbon nanotube synthesis is costly, while these NPs have poor
solubility. Liposomes have low loading capacity and could also induce immune response.
While liposomes are biodegradable and both hydrophobic and hydrophilic drugs can be
loaded, factors such as drug-loading efficiency and immunogenicity remain a challenge.
Dendrimers are monodispersed molecules with a high control over the critical molecular
design parameter. However, the cost of synthesis together with its non-specificity remain
major limiting factors for dendrimers. Studies have reported the biocompatibility and
nature-dependent biodegradability of polymeric NPs. This class of carriers is easy to
modify and to control drug release. Its disadvantages include low cell affinity and the
toxicity of their by-products.
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Table 2. Advantages and limitations of various nanocarriers.

Nanocarriers Advantages Limitations

MNPs Multipurpose
High surface to volume ratio

Cytotoxicity
Shelf-life
Solubility

Liposomes Biodegradable
Hydrophobic and hydrophilic molecules can be loaded

Loading efficiency
Immunogenicity

Dendrimers High control over the critical molecular design parameter High cost of synthesis
Non-specific toxicity

Carbon nanotubes Soluble in water
Multiple application

High cost of synthesis
Less degradable

Polymeric NPs

Easy modification
Biocompatibility

Nature-dependent biodegradability
Time-dependent drug release.

Low cell affinity toxicity of byproducts.

7. Conclusions and Future Perspectives

As a challenge, microbes evolve geometrically faster than the discovery and imple-
mentation of antibiotics. Moreover, these antibiotics gradually lost their antimicrobial
activity and drug-resistant bacteria appeared with antibiotics overuse and even the misuse
of several other antibiotics. Although, AMPs have been thought as an alternative to antibi-
otics, there is still a pool of antibiotics in AMPs undiscovered and poor pharmacokinetics
of peptide drugs is a disadvantage to the application of existing AMPs.

The use of AMP delivery systems can facilitate their progress into clinical trials and
ultimately be fundamental for their implementation.

Antibiotics exert their action by targeting specific cellular components or metabolic
intermediates, resulting in microbial growth inhibition or microbial death. The most
common mechanism is through the inhibition of vital enzymes involved in microbial
growth and metabolism. This could result in genetic mutations, leading to microbial drug
resistance. Conversely, AMPs due to their amphipathic properties bind to the membrane
bilayer of the negatively charged bacteria, which allows rapid penetration. This process
is not affected by mutations. More so, AMPs carry out their antimicrobial activity on the
entire cellular membrane, making it burdensome for microbes to develop resistance against
them. AMPs capable of immune regulation make their mode of action comprehensive.
Antibiotics undergo detoxification, and their complete renal clearance is not guaranteed.
However, the metabolic degradation of AMPs involves monomeric amino acids that can be
channeled to essential biosynthetic pathways.

Due to the continuous resistance development against current antibiotics and antimi-
crobial agents, novel therapeutics are urgently needed. AMPs have emerged as alternatives
due to the mechanism by which they cause physical disruption of the phospholipid bi-
layer of the pathogens, resulting in their death. The metabolic requirement of membrane
repair limits the risk of drug resistance against these peptides. Nonetheless, instability and
proteolytic degradation among others have been correlated with AMPs and have in turn
limited their implementation. Drug delivery systems are proposed as the right approach
toward their uptake, release (sustained, controlled, and triggered), and protection against
proteases in order to overcome MDR challenges. Nanomaterials are now being used as
drug delivery systems to improve therapeutic activity and reduce undesirable side effects.
With the broad therapeutic involvement of NPs, it is worth establishing the mechanism
by which their conjugation, functionalization, encapsulation, and complexes can influence
bacterial population. Nanocarriers such as MNPs, polymeric, and liposomes among others
have all been reported as effective drug carriers with good therapeutic indexes.

Of specific benefit, NPs are able to target infection sites. As such, the synergistic activity
of the nanocarriers together with AMPs in cell wall penetration, particle aggregation,



Pharmaceutics 2021, 13, 1795 17 of 25

ROS formation, and inhibition of cellular activities are extremely important in fighting
pathogens and MDR infections. Although challenges of AMP-carrier systems include
finding an appropriate carrier, entrapment efficiency, and conjugation chemistry; there are
numerous ongoing research studies for AMP-nanocarriers optimization. When compared
with the number of AMP complexed with nanocarriers in clinical trials, basic studies with
in vitro end points are geometrically greater. With ever-expanding AMP discovery, more
in vivo studies are required to understand the physiological barriers and immunological
responses in order to simplify the challenges in clinical trials. Nanotechnology is capable
of revolutionizing the world of medicine, and AMP nanocarriers are worth the investment
in order to tackle MDR pathogens.
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