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Hemodynamic alterations in cirrhosis and portal hypertension
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Portal hypertension (PHT) is associated with hemodynamic changes in intrahepatic, systemic, and portosystemic collateral 
circulation. Increased intrahepatic resistance and hyperdynamic circulatory alterations with expansion of collateral circulation 
play a central role in the pathogenesis of PHT. PHT is also characterized by changes in vascular structure, termed vascular 
remodeling, which is an adaptive response of the vessel wall that occurs in response to chronic changes in the environment such 
as shear stress. Angiogenesis, the formation of new blood vessels, also occurs with PHT related in particular to the expansion of 
portosystemic collateral circulation. The complementary processes of vasoreactivity, vascular remodeling, and angiogenesis 
represent important targets for the treatment of portal hypertension. Systemic and splanchnic vasodilatation can induce 
hyperdynamic circulation which is related with multi-organ failure such as hepatorenal syndrome and cirrhotic cadiomyopathy. 
(Korean J Hepatol 2010;16:347-352)
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INTRODUCTION
Cirrhosis has been considered to be silent and static. However, 

we have recently recognized that cirrhosis is actually a tumul-
tuous and dynamic disease. Cirrhosis is the final result of hepatic 
fibrosis and is reversible in the middle stages of development be-
tween fibrogenesis and fibrolysis. This disease leads to hemody-
namic disorders that can have widespread impacts in the body 
according to the severity of the cirrhosis. Hemodynamic alter-
ations including portal hypertension and hyperdynamic circu-
lation are the main cause of morbidity and mortality in patients 
with cirrhosis.1-3 The pathophysiologic process of portal hyper-
tension consists of three components: intrahepatic circulation, 
systemic (splanchnic) circulation, and collateral circulation. 
Additionally, continuous abnormalities in systemic circulation 
induce hyperdynamic circulation.4,5

Portal pressure is due to intrahepatic resistance and portal 
blood flow, and is defined as a function of flow and resistance 

across the hepatic vasculature (pressure=flow×resistance). 
Development of portal hypertension can be influenced by 
changes in resistance and flow in the hepatic vasculature. 
Increased resistance of portal blood flow in cirrhotic liver in-
duces portal venous dilatation and congestion of portal venous 
flow, leading to elevated portal pressure. Subsequently, portosys-
temic collaterals develop to counterbalance the increased resist-
ance in portal blood flow, and induce an increase in venous return 
to heart which results in increased portal venous inflow. This hy-
perdynamic splanchnic circulation contributes to the maintaince 
and aggravation of portal hypertension.4 Increased intrahepatic 
resistance results from both vasoconstriction and fibrosis. 
Vasoconstriction is a reversible and dynamic condition which 
contributes up to 25% of increased resistance (Fig. 1).5-7

Vasoreactivity such as vasoconstriction in hepatic circulation 
and vasodilation in systemic circulation plays a major role in 
pathophysiology of portal hypertension.8 Recently, vascular 
structural changes including vascular remodeling and angio-
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Figure 1. Hepatic stellate cell (HSC) activation. (A) In the 
quiescent state, HSCs do not contract. (B) In an activated state, 
the number and contractility of HSCs increase and induce changes 
in sinusoidal structure and intrahepatic resistance.

genesis have been identified as additional important compensa-
tory processes for maintaining and aggravating portal hypertension.9 
Vascular remodeling is an adaptive response of the vessel wall 
that occurs in response to chronic changes in the environment 
such as shear stress.10 Angiogenesis promoted through both pro-
liferation of endothelial and smooth muscle cells also occurs as 
response to increased pressure and flow. In this report, we review 
new concepts of pathophysiology and hemodynamic alterations 
associated with portal hypertension and cirrhosis.

Intrahepatic circulation
Vasoregulatory imbalances and increased intrahepatic 
resistance

Hepatic stellate cells (HSCs) play a central role in producing 
dynamic components of intrahepatic resistance by causing 
sinusoidal vasoconstriction through “contractile machinery” and 
relaxation in response to the interaction between sinusoidal 
endothelial cells (SECs) and HSCs; their paracrine effects are 
accomplished through endothelin-1 (ET-1) and nitric oxide 
(NO).11 Normally, ET-1 is secreted from SECs and acts on ETA 

receptors on HSCs leading to HSC contraction. Conversely, NO 
released from SECs by endothelial NO synthase (eNOS) induces 
relaxation of HSCs through the guanylate catalase pathway. 
Consequently, the balance between the ET-1 and NO accounts 
for the control of sinusoidal flow. However, in cirrhotic liver, the 
overproduction of ET-1 and increased susceptibility to autocrine 
ET-1 leading to activated HSCs result in increasing HSC 
contraction.12 In addition, multiple derangements in eNOS- 
derived NO generation by SECs contribute to impaired sinusoidal 
relaxation and increased intrahepatic resistance (endothelial 
dysfunction).13-15 Although eNOS protein levels appear to be 

unchanged, SECs show a prominent increase in the inhibitory 
protein caveolin binding to eNOS with concomitant decreased 
calmodulin binding, which may contribute to NOS dysfunction.13,16 
Furthermore, recent studies have shown impaired phosphor-
ylation and activation of eNOS mediated through alterations in 
G-protein coupled receptor signaling and defects in endogenous 
inhibitors of NOS, which suggest that multiple molecular defects 
likely contribute to a significant deficiency in hepatic NO 
production during cirrhosis.17 Sinusoidal vasoconstriction is due 
not only to diminished NO production by SECs, but also resist-
ance of HSCs to NO due to defects in the guanylate cyclase 
signaling pathway.18,19 Animal experiments have demonstrated 
that activation of hepatic eNOS can improve portal hemody-
namics in cirrhotic rat liver.8 Furthermore, a recent study 
evaluated the effects of simvastatin on intrahepatic vascular tone 
acting as an eNOS activator in humans.20 Patients who received 
simvastatin showed increased hepatic venous NO products and 
decreased hepatic vascular resistance without untoward systemic 
vascular effects.20 

Sinusoidal Remodeling and Angiogenesis
HSC density and coverage of the sinusoidal lumen are in-

creased in cirrhosis. The contractile nature and long cytoplasmic 
processes of HSCs encircling endothelial cells induce sinusoidal 
vessel constriction with increased vascular resistance termed 
“sinusoidal vascular remodeling”. The characteristics of sinus-
oidal remodeling are distinct from process of fibrosis, collagen 
deposition of HSC.21,22 In this process, HSC motility and migra-
tion is absolutely required to promote enhanced coverage of 
HSCs around a SECs-lined sinusoid. 

While Transforming growth factor-β (TGF-β) is largely recog-
nized for its contribution to HSC-based collagen deposition, 
there is significant crosstalk between TGF-β and PDGF involved 
in HSCs motility. Indeed, these signals may converge at the level 
of c-abl tyrosine kinase.23,24 A number of signaling pathways 
mediate HSC recruitment to vessels in vascular remodeling and 
angiogenesis including PDGF, TGF-β, angiopoietins, and NO. 
Platelet derived growth factor (PDGF) is probably the most 
critical factor in the recruitment of pericytes to newly formed 
vessels.25 SECs also undergo substantive phenotypic changes in 
cirrhosis that likely contribute to changes in sinusoidal structure. 
Indeed, recent studies have identified a number of alterations in 
SEC phenotypes.26
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Figure 2. Pathogenesis of hyperdynamic circulation in cirrhosis 
and portal hypertension.
CO, cardiac output; eNOS, endothelial nitric oxide synthetase; 
NO, nitric oxide; HO, heme oxygenase; CM, carbon monoxide; 
TNF-α, tumor necrosis factor-α ; RAA, rennin-angiotensin-aldosteron; 
SNS, sympathetic nerve system; ADH, anti-diuretic hormone; 
VEGF, vascular endothelial growth factor; HE, hepatic encephalopathy; 
CCM, cirrhotic cardiomyopathy; HRS, hepatorenal syndrome; 
HPS, hepatopulmonary syndrome. 

Systemic and splanchnic circulation
Vasoregulatory imbalances in the splanchnic circulation

In contrast to diminished intrahepatic bioavailability of NO, 
splanchnic (and systemic) circulation shows a relative excess in 
regional NO generation.8 This increased production is largely 
endothelium-dependent,27 and is thought to be evidence of eNOS 
activation in splanchnic endothelium. Some studies have shown 
that eNOS activation by the angiogenic growth factor, vascular 
endothelial growth factor (VEGF), may be a primary factor in 
initial eNOS activation which demonstrates interesting links 
between vasodilating angiogenesis and vascular remodeling.28 
Bacterial translocation during cirrhosis increases tumor necrosis 
factor-α (TNF-α) production which can also induce the increase 
of systemic NO production.29-31 Therefore, increased NO pro-
duction in systemic and splanchnic circulation contributes to 
decreased systemic vascular resistance and resultant hyper-
dynamic circulation. This in turn results in sodium retension and 
ascites mediated by a reduction of effective circulating volume, 
stimulation of sympathetic system, an activation of the 
renin-angiotensin-aldosteron system, and an increase of anti-
diuretic hormone release (Fig. 2).

 

Vascular remodeling of systemic vessels in portal
hypertension

Vascular remodeling is a long-term adaptive response to 
chronic changes in blood flow. Chronic increases in flow with di-
lation of the vascular channel are implicated in endothelial-based 
signals that mediate restructuring of the vessel, thereby allowing 
for chronic increases in vessel diameter and capacity for high 
volume flow. This change has been demonstrated in peripheral 
vessels including experimental models of portal hypertension 
which may be related to activation of eNOS.10,32 

Collateral circulation
Vasoregulatory imbalances in collateral circulation

The development of portosystemic shunts and collateral circu-
lation such as esophageal and hemorrhoidal collateral vessels is a 
compensatory response to decompress the portal circulation and 
hypertension, but unfortunately contributes to significant mor-
bidity and mortality. Vasodilation of pre-existing collateral ves-
sels results in increased collateral blood flow and volume. The 
mechanism of collateral vessel regulation still remains unclear. 
The control of collateral circulation could be a key in managing 
complications of portal hypertension, therefore, experimental 
studies are performed.33 

Angiogenesis and vascular remodeling in collateral 
circulation

In addition to vasodilatation, the collateral circulatory bed de-
velops through angiogenesis. Angiogenesis occurs through the 
proliferation of endothelial and smooth muscle cells in addition 
to vasculogenesis. Vasculogenesis refers to the recruitment of en-
dothelial progenitor cells for the de novo synthesis of vessels.34 

Angiogenesis and vasculogenesis are also influenced by NO and 
highly dependent on VEGF as the growth factor exerting pleio-
tropic effects to promote new vessel formation.35,36 Indeed, 
VEGF promotes vasodilation, vascular remodeling, and angio-
genesis in part through NO-dependent or independent mechanisms. 
In animal models, neutralizing antibodies inhibited portosyste-
mic shunting by blocking VEGF receptor 2, which further high-
lights the importance of VEGF and NO for increased portosyste-
mic collateralization in portal hypertension.37 In addition, multi- 
kinase inhibitors such as sorafenib result not only in decreases of 
portosystemic shunts and improvement of portal hypertension 
but also inactivation of HSCs. This is under active investigation,37-39 
however, more studies are needed for clinical application. 
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Hyperdynamic circulation
The hyperdynamic circulation is characterized by increased 

cardiac output and heart rate, and decreased systemic vascular 
resistance with low arterial blood pressure in cirrhotic 
patients.40-43 These hemodynamic alterations are initiated by sys-
temic and splanchnic vasodilatation, and eventually lead to ab-
normalities of the cardiovascular system and several regional 
vascular beds including ones involved in hepatic, splanchnic, re-
nal, pulmonary, skeletal muscle and cerebral circulation.5

Clinical features and pathogenesis
Hyperdynamic circulation is clinically presents with tachy-

cardia, hypotension, and bounding pulses. Although hyper-
dynamic circulation per se is not distressing to the patient, this 
phenomenon is clinically relevant due to its propensity to ag-
gravate or precipitate some of the complications associated with 
portal hypertension. Severity of hyperdynamic circulation corre-
lates with advancing liver failure with patients with end-stage 
liver failure generally showing the greatest extent of peripheral 
vasodilatation and increased cardiac output.41-44 Thus, virtually 
all patients with decompensated cirrhosis show evidence of hy-
perdynamic circulation. However, the presence of portal hyper-
tension, rather than liver failure, is essential for the development 
of hyperdynamic circulation. Since the gut and liver receive a 
third of the entire cardiac output, hyperdynamic circulation di-
rectly or indirectly contributes to two of the most troublesome 
complications of cirrhosis: ascites and variceal bleeding. In con-
cert with the increased total cardiac output, mesenteric blood 
flow also increases.45,46 Moreover, studies in both humans and 
animal models of cirrhosis or portal hypertension confirm that 
mesenteric hyperemia is due not only to a passive increase in 
blood flow as part of the increased cardiac output, but also to 
mesenteric vasodilatation. In other words, the percentage of 
overall cardiac output perfusing the mesenteric organs also 
increases.42,43,45,46 Recently, bacterial infection has been recog-
nized as a risk factor for precipitating variceal bleeding.47 The 
underlying mechanism of this curious observation remains 
unknown, but it has been suggested that humoral substances 
released during the course of sepsis, including endotoxins and 
cytokines such as TNF-α, intensify the hyperdynamic circulation 
and thus increase blood flow through varices. The exact patho-
genic mechanisms leading to hyperdynamic circulation remain 
to be definitively determined. Several factors to date have been 
hypothesized to be involved, including humoral substances, cen-
tral neural activation, tissue hypoxia, and hypervolemia.48

Multi-organ involvement
Heart
Cirrhotic cardiomyopathy was first described in the late 1960s 

although it was mistakenly attributed to latent or subclinical 
alcoholic cardiomyopathy for many years.49-51 Despite an 
increased baseline cardiac output, cirrhotic patients have a sub-
optimal ventricular response to stress. These individuals show 
blunted systolic and diastolic contractile responses to stress in 
conjunction with evidence of ventricular hypertrophy or cham-
ber dilatation, and electrophysiological abnormalities including 
prolonged QT intervals. The pathogenesis of this syndrome is 
multifactorial and includes diminished β-adrenergic receptor 
signal transduction,2,52-55 cardiomyocyte cellular plasma mem-
brane dysfunction, and increased activity or levels of car-
dio-depressant substances such as cytokines, endogenous canna-
binoids, and nitric oxide.51 Although cirrhotic cardiomyopathy is 
usually clinically mild or silent, overt heart failure can be 
precipitated by stress from liver transplantation or transjugular 
intrahepatic portosystemic shunt insertion. Recent studies 
suggest that the presence of cirrhotic cardiomyopathy may con-
tribute to the pathogenesis of hepatorenal syndrome precipitated 
by spontaneous bacterial peritonitis,56 acute heart failure after 
insertion of transjugular intrahepatic portosystemic shunts,57,58 
and increased cardiovascular-associated morbidity and mortality 
after liver transplantation.59

The Kidney
Renal vasoconstriction is characteristic in kidney with splanch-

nic vasodilation and hyperdynamic circulation, and may be 
responsible for the development of hepatorenal syndrome. Renal 
vasoconstriction develops as a consequence of effective hypo-
volemia and ensuing neurohumoral activation.60 This provides 
the rationale for treating hepatorenal syndrome with albumin 
infusion and vasoconstrictors (terlipressin, norepinephrine, or 
midodrine).61

The Lung and Brain
Vasodilatation in the lung leads to ventilation perfusion mis-

match and even arterio-venous shunts in the pulmonary circu-
lation; these result in hepatopulmonary syndrome, characterized 
by marked hypoxemia.62,63 In some cases, this may evolve into 
the opposite situation with markedly increased pulmonary 
vascular resistance seen in portopulmonary hypertension.64 

This is thought to develop through endothelial dysfunction and 
vascular remodeling of the pulmonary circulation.65 Changes in 
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cerebral blood flow and vascular reactivity associated with portal 
hypertension are considered to contribute and facilitate some of 
the brain abnormalities of hepatic encephalopathy.

CONCLUSIONS
Portal hypertension is associated with vascular alterations in 

intrahepatic and systemic circulation. Extensive research has 
improved our understanding of the pathogenic mechanisms 
underlying hemodynamic derangement, allowing the develop-
ment of novel treatment modalities. Future studies should focus 
on pharmacologic and genetic approaches to modulate vascular 
biologic systems to ameliorate complications and symptoms 
relating to hemodynamic alterations in patients with cirrhosis 
and portal hypertension.
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