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Abstract: We present a quantum circuit that transforms an unknown three-qubit state into its
canonical form, up to relative phases, given many copies of the original state. The circuit is made
of three single-qubit parametrized quantum gates, and the optimal values for the parameters are
learned in a variational fashion. Once this transformation is achieved, direct measurement of outcome
probabilities in the computational basis provides an estimate of the tangle, which quantifies genuine
tripartite entanglement. We perform simulations on a set of random states under different noise
conditions to asses the validity of the method.
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1. Introduction

The description of entanglement in a three-qubit system uncovers the subtle and vast problem
of classifying and quantifying multipartite entanglement in a reliable way. Although the concept of
entanglement is of central importance in the fields of Quantum Information and Computation [1], or
in Condensed Matter Physics [2], there is no known general theory of entanglement yet. As the
number of qubits increases, an exponentially large number of entanglement invariants under
local unitaries can be constructed, and different entanglement classes can be distinguished [3–5].
Furthermore, the possibility of measuring these entanglement quantifiers on actual states seems out
of reach for more than a few qubits [6].

The mainstream approach to deal with multipartite entanglement consists of considering
different bipartitions of the system of n qubits and analyze the entanglement that characterizes
them. The mathematical tool usually employed is the Singular Value Decomposition, which describes
a pure state as a linear combination of product states from the two partitions of the complete system [7].
In turn, the eigenvalues of this decomposition can be used to compute entanglement entropies [8,9],
which are employed to quantify entanglement. For condensed matter systems, the analysis of
subsystems of increasing size displays the phenomenon of scaling of the entanglement entropy,
often obeying the so-called area law [10].

In contradistinction to bipartite states, there is no simple equivalent to the Singular Value
Decomposition for tripartite systems [11,12]. In that case, a canonical representation allows to set
several coefficients of the original state to zero and fix some of its relative phases through local unitaries.
In particular, the canonical form of three-qubit states was found by Acín et al. in Reference [13].

When dealing with pure bipartite states, a variational quantum algorithm [14,15] can be trained
on several copies of the original state in order to discover the local unitaries that reveal its Schmidt
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form. Then, direct measurements in the computational basis provide the eigenvalues of the Singular
Value Decomposition, which in turn are used to compute entanglement entropies. Here, we shall
explore a similar strategy to obtain the canonical form and measure the tangle of three-qubit states.
We propose a quantum circuit made of three local unitaries, each acting on one of the qubits. The action
of these unitaries cast the state into its canonical form, up to relative phases, and can be determined in
a variational way. Once this transformation is achieved, the frequencies of measurement outputs in
the computational basis are used to compute the tangle of the three-qubit system, which quantifies
genuine tripartite entanglement.

The standard procedure for measuring the tangle of a given quantum state involves performing
quantum tomography [16]. Such method requires knowledge of 43 observables, obtained through
33 different measurement settings. In contrast, the algorithm herein proposed only needs one
measurement setting, namely measuring in the computational basis, but several copies of the state
are demanded for the optimization. Overall, both methods involve a similar number of copies.
However, our proposal also returns the canonical form of the state.

The rest of the paper is organized as follows. The tangle of three-qubit states is briefly reviewed
in Section 2. Then, the algorithm for measuring the tangle on a quantum computer is presented
in Section 3. The results of simulations under different noise conditions are shown in Section 4.
Finally, conclusions are drawn in Section 5.

2. Tangle in Three-Qubit States

Let us focus now in more detail in tripartite entanglement [17]. Consider a three-qubit system
where each qubit constitutes a partition, namely, A, B and C,

|ψ〉ABC =
1

∑
i,j,k=0

tijk |ijk〉 , (1)

where {|ijk〉} are the computational-basis states, and the complex coefficients in the tensor tijk obey
a normalization relation. A genuine entanglement measure of a three-qubit system |ψ〉ABC is the
tangle [18], denoted by τ. It can be obtained from Cayley’s hyperdeterminant, which is a generalization
of a square-matrix determinant [19]. To be precise,

τ = 4 |Hdet(tijk)| . (2)

In this case, the hyperdeterminant Hdet(tijk) is a polynomial of order four in the amplitudes {tijk} [20],

Hdet(tijk) = t2
000 t2

111 + t2
001 t2

110 + t2
010 t2

101 + t2
100 t2

011 + 4 (t000 t110 t101 t011 + t111 t001 t010 t100)

− 2 (t000 t111 t011 t100 + t000 t111 t101 t010 + t000 t111 t110 t001 + t011 t100 t101 t010

+ t011 t100 t110 t001 + t101 t010 t110 t001) .

(3)

The distribution of the tangle τ for three-qubit random states is depicted in Figure 1. We consider
random states with tijk = aijk + i bijk such that aijk and bijk are random real numbers between −0.5
and 0.5, further subject to global normalization. These states tend to populate values of the tangle
around ∼ 0.3. In contrast, the equivalent of the tangle for two-qubit states, namely the concurrence
C = 2 |t00t11 − t01t10|, peaks at larger values [21].

In the case of bipartite entanglement, knowledge of the Schmidt coefficients suffices to compute
entanglement measures, whereas a full description of a three-qubit state is needed for computing
the tangle. However, that being the case, a canonical representation of the three-qubit state may be
achieved via local unitaries (LU), allowing for an easier characterization of the entanglement structure.
Note that entanglement is not affected by LU [22]. This property of entanglement invariance under
local unitary operations is a cornerstone of entanglement theory.
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(a) Tangle (b) Concurrence

Figure 1. (a) Probability density of three-qubit random states as a function of the tangle. (b) Probability
density of two-qubit random states as a function of the concurrence. Three-qubit random states tend to
populate values around ∼ 0.3, while two-qubit random states are mostly distributed at high values.

In this sense, the canonical representation allows to set several amplitudes of the original state to
zero and fix some of its relative phases. A canonical form of a tripartite state such that it respects all its
entanglement invariants must be constructed with the use of three local unitaries UA ⊗UB ⊗UC, each
acting on a partition. For a three-qubit state, the complete rationale for this construction goes as follows.
The total number of degrees of freedom of a three-qubit state is 2× 23 real numbers for the coefficients
tijk, minus a global phase and norm constraints, which makes a total amount of 14. Now, we remove
the freedom carried by the three single-qubit unitaries, which is 3 × 3. Thus, the number of degrees of
freedom is 5. In consequence, there are 5 entanglement invariants under local unitaries [13]. Note that
a similar argument applied to n qubits shows that the number of entanglement invariants grows as
2× 2n − 3n− 2.

It is then always possible to bring a three-qubit state to a canonical form, where three amplitudes
are set to zero and only one relative phase remains [13]. This canonical form reads

|ϕ〉 = λ0|000〉+ λ1eiφ|100〉+ λ2|101〉+ λ3|110〉+ λ4|111〉 , (4)

where {λi} are real positive values and φ is a relative phase 0 ≤ φ ≤ π, attached by convention to |100〉.
Once the canonical form of the tripartite state is obtained, it is possible to compute the 5 entanglement
invariants [23] as

1
2 ≤ I1 ≡ Tr ρ2

A = 1− 2µ0 (1− µ0 − µ1) ≤ 1
1
2 ≤ I2 ≡ Tr ρ2

B = 1− 2µ0 (1− µ0 − µ1 − µ2)− 2∆ ≤ 1
1
2 ≤ I3 ≡ Tr ρ2

C = 1− 2µ0 (1− µ0 − µ1 − µ3)− 2∆ ≤ 1
1
4 ≤ I4 ≡ Tr (ρA ⊗ ρB ρAB) = 1 + µ0 (µ2µ3 − µ1µ4 − 2µ2 − 3µ3 − 3µ4)− (2− µ0)∆ ≤ 1

0 ≤ I5 ≡ |Hdet(tijk)|2 = µ2
0 µ2

4 ≤
1

16 ,

(5)

where µi = λ2
i and ∆ = |λ1λ4eiφ − λ2λ3|2. Therefore, from Equations (2) and (5), it follows that

τ = 4
√

I5 = 4 µ0µ4 . (6)

Consequently, given a state in its canonical form, the tangle can be directly computed as the product of
the outcome probabilities of the states |000〉 and |111〉 in the computational basis, multiplied by four.
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3. Quantum Algorithm for Measuring the Tangle

Let us assume that we receive an unknown three-qubit state |ψ〉ABC. Our goal is to perform
local unitary operations on this state in order to transform it to its canonical form in Equation (4).
Such operations are defined as

|ϕ〉 = UA(~θA)⊗UB(~θB)⊗UC(~θC) |ψ〉ABC, (7)

where |ϕ〉 is the canonical form of |ψ〉ABC (we drop the subscript ABC in the canonical form for
convenience), and each unitary takes the form

U(~θ) =

(
cos θ0/2 −eiθ1 sin θ0/2

eiθ2 sin θ0/2 ei(θ1+θ2) cos θ0/2

)
, (8)

with ~θ = (θ0, θ1, θ2). It is then necessary to find the values (~θA,~θB,~θC)opt that achieve this
transformation. We will follow a hybrid variational strategy and define

(~θA,~θB,~θC)opt = argmin
(
C(~θA,~θB,~θC)

)
, (9)

where C is the cost function, defined as

C(~θA,~θB,~θC) = ∑
i
|〈i |U(~θA,~θB,~θC)|ψ〉ABC |2 , i ∈ {001, 010, 011} . (10)

Notice that the optimal solution, i.e., the configuration (~θA,~θB,~θC)opt that renders this cost function
equal to zero, transforms |ψ〉ABC into an up-to-phases canonical form |ϕ̃〉, given by

|ϕ̃〉 = λ0|000〉+ λ1eiφ1 |100〉+ λ2eiφ2 |101〉++λ3eiφ3 |110〉+ λ4eiφ4 |111〉 . (11)

Such transformation is less restrictive than the canonical transformation in
Equation (7). Therefore, there exist many possible optimal parameters. The quantum circuit
implementing this operation is depicted in Figure 2. Once the optimal parameters are obtained, it is
straightforward to measure the tangle τ in an actual quantum computer. This quantity will be equal to

τ = 4 |〈000|ϕ̃〉〈111|ϕ̃〉|2 = 4 P000P111 , (12)

where Pijk is the probability of measuring |ijk〉. The statistical additive error of Pijk is given by the

sampling process of a multinomial distribution, that is,
√

Pijk(1− Pijk)/M, where M is the number of
measurements.

We propose a manner to mitigate random errors occurring when computing the tangle,
via post-selection. After the optimization is completed, and a low value of the cost function is obtained,
it is licit to assume that |ψ〉ABC has been properly transformed into |ϕ̃〉. Thus, if the outcome of
a measurement is either |001〉, |010〉 or |011〉 after the transformation into the up-to-phases canonical
form, it is due to an error in the circuit. In this case, this outcome can be discarded.

U(~θA)opt

|ψ〉ABC U(~θB)opt |ϕ̃〉

U(~θC)opt




Figure 2. Quantum circuit required for driving an unknown state |ψ〉ABC into its up-to-phases canonical
form |ϕ̃〉. The optimal parameters (~θA,~θB,~θC)opt are chosen variationally.



Entropy 2020, 22, 436 5 of 10

4. Simulations

The algorithm for measuring the tangle can be benchmarked on simulations. We considered
a set of 1000 random states, accounting for finite sampling and noise. The state |GHZ〉 =

(|000〉+ |111〉) /
√

2 has been treated as a particular case, as it is the one that maximizes the tangle and,
in addition, it is already in its canonical form. To be precise, we sampled 104 times and introduced
random Pauli errors in the quantum circuits in every run, for increasing noise levels. Each measure of
the tangle has been repeated ten times, with and without post-selection. We employed the standard
Python Library Scipy [24] for the optimization procedure. In particular, we employed the Powell
method as it was found to provide accurate results [25]. The mean number of optimization steps is of
the order of a few hundred.

Not all optimization instances were found to be satisfactory. Some trials did not reach a proper
minimum during the first attempt. In order to avoid outliers, only those instances whose cost function
was under a certain threshold were accepted. For those that did not match this criterium, the algorithm
was rerun. A maximum number of five attempts were allowed.

4.1. Error Model

We now present the error model that we have used in the simulations. In this model, single-qubit
gates can appear randomly with certain probabilities, to be discussed later. These gates modify the state
within the quantum circuit and may appear only after applying the unitary gates from Equation (7).
As the algorithm for measuring the tangle does not require the use of entangling gates, we assume that
the qubits have no cross-talk, and thus two-qubit errors are omitted.

We consider two different types of error. First, random bit-flips, phase-flips and bit-phase-flips
are modeled with Pauli-X, Z, and Y gates respectively. All of them may appear sequentially for each
one of the qubits. The second kind of error is measurement errors, which are modeled with a Pauli-X
gate appearing just before readout. A scheme for the occurrence of these gates is shown in Figure 3.

Every gate has an independent probability of appearing in the circuit, i.e., all error events are
uncorrelated. Therefore, the probability of one error ε occurring is

Probε = pε ∏
e 6=ε

(1− pe), (13)

where pe is the probability that one error occurs, and the product runs over all possible errors. This can
be easily extended to calculate the probability of occurrence of a higher number of errors.

The probabilities of single-qubit and measurement errors are taken as 0.1 t% and 1 t% respectively,
where t = {0, 1, 2, 3, 4, 5} is a tuning parameter. These numbers were selected in agreement with the
orders of magnitude present in the experiment in Reference [26]. Considering t = 5, there is one error
in ∼ 17% of the samples, and there are ∼ 1.5% of events with two errors. Three or more errors are
unlikely to happen, with appearance rates under 0.1%.

As Pauli-X, Y, Z gates do not commute, choosing to apply first one or another is not equivalent.
However, the probability of this kind of events is very low. For instance, the probability of two
measurement errors is p ∼ 10−4, of one measurement and one single-qubit error is p ∼ 10−5, and for
two single-qubit errors is only p ∼ 10−6. Therefore, we choose one particular ordering. Notice as well
that the tangle is not affected by some of these errors, such as Pauli-Z errors alone.
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Single− qubit Measurement

X Y Z X

|ϕ̃〉 X Y Z X Measure

X Y Z X




Figure 3. Error model for the simulations. Single-qubit and measurements errors can occurr following
the scheme of the figure, and may happen with probabilities 0.1 t% and 1 t%, respectively, for t =

{0, 1, 2, 3, 4, 5}. All errors are uncorrelated. This circuit is to be applied after that in Figure 2.

4.2. Results

Two different types of simulations have been carried out. First, we study the |GHZ〉 state, which
maximizes the tangle, τ = 1. This state is already in its canonical form. Therefore, there is no need
for applying single-qubit gates, and no optimization procedure is needed in this case. The averaged
results for the tangle obtained without optimization are represented by solid lines in Figure 4, while
the shadowed regions span all results. On the other hand, the full procedure can be applied to the
|GHZ〉 state as if it were an unknown input state. The results obtained in the latter manner are shown
as dots in Figure 4. This allows us to check that the distortion induced by the optimization procedure
does not play a significant role. Both methods were simulated with and without post-selection.

Figure 4. Tangle of the |GHZ〉 state vs. parameter t quantifying gate and measurement errors.
Solid lines represent averaged results for the tangle obtained without optimization, while the shadowed
regions span all results (again without optimization). The dots are the results for the full optimization
method applied to the |GHZ〉 state as if it were an unknown input state. Colors indicate whether
post-selection was applied or not. The results indicate that the optimization procedure does not degrade
the quality of the estimation of the tangle.

Secondly, we consider 1000 random states and simulate the proposed algorithm for measuring
the tangle. The final results are depicted in Figure 5. As it should be expected, results are better for
post-selected cases. Those random states whose optimization returned a value of the cost function C
above a certain threshold have been discarded. This process cleans the points far from the solid line
in Figure 5. From now, we set said threshold to t 2%, i.e., for t = 5 we allow a minimization error up
to 10%.
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(a) No error

(b) Maximum error

Figure 5. Measured tangle vs. exact tangle, for three-qubit random states. Results in green were
obtained without applying post-selection, in contrast to those in red. (a) Results with no gate errors.
(b) Results considering the maximum gate error allowed in this paper, t = 5. In all figures, the solid
black line represents ideal measurement of the tangle. As the errors decrease, we observe convergence
towards the exact tangle.

From the results obtained, it is possible to conclude that circuits with no errors can estimate the
tangle properly. In contrast, circuits where errors occur present a tendency to return values of the
tangle which are lower than the exact ones. Besides, dispersion increases with the errors. We present,
in Figure 6, results of the relative errors in the computation of the tangle, given by

∆τ =
τ′ − τ

τ
, (14)

where τ′ is the estimate obtained through the variational method, and τ is the exact result. It can be
observed that the average behavior of this algorithm in the presence of noise is to underestimate the
tangle, as already mentioned. The procedure alone returns an estimate of the tangle ∼ −30% lower
than the exact value, while post-processing reduces the error to ∼ −17%.
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Figure 6. Relative error of the tangle of 1000 random states, with a 2 t% threshold in the cost function
value, as a function of the error parameter t. Dots correspond to average values, and error bars span
70% of the measurements. Colors indicate whether post-selection has been applied or not. Note that
the algorithm measures the correct tangle in the absence of noise, but tends to underestimate the tangle
under its presence.

5. Conclusions

We have presented a variational quantum algorithm that casts an unknown three-qubit state
into its canonical form, up to relative phases, given many copies of it. Subsequently, the tangle can
be readily measured. The idea behind this procedure is to set three out of eight amplitudes, namely
those corresponding to |001〉, |010〉 and |011〉, to zero. Furthermore, a post-selection scheme allows for
a mitigation of the errors.

We have performed simulations on a set of random states to benchmark the proposed algorithm
under different noise conditions. We have found that the quantum circuit delivers the correct value of
the tangle, with a degradation of the results as the noise levels increase. To be precise, assuming errors
comparable to those in state-of-the-art quantum processors, the average relative error is of the order of
∼ −17%. It is noteworthy that the tangle is, in most cases, underestimated.

This algorithm does not provide an improvement in the required number of copies of the quantum
state, compared to quantum tomography. Nevertheless, the method herein proposed also returns the
canonical form of the states and, therefore, might be used as a module in other algorithms. For instance,
it can be applied as a pre-processing for a quantum classifier. That is, once the canonical form is cast,
the quantum classifier may use this feature to distinguish between different quantum states for a
particular task.
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