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Abstract

Diffusion magnetic resonance imaging (dMRI) is pivotal for probing the microstructure of
the rapidly-developing fetal brain. However, fetal motion during scans and its interaction with
magnetic field inhomogeneities result in artifacts and data scattering across spatial and angular
domains. The effects of those artifacts are more pronounced in high-angular resolution fetal
dMRI, where signal-to-noise ratio is very low. Those effects lead to biased estimates and com-
promise the consistency and reliability of dMRI analysis. This work presents HAITCH, the first
and the only publicly available tool to correct and reconstruct multi-shell high-angular resolu-
tion fetal dMRI data. HAITCH offers several technical advances that include a blip-reversed
dual-echo acquisition for dynamic distortion correction, advanced motion correction for model-
free and robust reconstruction, optimized multi-shell design for enhanced information capture
and increased tolerance to motion, and outlier detection for improved reconstruction fidelity.
The framework is open-source, flexible, and can be used to process any type of fetal dMRI data
including single-echo or single-shell acquisitions, but is most effective when used with multi-shell
multi-echo fetal dMRI data that cannot be processed with any of the existing tools. Validation
experiments on real fetal dMRI scans demonstrate significant improvements and accurate cor-
rection across diverse fetal ages and motion levels. HAITCH successfully removes artifacts and
reconstructs high-fidelity fetal dMRI data suitable for advanced diffusion modeling, including
fiber orientation distribution function estimation. These advancements pave the way for more
reliable analysis of the fetal brain microstructure and tractography under challenging imaging
conditions.
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1 Introduction

Fetal diffusion magnetic resonance imaging (dMRI) provides detailed insights into the development
of brain connectivity and microstructure during the prenatal period [1–13]. This powerful technique
relies on a mathematical model that delves into the microscopic behavior of water molecules within
brain tissue. This model begins by calculating the probability P (Rτ |R0, τ), which represents the
likelihood of a water molecule moving from position R0 to Rτ over time τ . Since determining
this probability for a single molecule is impossible, we calculate the Ensemble Average Propagator
(EAP), P (R), which represents the averaged probability across all molecules within a voxel. Building
upon Stejskal and Tanner’s work [14] on the pulsed gradient spin-echo sequence, we can express the
normalized dMRI signal, E(q), as the Fourier transform of the EAP. When the diffusion-weighted
gradient duration δ is sufficiently shorter than the time between two gradient pulses ∆, E(q) can be
expressed as:

E(q) =

∫
R∈R3

P (R) exp(−2πiq ·R) dR (1)

where q is a 3D-vector representing the effective gradient direction (q = qu where u is a 3D unit
vector). A standard dMRI scan consists of acquiring a reference insensitive to diffusion (b-value
= 0) and a set of diffusion-weighted images (b-value > 0) in non-collinear directions. By employing
a suitable diffusion model, this setup allows the estimation of the local diffusion properties and the
brain’s structural connectivity network. The diffusion model estimation assumes that the gathered
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dMRI signals originate from the same physical point. However, achieving this condition in fetal
scans is challenging due to several factors such as maternal breathing and unpredictable fetal mo-
tion [3, 15]. These issues cause misalignment in dMRI sequences and disrupt the assumption of a
consistent relationship between image space and anatomy. Moreover, the inherent limitations of echo
planar imaging (EPI) used in dMRI acquisition, such as geometric distortion and susceptibility to
spin history effects, distort the dMRI signals [2, 16, 17]. The problem is magnified in the context
of fetal imaging due to the complex interaction between fetal motion and the susceptibility-induced
inhomogeneities of the main magnetic field (B0), combined with the small size of the fetal brain and
the low signal-to-noise ratio (SNR). Inconsistencies originating from these factors are a major im-
pediment to accurately characterizing fetal brain connectivity and hinder the overall reproducibility
of in-utero dMRI studies [1, 18].

To address these challenges, several fetal-specific retrospective motion correction methods have
been developed. The initial approach of motion correction for fetal dMRI, introduced by [19], ex-
tended slice-to-volume reconstruction (SVR) techniques originally developed for in-utero structural
MRI. By assuming that local diffusion properties can be represented by a rank-2 tensor model, each
slice was registered to the simulated volume. A diffusion tensor matrix reconstruction was then
employed to integrate the realigned slices into a regular grid to produce the final reconstructed vol-
ume. [20] proposed a groupwise registration method that aligns diffusion-weighted images collectively
before utilizing a derived image for registration with the T2-weighted (T2w) reference image. Affine
transformation matrices were applied to realign the original sequences, addressing both motion and
eddy-current effects. Then, a dual radial basis function-based interpolation was used to reconstruct
a consistent image. [21] presented a super-resolution reconstruction of the diffusion tensors, with
some similarities in the registration concept to [20] and several key distinctions from [22]. Notable
differences include the implementation of a unified reconstruction-alignment formulation, yielding a
diffusion-sensitive slice registration model. Additionally, Fogtmann et al. incorporated point spread
function deconvolution into the 3D image reconstruction process. This allowed the creation of 3D
datasets with isotropic spatial resolution from multiple scattered slices acquired in different anatomi-
cal planes. [23] proposed motion correction and reconstruction through a dynamic model of fetal head
motion; where motion parameters are estimated through a Kalman filtering approach. Additionally,
they reconstructed diffusion tensors using a weighted least squares fit. This approach notably con-
tributed to the creation of the first spatio-temporal diffusion tensor fetal atlas, as detailed in [6]. [3]
advanced the field by correcting motion using super-resolution reconstruction with spherical har-
monics (SH). This approach is particularly effective in identifying crossing fibers in the fetal brain.
Building upon their previous work [24], this technique notably includes intensity correction within
the reconstruction process.

The above-mentioned techniques have predominantly employed data representations grounded in
diffusion tensor imaging and single-shell SH. However, these approaches have limitations in capturing
the complexity of the developing brain. Tensor model struggles to represent crossing fibers which
is a prevalent feature in fetal brain white matter. A model-free signal representation is crucial for
such motion correction methodologies to guarantee a broad range of imaging analyses. Similarly, [25]
highlight the insufficiency of single-shell SH in capturing the full spectrum of diffusion information
needed for neonatal imaging, which is highly similar to fetal imaging. Consequently, these method-
ologies either restrict the type of diffusion information extracted or reduce the information content
and impose constraints on the variety of input data that can be processed. This significantly hinders
the scope of subsequent analytical endeavors aimed at comprehensively characterizing the developing
fetal brain microstructure. Moreover, the effect of local geometric distortions and their interaction
with fetal and maternal motion has been either ignored or not adequately addressed in those studies.
While conventional methods for EPI distortion correction rely on static field mapping [26], which is
only appropriate for motion-free data, methods that rely on dMRI volumes with reversed phase en-
coding are not effective for the continuous and large motion that typically affects fetal dMRI [27,28].
This warrants further investigation of dMRI acquisition and processing methods to address motion
and geometric distortions.

In this work, we introduce the High Angular resolution diffusion Imaging reconsTruction and
Correction approacH (HAITCH), a novel framework that tackles these identified challenges by inte-
grating optimized acquisition and reconstruction strategies to mitigate the combined effects of fetal
motion, geometric distortion, and their interaction in fetal dMRI. To this end, our objective was
to develop a robust methodology and a toolbox for acquiring and reconstructing fetal dMRI data
that ensures high fidelity and suitability for detailed in-vivo and in-utero analysis of the fetal brain
microstructure development.
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To achieve this, HAITCH focuses on three core technical contributions, represented by the bold-
bordered boxes in Fig. 1: i) Optimized multi-shell sampling scheme for improved fetal dMRI, ii)
Dual-Echo sequence enables dynamic distortion correction, iii) Advanced motion correction and
model-free reconstruction techniques. We validate the accuracy of our framework using real fetal
dMRI scans acquired at Boston Children’s Hospital. The implementation of the HAITCH framework
is publicly available as the first module of the Fetal and Neonatal Development Imaging (FEDI)
toolbox: https://fedi.readthedocs.io.

2 Material and methods

HAITCH employs a multi-stage approach to address the challenges associated with fetal dMRI
acquisition. Initially, a specialized multi-shell high angular resolution diffusion imaging (HARDI)
sampling scheme is designed to increase the overall dataset’s tolerance to motion. Our recommended
acquisition involves a modified dual-echo EPI sequence that allows dynamic correction of time-
varying geometric distortions. Following acquisition, the data undergoes preprocessing including
denoising, Gibbs ringing correction, and Rician bias correction. Geometric distortions are then
addressed through non-static field map estimation. Subsequently, B1 bias field correction and fetal
brain segmentation are performed. Motion correction is achieved through an iterative refinement
process. A flowchart summarizing the various processing stages of HAITCH is shown in Fig. 1. This
approach progressively improves the data by repeatedly updating slice weights, transform coefficients,
and motion parameters, which will be described in detail in the sections that follow. Through these
iterative updates, the self-consistency of the data is enhanced, leading to progressively improved
motion-corrected images. In this section, we first explain the multi-shell sampling scheme, then
we describe the signal representation that makes the foundation of our modeling, sampling, image
reconstruction, outlier detection, slice weighting, basis updating, and motion parameters estimation.
At the end, we explain the dynamic distortion correction component based on our recommended
multi-echo EPI sequence. The details of the experiments conducted, pre-processing, implementation
aspects of our methods, and post-processing are explained in Section 3. Section 4 will then present
the results obtained.

Denoising (GSVS)

Gibbs Ringing
Correction

Rician Bias Correction

B1 Bias Field Correction

Fetal Brain
Segmentation

Slice & Voxel Weighting

Basis Update and
Prediction

Tractography

FOD Estimation

Reconstruction dMRI Upsamling

dMRI Registration to 
Atlas Space

T2W Registration to 
Atlas Space

Image Cropping

HARDI Multi-Shell
Sampling Scheme

Blip-Reversed Dual-
Echo EPI Sequence

Dynamic Distortion
Correction

T2W Reconstruction

Motion Parameters
Estimation

Gradient Table Update

Quality Control

Figure 1: HAITCH Framework Processing Stages. This flowchart illustrates the key steps involved
in the HAITCH Framework. Boxes with bold borders refer to our main contributions. Grey boxes
outline the acquisition stages, including the sampling scheme and the dual-echo sequence. Green
boxes detail the pre-processing steps, distortion correction, B1 bias field correction, and fetal brain
segmentation. Blue boxes refer to the iterative approach of motion correction and image recon-
struction that includes slice & voxel weighting, model-free reconstruction, signal basis update, signal
prediction, registration, and updating the gradient table. Purple boxes showcase the post-processing
steps, encompassing T2-weighted image reconstruction, spatial normalization for atlas registration,
and streamlined tractography. Refer to Section 2 for details on the sampling scheme, dual-echo
sequence, motion correction, and dynamic distortion correction. Section 3 discusses pre-processing,
post-processing, and implementation specifics. Boxes with bold borders refer to our main contribu-
tions.
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2.1 A Multi-Shell HARDI Sampling Scheme for the Fetal Brain

dMRI with multi-shell HARDI provides rich information about the tissue microstructure by varying
b-values and directional sampling. Utilizing an extension of the electrostatic repulsion cost func-
tion [29,30], we have customized a sequence with HARDI, interlaced multi-shell, and an incremental
sampling scheme for uniform angular coverage. This sampling scheme ensures a balance between the
global angular distribution of all diffusion gradient directions and the angular distribution on each
shell. The angular density of coverage for each shell increases uniformly as fetal dMRI acquisition
proceeds. This optimization of the angular coverage and the temporal ordering aims to mitigate the
effects of both sudden and slow fetal motion during acquisition. Acquired slices and volumes with
close gradient directions are separated in acquisition time, thereby increasing the motion tolerance of
the entire dataset. With this acquisition scheme, any part of the acquired data will contain uniformly
distributed orientations, which is not possible with conventional schemes.

Furthermore, to maximize the information content of the data within our multi-shell HARDI
acquisition scheme, we determined the per-shell sampling density and the associated b-values based
on the detectable number of SH, as detailed below. Previous studies have shown that the angu-
lar frequency in neonates is significantly lower compared to adults [25, 31]. [25] demonstrated in
a neonatal study that SH terms beyond order 8 are indistinguishable from noise for typical SNR
values. SH terms of order 6 were small, suggesting a minimum requirement of 28 directions at
high b-values. At lower b-values, only terms of orders 2 or 4 could be detected, implying minimum
requirements of 6 and 15 directions, respectively. In practice, acquiring more than the minimum
diffusion-weighted directions is highly recommended to account for potential imperfections in the
diffusion-encoding gradient directions and ensure sufficient effective SNR for utilizing SH terms with
order 6. Additionally, [25] determined that [0, 400 s/mm2, 1800 s/mm2 ] and [0, 400 s/mm2, 1000
s/mm2, 2600 s/mm2] b-value combinations as the optimal for 2-shells and 3-shells sampling schemes
in their neonatal imaging study. Their corresponding number of directions expressed as a percentage
of the total number of volumes acquired are as follows: [12%, 29%, 59%] and [6%, 19%, 28%, 47%],
respectively.

Considering the potential differences and similarities between fetal and neonatal imaging, the
dual-echo nature of our sequence, and achievable b-values due to inherent low SNR in fetal dMRI [32],
we propose a 2-shell HARDI scheme summarized in Table 1. This scheme incorporates 11 interleaved
b = 0 images, and diffusion-weighted images at b = 400 s/mm2 and b = 900 s/mm2 with 28 and 56
directions per shell, respectively.

b-value (s/mm2) 0 400 900
Number of Directions 11 28 56

Percentage of Total Volumes 12% 29% 59%

Table 1: Summary of the scheme: b-values and directions per shell

2.2 Signal Representation

2.2.1 Diffusion Signal Modeling

To effectively capture the orientation-dependent nature of dMRI contrast, we employ the 3D Simple
Harmonic Oscillator Reconstruction and Estimation (SHORE) technique [33, 34]. SHORE serves
as a basis function representation that accurately models both the radial and angular properties of
the dMRI signal by fitting a linear combination of orthogonal basis functions. SHORE allows us to
represent the diffusion signal E(qu) as a truncated linear combination of orthonormal basis functions
Φnlm(q ,u) :

E(qu) =

Nmax∑
l=0,even

(Nmax+l)/2∑
n=l

l∑
m=−l

cnlmΦnlm(q ,u) (2)

where the cnℓm = ⟨E,Φnℓm⟩ are the transform coefficients that capture the contribution of each basis
function, Φnlm(q,u) = Xnl(q, ζ)Y

m
l (u) can be decomposed into (i) Xnl(q, ζ), the radial basis, is a

generalized Laguerre polynomial modulated by exponential decay and scaling factor ζ, capturing the
radial behavior and ensuring orthonormality. n represents the radial order. (ii) Y m

ℓ (u), the angular
basis, is a SH function of order ℓ and degree m, modeling the angular properties, Nmax is the maximal
order of the functions in the truncated series. The sparsity inherent in the SHORE model, character-
ized by the concentration of significant information within a few coefficients, is crucial for effective
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diffusion signal modeling [34]. Furthermore, the ability of SHORE to accurately detect multiple
diffusion directions has been demonstrated in previous studies [35]. This representation translates
the fetal dMRI scan into a compact 4D representation of SHORE coefficients associated with each
voxel in the image grid. With this diffusion signal representation and motion parameters, we can
predict the expected dMRI contrast using a forward model. This prediction allows us to compare
it with the motion-corrupted acquired data. Subsequently, we formulate an inverse problem that
optimizes the similarity between the predicted and acquired data while simultaneously estimating
the fetal motion traces.

2.2.2 Forward Modeling

Fetal motion during dMRI acquisition disrupts the signal, introduces artifacts, and degrades the
acquired data consistency. By assuming rigid motion, we can model this disruption using a forward
model. This model allows us to predict the expected dMRI signal in the presence of motion. This
involves transformations in the q-space domain to account for changes in spatial and angular coor-
dinates due to motion. It essentially simulates how diffusion would appear under the influence of
motion, providing a mathematical relationship between the acquired dMRI data, the underlying true
signal, and the motion parameters. For a given set of fetal motion parameters µ, the predicted signal
Ê could be expressed as:

Ê(µ, q) = C(q) M(µ) D(µ) A c (3)

where A represents noise, D accounts for EPI distortion, M(µ) represents the effects of rigid motion
parameters on the signal, and C(q) encodes the SHORE basis for q-space. This equation essentially
enables generating predictions for the signal in a scattered collection, each with their own motion
state and dMRI encoding.

2.3 Inverse Problem and Reconstruction

Given the scattered data acquired during the dMRI scan, we aim to find the optimal reconstruction
coefficients c∗ and rigid motion parameters µ∗ that maximize the similarity between the acquired
data and their prediction. We achieve this by solving an inverse problem. This involves finding the
combination of reconstruction coefficients and motion parameters that best explain the acquired data.
Mathematically, this is formulated as a large, sparse least-squares problem with an ℓ2 regularization:

c(k) = argmin
c∈Rnc

∥∥∥W (
Ê(k)(µ(k), q)−E

)∥∥∥
ℓ2

+ λl ∥Lc∥ℓ2 + λn ∥Nc∥ℓ2 (4)

where Ê(k) is the predicted signal of all scattered data in the current iteration k using the coefficients
c(k), W = diag

(
· · · ,√ws, · · ·

)
, ws is a slice-wise or voxel-wise weight for outlier rejection. The

weighting matrix W assigns higher importance to reliable slices or voxels and reduces the influence
of outliers. N and L ∈ Rnq×nc are two diagonal matrices with diag(N) = n(n + 1) and diag(L) =
l(l + 1), respectively. These matrices penalize the high frequencies of the radial and angular parts,
respectively. The constants λn and λl are weights of the penalty terms.

Equation 4 minimizes a cost function that measures a weighted difference between the predicted
signal Ê(k) and the acquired signal E. We formulate the solution of this least squares problem as
an iterative process that leverages a data-driven signal representation. We focus on optimizing the
target image for maximum similarity to the acquired scattered data, while simultaneously identifying
the unknown fetal motion traces that correspond to the fetal brain position. We utilize surrounding
directional information to compensate for potential data loss and reconstruct scattered data across
spatial and angular domains. The optimization process consists of repeatedly alternating between
slice weighting, a reconstruction step optimizing the SHORE coefficients c given current motion
parameters µ, and a registration step updating µ for the current c throughout each epoch of our
framework.

2.4 Outlier Detection and Weighting

Fetal dMRI is inherently susceptible to outliers and imaging irregularities, which can negatively
impact image quality and the subsequent processing steps. Outliers are signal intensities that signif-
icantly deviate from the expected signal based on other measurements. Fetal motion and maternal
breathing during diffusion encoding can induce severe signal dropouts. Moreover, rapid slice ac-
quisition times combined with fetal motion can lead to spin-history artifacts, manifesting as signal
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hyper-intensities due to overlapping slice excitation. Hence, detecting and appropriately weighting
outliers are essential to mitigate the impact of unreliable slices on the reconstruction. To examine the
likelihood of a slice Si or voxel Vi with gradient g being an outlier, we employ three complementary
methods.

2.4.1 Modified Z-Score

We employ a modified z-score and median absolute deviation (MAD) to detect outliers within each
b-value shell. MAD focuses on the median, which is less swayed by outliers, and is a better choice
than the standard deviation for outlier detection in datasets that might have outliers. Given a fetal
dMRI dataset, let E[Ŝi,b,g] represent the diffusion signal intensity average for the i-th slice with

b-value b and gradient direction g, and let E[S̃i,b] present the median of those average across the
same b-value b. We compute the modified z-score for slice i with gradient direction g as follows:

Zi,g =
| E[Ŝi,b,g]−E[S̃i,b] |

1.4826 ·MAD(E[Ŝi,b,g]−E[S̃i,b])
(5)

Subsequently, lower ηl and upper ηu thresholds for the modified z-scores are applied to assign a
weight ws to each slice as following:

ws = 1− Zi,g − ηl
ηu − ηl

(6)

These weights are incorporated within the initialization epoch to influence the initial predicted signal
Ê(1).

2.4.2 Bayesian Gaussian Mixture Modeling

The second method utilizes a probabilistic criterion to identify outliers based on the intensity dif-
ference between the acquired dMRI data and their corresponding predictions [36]. This approach
identifies and excludes outlier slices exhibiting large residuals compared to other slices with similar
b-values. We first calculate the root-mean-squared error (RMSE), denoted by ϵ, between the ac-
quired data and the provided signal predictions. The RMSE values for inlier and outlier slices are
expected to follow different probability distributions. Within each shell, a two-component Bayesian
Gaussian Mixture Model (GMM) is employed to model the log-transformed RMSE values, thereby
delineating inlier and outlier slices. The GMM assigns a probability, considered as ws, to each slice
belonging to the inlier component.

2.4.3 Voxel-Wise Weighting

The previous two methods focused on slice-level weighting to address signal dropout caused by bulk
motion during acquisition. However, local variations within slices can arise due to factors like spin
history and physiological motion. To down-weight these localized outliers, we employ a voxel-wise
weighting applied in the final processing epoch. This method builds upon the voxel-wise standardized
residuals with the modified z-score which are then converted to weights for each voxel as follows:

wv =
1

(z2v + 1)2
where zv =

Ev − Êv

1.4826 ·MAD(Ev − Êv)
(7)

Here, Ev and Êv represent the acquired and predicted signal intensity for a particular voxel, respec-
tively.

2.5 Registration

In this step, we seek to compute and update the motion parameters by optimizing the spatial align-
ment between the predicted signal and the acquired scattered data. We achieve this by performing
rigid image registration directly between the predicted and the acquired dMRI contrasts at each time
point. This approach offers several advantages over conventional registration methods that often use
the b0 image (unweighted image) as the reference for aligning the acquired dMRI data. Here, the
predicted dMRI contrasts at each time point serve as the reference for registration with the acquired
dMRI data. This way of registration is more accurate than the conventional registration to b0 images,
as the fixed (predicted) and moving (acquired) images have the same diffusion sensitization.
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2.6 Dynamic Distortion Correction

Fetal dMRI often relies on EPI for its efficient data acquisition. However, EPI inherits a limitation:
the presence of local geometric distortions. These distortions are a result of the inhomogeneities
of the main magnetic field B0, which are caused by the differences in magnetic susceptibility of
tissue and air/gas in air/gas-tissue interfaces. A common approach to correct geometric distortions
in adult dMRI involves acquiring scans with a single phase encoding direction and adding a b=0
image with reversed phase encoding. A field map, assumed to be static, is then generated from
the data and used for correcting distortions [27]. While effective for subjects with minimal motion,
this method is inadequate for fetal imaging because fetal motion affects field inhomogeneities. The
nearly-continuous fetal movements as well as gas movement in the maternal intestine, and maternal
respiratory motion, can cause significant changes in B0 inhomogeneity. These changes would render
static field map correction techniques inaccurate in fetal dMRI [2, 16,37,38].

To address this challenge, we propose using a modified spin-echo EPI sequence incorporating
a second readout (echo). This second echo generates data that have the same resolution, field of
view, and bandwidth of the first echo data but with the order of k -space traversal reversed in the
phase encoding direction. Fig. 2 illustrates the pulse sequence diagram. A 180◦ refocusing pulse and
spoiler gradients were employed to generate the second spin-echo. The frequency encoding direction
is reversed between the two echoes to ensure consistent temporal spacing between k -space points.
Notably, the dual-echo sequence maintains the SNR efficiency comparable to the conventional EPI
scan despite the extended readout train. The temporal proximity between the two echoes (< 50 ms)
ensures closely matched and nominally identical motion states for the two acquired slices. Impor-
tantly, the first and second echo-time data exhibit geometric distortions in opposite directions at each
acquisition time point. Fig. 2 further illustrates this concept, where susceptibility-induced stretching
in the first echo corresponds to signal pile-up in the second echo. This enables the application of
the blip-reversed approach in dynamic environments such as fetal and neonatal imaging. This key
advantage allows us to estimate a dynamic field map, thereby correcting for geometric distortions in
the presence of motion. Implementation details are discussed in Section 3.

3 Implementation and Experiments

3.1 Fetal Datasets

To examine the efficacy of our proposed framework, we conducted 36 dMRI studies on 14 pregnant
volunteers, scanned at a gestational age between 24 and 36 weeks. The studies were approved by
the institutional review board, and written informed consent was obtained from all participants.
Each scan session involved repeated single-shot fast spin echo T2w acquisitions, which were used to
reconstruct a reference anatomical volume with an isotropic resolution of 0.8 mm3 using SVR [39,40].

Each scan session includes also a dMRI scan acquired in three different ways for testing, (i) Dual-
Echo data: Twenty-four dMRI scans with two echoes were acquired from 13 subjects. Echo times
were 50 ms for TE1 and between 85 ms to 90 ms for TE2. These scans included various single and
double-shell b-values (250, 400, 500, 600, 750, 800, 900, and 1000 s/mm2) across 6-direction sets (13,
15, 20, 22, 26, 27, 44, 80 and 93 directions). (ii) Multi-Shell HARDI data: Nine multi-shell HARDI
dMRI scans were acquired from five volunteers. These scans were acquired following our optimized
scheme described in subsection 2.1. (iii) Dual-Echo Multi-Shell HARDI data: An additional three
scans from two volunteers possess also the sampling scheme described in subsection 2.1.

All scans are acquired using a 3T Siemens Prisma scanner with a 30-element body coil. Scans were
performed with parallel imaging with GRAPPA factor 2, minimum repetition times (TR) between
2.5 and 7 seconds, isotropic resolution settings of 2.0, 2.3, or 2.5 mm3, a field of view of 256 or 300
mm depending on the age and size of the fetus and the maternal body, and between 30-40 slices to
cover the fetal brain.

3.2 Pre-processing

dMRI data is susceptible to various artifacts arising from the limitations of the MRI hardware and
techniques. To address these artifacts and ensure reliable estimation of diffusion parameters, we have
established the following steps, as represented by green boxes in Fig. 1:
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Figure 2: (Top): Schematic diagram of the modified spin-echo EPI sequence. This sequence acquires
two echoes (TE1 and TE2) with reversed phase encoding directions. Despite the extended readout,
the dual-echo sequence maintains signal-to-noise ratio (SNR) efficiency comparable to a conventional
EPI scan. Temporal proximity between the echoes (¡ 50 ms) ensures minimal motion artifacts
between acquisitions. (Bottom): Illustration of the opposing susceptibility-induced distortions in
the two echoes for an example. The first echo (TE1) exhibits stretching (arrow), while the second
echo (TE2) shows signal pile-up in the corresponding location. This key feature allows for dynamic
field map estimation and correction of geometric distortions even in the presence of fetal motion.
Details of the implementation are discussed in Section 3.

3.2.1 Denoising

The data is initially denoised using the generalized singular value shrinkage (GSVS) method for noise
estimation and reduction, as detailed in [41]. This method extends the random matrix theory-based
approach of the Marchenko-Pastur Principal Component Analysis (MPPCA), introduced in [42,43].
GSVS moves beyond the limitations of MPPCA, including the homoscedastic and uncorrelated noise
assumptions and the hard separability of signal and noise. Instead, it utilizes the findings of [44]
for optimal singular value shrinkage under a generalized Marchenko-Pastur law. This makes GSVS
particularly suitable for motion-degraded and low SNR data, including fetal dMRI data with high
motion artifacts. GSVS effectively removes only thermal noise without compromising anatomical
features in approximately 2 minutes.

3.2.2 Gibbs Ringing Artifact Correction

High-contrast boundaries, such as the edges between cerebrospinal fluid and gray matter or white
matter in the fetal brain, may produce image artifacts known as Gibbs ringing. These artifacts arise
from inadequate sampling of high frequencies, and may significantly impact the diffusion signal. To
remove these artifacts, we employ a method that modulates the truncation in k-space as a convolution
with a sinc-function in image space and interpolates the image through local subvoxel shifts [45].

3.2.3 Rician Bias Correction

dMRI images exhibit Rician or non-central χ noise, especially in low-SNR settings like multi-shell
HARDI fetal dMRI. Unlike Gaussian noise, Rician noise is non-additive and intensity-dependent,
leading to Rician bias and reduced image contrast. To address this, we adapt the methodology
introduced in [46] with GSVS replacing MPPCA for Rician bias correction. GSVS denoising provides

8



an unbiased estimate of the noise standard deviation σ at each voxel based on data acquired with
low b-values [41,42]. We then estimate the true signal intensity Ec through the following equation:

E2
c = ⟨M⟩2 − (ξ(θ)− 2)σ2 (8)

Here, ⟨M⟩ represents the expected value of the measured magnitude signal intensity, and ξ(θ) is a
correction factor defined by θ = η

σ , which is equivalent to the SNR [47]. For SNR exceeding 2 dB,
ξ(θ) approaches 1, allowing for accurate signal intensity estimation.

3.3 Dynamic Distortion Correction

Both the first echo time dMRI(TE1) scan and the second echo time dMRI(TE2) scan were used to
correct the distortion following the reversed gradient polarity technique. To ascertain the sequence’s
efficiency and effectiveness, distortion correction was approached via two dynamic and one static
correction methods: (i) Slice-wise correction: field map is estimated for each slice using the reversed
echo time slice at every time point for low and high b-values images using the method introduced in
Voss et al. [48]. (ii) Volume-wise correction: field map is estimated for each volume using the reversed
echo time volume at every time point for both low and high b-values images using FSL TOPUP [27].
(iii) Static map correction: the classic way of distortion correction with FSL TOPUP, employing the
first b=0 image of TE1 and the last b=0 image of TE2 to calculate the static field map, which is
then applied to the entire TE1 dataset. These three correction methods were applied reciprocally
between dMRI(TE1) and dMRI(TE2), with outcomes evaluated via the Structural Similarity Index
Measure (SSIM) and Peak signal-to-noise ratio (PSNR) metrics. The method with the highest SSIM
and PSNR was chosen for subsequent processing.

3.4 B1 Bias Field Correction

Fetal dMRI data acquired with high-density coils suffers from signal variations due to B1 field
inhomogeneity. This is particularly problematic in multi-shell acquisitions where complex anatomy
and varying diffusion weightings magnify these effects. To address this, we employ the N4ITK
algorithm [49] to estimate the corrected signal Ec(q) as follows:

Ec(q) = EDC(q) ·
ÊDC(N4)(b = 0)

β · ÊDC(b = 0)
(9)

where EDC(q) is the distortion corrected dMRI signal, β is the bias field estimated using the N4ITK
from the masked average of all b=0 images, ÊDC(b = 0) and ÊDC(N4)(b = 0) are the estimated
average intensity of b=0 images before and after applying the N4ITK bias correction respectively.

3.5 Fetal Brain Segmentation

Fetal dMRI scans encompass not only the fetal brain but also surrounding maternal structures. Ef-
ficient background removal is essential for enhancing the reliability of subsequent processing steps.
However, fetal brain extraction is challenging due to factors like variable fetal head position, move-
ment during scans, and the diverse appearance of the developing fetal brain with adjacent anatomy.
To address these complexities, we leverage a deep learning-based method built upon a fully convo-
lutional neural network architecture similar to U-Net++ [50]. The model was trained following the
established strategy recommended by nnU-Net [51] and has been extensively validated on manually
labeled data. This approach effectively removes background structures and performs image cropping
to reduce processing time.

3.6 Motion Correction and Reconstruction

The HAITCH framework employs an iterative motion correction and reconstruction process that
spans five epochs. Each epoch alternates between outlier reweighting, SHORE coefficients computa-
tion, basis updating, signal prediction, registration, and gradient table rotation steps.

The process begins with slice weighting using the modified Z -score method, which does not
require a pre-existing predicted signal. The reconstruction step then estimates the coefficients c by
minimizing the cost function of Eq. 4. The computation of these coefficients involves the use of the
SHORE basis of order 6 defined by Merlet and Deriche [34]. It is important to note that this basis
differs from the one available in the Dipy library [52], resulting in more number of basis functions
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(72 in Merlet & Deriche vs. 50 in Dipy for radial order 6). The scale parameter ζ in Eq. 2 is fixed to
a value of 700, and the regularization parameters λl and λn in Eq. 4 are set to 10−8 as recommended
by [34]. Using these coefficients and the pre-defined sampling scheme, we predict the dMRI signal
which, in turn, is used as a reference for the registration step. Rigid registration is performed
using ANTs [53] to compute motion parameters µ from the acquired data. This involves volume-
to-volume registration, where the fixed and moving images share the same diffusion contrast. A
global correlation metric is utilized to guide the registration process. Based on the estimated motion
parameters, the gradient directions are subsequently rotated individually. A new epoch commences
with slice weighting using the GMM method, which compares the registered data with the predicted
signal. The reconstruction step then updates the SHORE basis, estimates new coefficients, and
predicts a new dMRI signal in the initial basis functions for the next registration step. Therefore,
motion parameters µ are updated and refined over four epochs. The final epoch utilizes these refined
parameters to obtain final registered data, followed by a voxel-wise outlier detection. Subsequently,
SHORE coefficients are computed in the updated basis, and the process concludes by predicting the
final dMRI signal in the original sampling scheme.

3.7 Spatial Normalization to Atlas Space

Following the motion correction and reconstruction steps, the HAITCH framework performs spatial
normalization to a common reference space. This process involves two stages of registration. First,
the motion-corrected and reconstructed dMRI data of the subject is registered to a reconstructed
T2w image of the same subject in the world coordinates. The T2w image is obtained using a super-
resolution SVR algorithm, either SVRTK [39] or NiftyMIC [40]. Second, the T2w image is registered
to the publicly available CRL fetal brain atlas [54]. This atlas provides a standardized anatomical
reference for the fetal brain. Finally, the two transformation matrices obtained from these separate
registrations are combined into a single transformation, which is then applied to the dMRI data to
map it into the atlas space while upsampling it to an isotropic voxel resolution of 1.25 mm. These
upsampled dMRI data are used in subsequent post-processing steps including fiber tractography.

3.8 Diffusion Model Estimation and Tractography

White matter tractography was conducted utilizing the MRtrix3 toolbox [55]. Initially, white mat-
ter, gray matter, and cerebrospinal fluid response functions were estimated using the unsupervised
method. Subsequently, multi-shell multi-tissue constrained spherical deconvolution was performed to
estimate fiber orientation distribution (FOD) maps [56]. Streamline tractography was then conducted
using the iFOD2 algorithm, a probabilistic tracking method that utilizes second-order integration
of the FOD maps [57]. Tracking parameters were carefully chosen to optimize the tractography
and generate accurate white matter pathways from the fetal FOD maps. These included an angle
threshold of 45◦, a cutoff value of 0.01, a specified number of streamlines (100,000), and an FOD
power raised to 6 for enhanced specificity. Additionally, minimum and maximum track lengths were
set to 10 mm and 120 mm, respectively, to target relevant white matter tracts.

3.9 HAITCH: Open-Source Framework and Flexibility

As mentioned earlier, HAITCH framework is publicly available as the first module of our FEDI tool-
box, accessible at https://fedi.readthedocs.io, and https://github.com/FEDIToolbox. This
toolbox includes both the HAITCH implementation and our optimized sampling scheme for fetal
dMRI, making these resources readily available to the research community. HAITCH demonstrates
its versatility by effectively handling various fetal dMRI data types, including single-shell, multi-
shell, or single-echo acquisitions. It further empowers users with a range of options for customization.
These include additional outlier detection methods and alternative registration methods and metrics,
allowing researchers to tailor the framework to their specific needs. For dynamic distortion correc-
tion, besides the methods mentioned previously, users can easily switch to alternative approaches
like Block-Matching [58] or EPIC [59] methods.

To take advantage of the full capacity of HAITCH, we recommend using a blip-reversed dual-echo
EPI sequence. We have proactively shared our in-house built dual-echo spin echo EPI sequence (de-
veloped by co-authors OA and MO) on the Siemens R2C platform. This ensures that researchers will
have all the necessary tools readily available for successful HAITCH implementation and application
in their fetal brain imaging studies.
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Raw Data Slice-wise Volume-wise Static Raw Data Slice-wise Volume-wise Static

Table 2: Comparison of Fetal dMRI Distortion Correction Techniques. This figure illustrates the
impact of different distortion correction techniques on fetal dMRI data. The top row displays dMRI
(TE1) and the bottom row shows dMRI (TE2) images. Left and right panels represent axial and
coronal views, respectively. Each column showcases the results for a different dataset or correction
technique: Raw Data: Uncorrected image exhibiting distortions due to susceptibility variations.
Slice-wise Correction: Distortion correction is applied to individual slices independently.Volume-
wise Correction: Distortion correction is simultaneously applied to the entire volume (HAITCH
approach). Static Correction: Correction based on a static field map, potentially inaccurate due to
fetal motion.

4 Results

4.1 Distortion Correction: Dynamic Field Map Estimation

Field map estimation utilizing both dynamic and static echo reversal correction approaches was
conducted on 27 dMRI scans. The effectiveness of each correction method was evaluated visually
and quantitatively. Fig. 2 presents an illustrative example of distortion correction achieved for
each method. Overall, visual inspection shows that volume-wise dynamic correction is superior
in recovering anatomical brain shape compared to the raw data and other correction techniques.
Corrected dMRI (TE1) and dMRI (TE2) appear to have greater visual similarity than those processed
with other methods.To quantify these observations, Fig. 3 illustrates the SSIM and PSNR statistics
for both b=0 and b > 0 images across all slices for all scans. The analysis reveals that both dynamic
field map estimation methods have significantly enhanced the SSIM and PSNR values compared
to the raw data (uncorrected). The volume-wise approach yielded the highest SSIM and PSNR,
indicating superior performance in correcting geometric distortions. Conversely, static field map-
based correction resulted in lower SSIM and approximately similar PSNR compared to raw data.
This highlights its ineffectiveness in addressing motion-induced field inhomogeneities.

4.2 Evaluation of the Motion Correction

Fig. 4 showcases the effectiveness of the motion correction stage of our framework by compar-
ing motion-corrupted fetal dMRI data (first and third columns) with their corresponding motion-
corrected reconstructions (second and fourth columns) for two subjects A and B. The raw data
exhibits significant motion artifacts, including signal dropouts and inconsistencies in head orienta-
tion across multiple volumes. In contrast, the motion-corrected images in Fig. 4 (second and fourth
columns) show dramatic improvements. Signal intensity is successfully recovered, revealing clear vi-
sualization of the fetal brain anatomy across all three orthogonal views (axial, coronal, and sagittal).
This visual comparison emphasizes HAITCH’s capability to effectively mitigate motion artifacts, and
leads to improved data quality suitable for further analysis.

To gain deeper insights into the motion correction process, Fig. 5 depicts the estimated motion
parameters µ for subject B. The observed translations range from -12 mm to 20 mm, and rotations
range from -24 to 10 degrees. The motion profile reveals a slowly varying baseline started by one
extended period and punctuated by three shorter bursts of rapid motion. These transient motion
events correspond to regions with low slice weights in the lower panel of Fig. 5, as identified by Z-score.
This alignment highlights the efficacy of the HAITCH motion correction stage, as it successfully
accounts for inter-volume head motion inconsistencies, corrects for intra-volume motion artifacts,
and ultimately recovers signal intensity and improves slice uniformity.
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Figure 3: Quantitative Evaluation of Distortion Correction Techniques using SSIM and PSNR.
Boxplots summarize the distribution of SSIM (left) and PSNR (right) values across 27 subjects.
Results are presented for raw data and data processed with: Slice-wise correction, Volume-wise
correction (HAITCH approach), and Static field map correction obtained from the three echo reversal
correction methods. Red boxes represent b=0 images, while blue boxes display diffusion-weighted
images (b > 0). Higher SSIM and PSNR values indicate better image quality and reduced distortion.
As evident from the plots, the volume-wise dynamic correction method achieved the best results
across both metrics and image types.

Raw Data (Subject A) Corrected Data (Subject A) Raw Data (Subject B)

Corrected Data (Subject B)

Figure 4: Example fetal dMRI scans before and after motion correction. The left two columns display
axial, coronal, and sagittal views of the raw data (pre-processed up to B1 bias field correction step)
(Subject A) and corresponding motion-corrected data, respectively. Each row represents a specific
volume (index: 5, 8, 15, 18, 27, 30, 31 from top to bottom). The right two columns show similar
data for Subject B. Each row represents a specific volume (index: 7, 37, 38, 50, 58, 60, 87 from top
to bottom).

Fig. 6 showcases HAITCH performance even in challenging scenarios, such as low SNR data
exemplified by subject C. The figure displays three volumes with close temporal proximity and
various brain orientations. Despite this, our framework successfully recovers anatomical details. The
well-defined masked brain in the right panel of Fig. 6 also demonstrates the robustness of our deep
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Figure 5: Estimated motion parameters over time and slice weights for Subject B: The top two
panels show the estimated motion parameters: translation (mm) and rotation (Euler angles). The
bottom panel displays the slice weights calculated using the modified Z -score method. Peaks in
motion parameters coincide with low slice weights (outliers).

learning model in fetal brain segmentation. Note that segmentation can be performed before or after
motion correction depending on the registration stage which can be sometimes better when keeping
the background.

Furthermore, we employed quantitative analysis to complement the visual assessment. Fig. 7
presents the distribution of SSIM values for raw and motion-corrected data across slices between
the first and last volumes (b-value = 900 s/mm²) for eight subjects. The initial and final volumes
represent a significant temporal gap during the scan, making them particularly susceptible to intra-
scan motion. Our analysis revealed a significant increase in SSIM values after motion correction,
which indicates enhanced data integrity and reduced artifacts. This quantitative finding reinforces
the visual observations of improved anatomical detail and strengthens the overall validation of the
HAITCH framework.

Figure 6: Fetal dMRI with Motion Correction in Challenging Scenario (Subject C). The left column
shows raw data from three volumes with close temporal proximity (index: 33, 46, 49 from top to
bottom) with significant outliers, signal dropouts, and various brain orientations. The right column
displays the corresponding masked reconstructed volumes with improved anatomical details.
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Raw Data Corrected Data

Figure 7: Distribution of SSIM Values for Raw and Motion-Corrected dMRI. Boxplots compare the
SSIM distribution across slices of the first and last volume (b-value = 900 s/m2) for eight subjects.
Raw data (red) exhibits lower SSIM compared to motion-corrected data (blue), indicating improved
data integrity after motion correction.

4.3 Anatomical Accuracy of FOD and Tractography

While visual inspection of the dMRI data itself provides valuable insights, an additional assessment
of the framework’s effectiveness in motion correction can be achieved by analyzing and comparing
the derived white matter pathways with structural scan. Fig. 8 demonstrates good alignment of the
FODs with the developing white matter structures, as visualized by the tractography streamlines
overlaid on the T2w image. This qualitative finding suggests the potential of the framework for
generating reliable dMRI data suitable for studying fetal brain development.

Figure 8: Fetal Brain Anatomy Visualized with HAITCH Output. Left panel displays the fiber
orientation distribution (FOD) overlaid on a T2-weighted image (background) of a 35-week fetus.
Tractography streamlines, colored according to diffusion directions, are shown in the right panel.

5 Discussion

Fetal dMRI faces unique challenges due to inherent motion and susceptibility-induced distortions.
These factors lead to scattered data in the q-space domain and result in inconsistencies within and
across volumes regarding the diffusion encoding direction and the corresponding diffusion-weighted
contrast. Additionally, fetal motion and maternal breathing cause significant fluctuations in the B0
inhomogeneity during scans and render static field map correction techniques ineffective. These lim-
itations necessitate dynamic field map estimation and multi-dimensional q-space reconstruction for
reliable analysis of the fetal brain microstructure. HAITCH addresses these challenges by incorpo-
rating several strategies. First, the recommended multi-shell HARDI sampling scheme in HAITCH
enriches the information content of the acquired data while enhancing its tolerance to fetal motion.
Second, HAITCH leverages a dual-echo EPI sequence for dynamic field map estimation. Classic
static field map correction shows inaccurate results due to motion occurring between the two un-
weighted (b=0) scans. Third, HAITCH builds on a data-driven representation that spans both the
angular and the radial q-space domain, using SH alongside generalized Laguerre polynomials. The
volume-level registration proved to be effective across hundreds of processed datasets. This feature
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is attributed to the effectiveness of the new slice and voxel-level weighting and reconstruction steps
in HAITCH to handle motion-corrupted data. The reconstructed fetal dMRI data obtained from
HAITCH allows fitting various diffusion models, which paves the way for subsequent processing steps
and enables a deeper understanding of tissue microstructure and white matter connectivity within
the developing brain.

HAITCH is the first and the only publicly available tool, to-date, to process multi-shell and/or
multi-echo fetal dMRI data. While validating the accuracy of HAITCH, it was not feasible to quan-
titatively compare it with the existing methods due to their limitations - limitations that HAITCH
sought to address. The SVRTK [3] toolkit includes modules for fetal dMRI processing, but is re-
stricted to single-shell data and cannot readily process multi-shell or multi-echo dMRI data. The
Spherical Harmonics And Radial Decomposition (SHARD) [36], which was originally developed for
neonatal dMRI data, requires an interleaved phase encoding scheme, which is based on a specific
sequence described in [60]. SHARD utilizes an invariant B0 field map, neglecting dynamic field
variations. An extended version of SHARD for fetal dMRI, explained by [61], utilizes the spin and
field echo (SAFE) sequence for phase-based dynamic B0 estimation following [62]. While promising,
this method relies on MRI sequences that may not be accessible to many researchers, and involves
complex phase subtraction, which can be challenging. [62] reported limited accuracy of phase-based
B0 estimation in the presence of motion exceeding 8.1 degrees, which may not be sufficient for all
fetal MRI applications. [2] proposed a slice-level diffusion encoding and interleaved double spin-echo
sequence for distortion and motion correction. We did not have access to this sequence and did
not re-implement it on our scanner platform. Future work warrants a detailed comparison between
various sequences and their effectiveness in the presence of fetal motion and geometric and intensity
distortions that vary by fetal and maternal motion.

The information gained by fetal diffusion MRI cannot be obtained by any other imaging modal-
ity. Therefore, there has been significant interest in studying the development of the fetal brain
microstructure and structural connectivity using dMRI. Early ex-vivo studies [63–68] have shed
light on the capacity of dMRI to study the microstructure of the fetal brain. These studies were
compared to histology and have also been used to indirectly validate in-vivo studies, e.g. [13]. How-
ever, postmortem fetal brain samples are scarce, and may not be available in sufficient numbers to
study any specific disorder. In-vivo fetal dMRI is challenging due to fetal motion, geometric dis-
tortion, and the extremely low SNR available from the small fetal brain anatomy. Despite these
impediments, significant progress has been made in the field: various motion-robust fetal dMRI
techniques have been proposed [3, 20, 21, 23], atlases have been built and released [6, 11, 12, 69, 70],
and several studies characterized normal and abnormal development of the fetal brain based on
dMRI [5, 7–10, 71]. Almost all of these works, however, were based on the diffusion tensor model,
which is known to have significant limitations in depicting complex fiber structures and connections.
Advanced diffusion models that are needed to characterize complex brain connections and study
subtle differences between groups of normal and abnormal fetuses, require multi-shell high-angular
resolution dMRI, which cannot be processed reliably with any of the existing tool for fetal dMRI pro-
cessing. By providing an open-source multi-stage framework for multi-shell high-angular resolution
fetal dMRI, HAITCH fills in this critical gap.

6 Conclusion

We have developed HAITCH, a novel framework and an open-source public toolkit for acquiring
and reconstructing high-quality fetal diffusion-weighted MRI. HAITCH utilizes a dual-echo EPI
sequence which enables the dynamic field map estimation and reduces motion-related distortions.
Our framework employs an advanced scheme that enriches the informational depth of the data
and improves its motion tolerance. For motion correction and reconstruction, HAITCH leverages
neighborhood directional information and a sophisticated data-driven model-free representation in
conjunction with slice weighting and registration, effectively addressing signal dropouts and scattered
data. Rigorous validation experiments on fetal dMRI scans have demonstrated HAITCH’s ability
to significantly improve the integrity and reliability of fetal brain diffusion MRI data, paving the
way for more accurate analyses of fetal brain development. The enhanced data quality facilitated by
HAITCH has the potential to unlock new insights into the complex processes of brain development
in-utero.
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