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Abstract

Hepatocellular carcinoma is one of the most heterogeneous cancers, as reflected by its

multiple grades and difficulty to subtype. In this study, we integrated copy number variation,

DNA methylation, mRNA, and miRNA data with the developed “cluster of cluster” method

and classified 256 HCC samples from TCGA (The Cancer Genome Atlas) into five major

subgroups (S1-S5). We observed that this classification was associated with specific muta-

tions and protein expression, and we detected that each subgroup had distinct molecular

signatures. The subclasses were associated not only with survival but also with clinical

observations. S1 was characterized by bulk amplification on 8q24, TP53 mutation, low lipid

metabolism, highly expressed onco-proteins, attenuated tumor suppressor proteins and a

worse survival rate. S2 and S3 were characterized by telomere hypomethylation and a low

expression of TERT and DNMT1/3B. Compared to S2, S3 was associated with less copy

number variation and some good prognosis biomarkers, including CRP and CYP2E1. In

contrast, the mutation rate of CTNNB1 was higher in S3. S4 was associated with bulk

amplification and various molecular characteristics at different biological levels. In sum-

mary, we classified the HCC samples into five subgroups using multiple “-omics” data.

Each subgroup had a distinct survival rate and molecular signature, which may provide

information about the pathogenesis of subtypes in HCC.

Introduction

Hepatocellular carcinoma (HCC) is the fifth leading cancer worldwide. It is also the third most
common cause of death in all cancers [1]. HCC has multiple causal factors, including alcohol
consumption, hepatitis B/C virus (HBV/HCV) infection and cirrhosis [2]; therefore, it is more
heterogeneous than other cancer types and can have varying prognosis. Thus, it is important to
classify patients into subgroups to enable precise therapy.
Over the past decade, efforts have been devoted to the molecular classification of HCC.

These studies were mainly based on an analysis of genomic alterations, including somatic
mutations and copy number variations [3]. Transcriptomic alterations consisting of gene
expression changes and microRNA re-patterning [4, 5] were also identified.WNT [6],
mTORC [7], and other important pathways in carcinogenesis have been detected and used for
classification, and subclasses based on CTNNB and AXINmutations have been identified.
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However, the clinical application of the HCCmarkers identified in previous studies is limited
by the heterogeneous origins of carcinogenesis within the sample sets used in each respective
study [8].
The alterations of cancer cells can occur on various levels, including somatic mutation, copy

number variation (CNV) [9], methylation [10], transcription and miRNA [11, 12]. Studies
have indicated that the integration of these factors improves HCC classification [13]. TCGA
(http://cancergenome.nih.gov/) provides thousands of samples of various cancers, including
data on somatic mutation, DNA methylation, miRNA-seq, copy number variation (CNV), and
clinical observations.A lack of methods to integrate these data regarding different biological
characteristics has posed a huge problem. In recent years, the method based on the “cluster of
cluster” has proven to be a powerful way to detect heterogeneity during carcinogenesis [14, 15],
and it is an effectivemethod for cancer classification. It is independent of the feature number
of each platform, and the contribution of each platform is determined by the cluster number of
each biological level. However, the integration of multiple “-omics” data for HCC samples has
not been conducted previously, and limitations exist in this method.
In this vein, we screened the landscape of DNA methylation, copy number variation, gene

expression and miRNA levels in over 400 samples of HCC provided by TCGA.We employed
and further developed the “cluster of cluster” method to analyze the data. We identified five
subgroups according to the improved method, and the subgroups had distinct survival rates,
clinical observations and molecular signatures. Subsequently, we combined somatic mutation
data for these samples with the subgroups. The mutation landscapes of several important
HCC-related genes were significantly different among the subgroups, including TP53,
CTNNB1, BAP1, MUC4 and SAGE1. The subgroups were significantly correlated with clinical
observations.Distinct molecular signatures identifying each subgroup were summarized,
including telomere demethylation, specific gene promoter methylation, PRSS/PRSS2P, 8q24
amplification, UGT2B17 deletion, prognostic miRNA/mRNA expression, and different protein
expression levels.

Materials and Methods

Copy number variation (CNV) and DNA methylation data pre-analysis

The available samples in each platform used in our study are listed in S1 Table, and the work-
flow pre-processing of the raw data from TCGA is shown in S1 Fig. Copy number variation
data generated by microarray (level 3) were acquired from TCGA. Because the HCC tumor is a
mixture of cell linages, we used the log2 transformed segment mean directly instead of trans-
forming with thresholds. We calculated the average copy-number score of the genetic interval
of genes, and we considered the score to be the copy number alteration of these genes. To avoid
the bias caused by extreme CNV score values, we replaced log2 transformed scores>2 by 2
and those<-2 by -2. Then, the standard deviation (SD) of copy number variation among all
samples for each gene was calculated. Genes with a SD value>0.2 were retained for further
analysis.
We downloadedDNA methylation data from TCGA and combined 375 samples (level 3) to

construct a matrix based on the CpG sites. Loci with NA (not available) in any of these samples
were removed. We calculated the standard deviation (SD) for each locus and retained the top
10000 CpG sites with the highest SD values for further analysis.

mRNA and miRNA pre-analysis

An expression matrix was built with 269 samples from gene scaled estimates (level 3), and only
genes that were detected in all samples were retained for further analysis. We then log2
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transformed the expression levels. Values less than -26 were replaced with -26 (bottom 0.1%).
The standard deviation (SD) of every gene was calculated. The top 6000 genes with the highest
SD values were selected for further analysis. After estimating an expression value by RPM,
miRNAs (level 3) that were detected in all samples were retained for further analysis after log 2
transformation. Values less than 0 were replaced with 0 (bottom 0.1%). The top 80 miRNAs
with the highest SD values were used.

Mutation and protein level

Mutations that were called and curated (level 2) by TCGA were downloaded. The mutation
matrix with samples/genes as columns/rows were constructed (1 as mutated and 0 as non-
mutated). The normalized protein expression levels (level 3) evaluated by microarray were
downloaded from TCGA.

Cluster of cluster (COC) and other analysis

The COCwere performedwith the following steps

1. Divide mRNA into 2 to 15 sub- clusters: 2 to 15 for CNV, 2 to 7 for miRNA, and 2 to 15 for
methylation sites;

2. Divide samples into 2 groups according to the features in sub- clusters on platforms [15];

3. If the one of sample size of the 2 groups is less than 10, replace the values of the features in
sub- clusters with NA (not available) and return back to step 2; if not, divide the next sub-
cluster;

4. Rename the values of samples on sub- clusters with 0 or 1;

5. Combine the sub- clusters to form a matrix. The row represents sub- clusters and column as
samples;

6. Divide samples with matrix constructed in step 5 into 2 to 7 subgroups;

7. Calculate the survival difference of subgroups. If significant, store the sub- cluster number
of platforms; if not, discard the combination;

8. Calculate the recurrence of sub- cluster number of mRNA, miRNA, CNV and DNA methyl-
ation, and select the most recurrent for further analysis;

9. Divide the samples into several groups according to “ConsensusClusterPlus”.

The analysis was performed by R (https://www.r-project.org/). The circos plot was drawn
using the R package “RCircos” [16, 17], and the gene location was displayed with UCSC
genome browser (http://genome.ucsc.edu/).

Results

Cluster of cluster (COC) analysis of HCC samples

In previous studies, “cluster of cluster” has proven to be a powerful tool to integrate multiple
“-omics” data. The contribution of each platform is determined by the number of clusters used
in COC. The number of clusters of each platform depends on the stability of clusters of each
platform. However, the mathematic stability is not equivalent to biological stability. We
hypothesized that samples with different pathogenesis could be correlated with clinical obser-
vations, especially survival. Therefore, we developed a newway to select the most suitable num-
ber of clusters in each platform. Using this method, we found that when the number of sub-
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clusters of CNV/mRNA/miRNA/methylation were 13/15/6/9, respectively, the classification
result was most suitable (S2A–S2D Fig, Fig 1A). The most stable number of subgroups was five
(termed S1-S5) using the R package “ConsensusClusterPlus” [18] (S2E Fig). We used leave one
out cross validation (LOOCV) for subsampling, and the overall accuracy reached 81.3%. The
principle component analysis of the COC analysis revealed that the first four main principle
components clearly distinguish the five subgroups (S3 Fig). We noted that the S1 subgroup had
the worst survival rate (Fig 1B), with 20% of the subjects having a one-year survival rate, and
the S3 subgroup had the best survival rate, with 90% of the subjects having a one-year survival
rate and over 50% having a five-year survival rate. The survival rates of the other three sub-
groups (S2, S4, and S5) were comparable, with 30% of the subjects having a five-year survival
rate. To further validate the classification, we looked into the somatic mutations of HCC
related genes from each sample (Fig 1C). We observed that the mutational rate of TP53 was
higher in S1 (16/23, 70%) than in the other subgroups (39/162, 24%, p = 3e-4). Additionally,
the mutation rate of CTNNB1 in S3 (23/53, 43%) was significantly higher than in the other
subgroups (27/132, 20%, p = 0.008). The mutation rate of MUC4, NLRP2, and SAGE1 in S1
was significantly higher than in the other subgroups (p = 0.008/0.008/0.003, respectively), and
no mutations of BAP1 were detected in S1 (p = 0.003).

Fig 1. Cluster of cluster analysis of HCC samples. The a) heatmap of subclustersfronplatformed were analyzed and subgroups were identified.

We found that the b) survival rate of subgroups were significantly different, and the c) mutation of some genes, especially TP53 and CTNNB1.

doi:10.1371/journal.pone.0165457.g001
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The original COCmethod divided these CNV/mRNA/miRNA/methylation features into 4/
5/5/6 sub- clusters. When using the original COCmethod, each subgroup had distinct charac-
teristics, but the clinical information and important mutations of subgroups were not signifi-
cantly different from each other (data not shown), which indicated that our developedmethod
performs better than the original COCmethod and suggests that the method is more powerful.

Clinical observations and subgroups

To better interpret our classification results, we correlated the subgroups with clinical informa-
tion.We found that gender, alcohol consumption, alpha-fetoprotein (AFP) level, and the
AJCC (American Joint Committee on Cancer) staging level of the primary tumor were factors
associated with these subgroups (Table 1). There were more female patients in S4 and S5 (60%
of total) in contrast to the other subgroups (32% of the total, p = 0.0037). Patients in S1 and S5
were more likely to be involved in alcohol abuse. Fifty-seven percent of patients in S1 and S5
consumed alcohol, whereas the overall ratio was 30% in the other subgroups. Consistent with
the better survival rate of S3, the sample proportion of patients with a high AFP level (>20) in
this subgroup was less than in the other subgroups (24% compared to 54%, p = 0.006). Because
almost all of the samples in the AJCC staging system were N0 and M0, we chose the primary
tumor stage for comparison. A higher primary tumor stage for S1 and S5 was detected, whereas
samples in S2 and S3 were at a relatively lower stage (p = 0.0038). These results indicate that
our molecular classification results are consistent with clinical observations.

Multiple alterations observed in S1

We analyzed the molecular signatures of these subgroups. Due to the small sample size of S5,
we first analyzed S1-S4. In general, we noticed that mRNA4, mRNA9, CNV8, mRNA11,

Table 1. Association between clinical observation and subgroups.

S1 S2 S3 S4 S5 P val

Gender 0.00365

Female 2 27 18 19 8

Male 14 45 39 15 3

Alcohol 0.01115

NO 7 41 41 25 2

YES 5 26 13 7 7

Child_pugh 0.1343

Low(1) 4 31 30 15 6

High(>1) 3 5 2 2 0

AFP 0.00572

Low(<20) 4 27 31 9 3

High(>20) 8 23 10 17 2

AJCC stage 0.00378

1 2 34 30 13 1

>1 14 37 26 21 10

HCV 0.635237

No 0 4 4 3 0

Yes 12 27 24 15 8

Vascular invasion 0.234197

NO 11 44 31 19 8

YES 2 22 20 13 1

doi:10.1371/journal.pone.0165457.t001
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mRNA13 and CNV9 were enriched in S1. Deletions of UGT2B17 (Fig 2A), PRSS2/PRSS3P2,
and GSTT1/GSTTP2 (S3A–S3B Fig) were frequently observed in S1, and other reports indicate
that these genes are frequently deleted in cancer cells. Many samples in this subgroup also
showed amplification at 8q24. In addition, this subgroup had relatively low levels of enzymes
involved in lipid metabolism and oxidation (mRNA4, Figs 1A and 2B). S1 samples also exhib-
ited a relatively higher expression level of genes involved in extracellularmatrix interaction (S2
Table, mRNA11). Hypomethylation was also detected at the promoter region of DCDC2 (dou-
blecortin domain-containing 2, Fig 2C) in S1. According to the protein expression levels from
TCGA (obtained by microarray), relative expression of tumor suppressor genes, including
PTEN, TP53, and BAK, was lower in S1 compared to S2/3/4 (Fig 2D). Meanwhile, oncogenes
including BRAF and CCND1were highly expressed in S1 at the protein level (Fig 2E). The
mutation rate of TP53 in this subgroup was 70% (Fig 1C). These results indicate that S1 is
altered at the genetic, epigenetic, transcriptomic, and protein levels, consistent with the lower
survival rate of patients in this subgroup.

Telomere hypomethylation in S2 and S3

Subgroup specific copy number variations were not detected in S2 or S3. Cell cycle, extracellu-
lar related genes (mRNA3), and plasma genes (mRNA15) were altered in S2 at the transcrip-
tome level (see GO analysis in S3 and S4 Tables). Alterations of DNA methylation in this
subgroup were also observed (Methyl3 and Methyl4, Fig 1A). Hypomethylation of 6q27,
7q36.3, 10p15.3, 10q26.3 17p13.2 and 17q25.3 was characteristic of Methyl3 and Methyl4.
These locations are all terminal regions of chromosomes (Fig 3A). BecauseDNA hypermethy-
lation on telomere regions is an indicator of chromosomal stability, the demethylation of the
telomere DNA sequences is suggestive of relatively unstable chromosomes.
Although we did not detect any specific copy number alterations in S3, specificmRNA,

miRNA and DNA methylation clusters in this subgroup frequently observed.On the transcrip-
tome level, genes involved in cell cycle and extracellularmatrix adhesion (Fig 1A, S3 and S5
Tables for mRNA3 and mRNA2) were up-regulated while lipid metabolism and oxidation
related genes were down-regulated (S6 Table for mRNA4). In addition, HCC diagnostic and
prognostic markers CRP and CYP2E1 had decreased or increased expression, respectively, in
this subgroup (Fig 3B). Additionally, prognostic microRNAs including hsa-mir-199a-1/199a-
2/199b were lowly expressed in this subgroup in comparison to the other groups (Fig 3C,
p<1e-7), especially S2. DNA hypomethylation of the terminal regions in S3 was even more
obvious than in S2 (Fig 3A), indicating greater instability in the telomere region of chromo-
somes in S3. Telomerase reverse transcriptase (TERT) is a well-known gene for telomere elon-
gation. The expression level of TERT was significantly lower in S3 in comparison to the other
subgroups (Fig 3D), consistent with hypomethylation at the end of chromosomes.We also
detected that the key enzymes for DNA methylation maintenance, DNMT1 and DNMT3B,
had significantly decreased expression in S3 (Fig 3D). Additionally, hypermethylation on
Methy5 and Methyl6 were also observed.At the genetic level, the CTNNB1mutation rate in
this group was high (43%). These result suggest that despite the highmutation rate of
CTNNB1, the shortened telomeres and positive prognosis biomarkers contribute to a better
survival rate in the S3 subgroup.

Molecular characteristics of S4

Copy number variations of many genes (especially amplification on 8q24 and PRSS2/PRSS3P2
deletion) were common in S4 (S4 Fig). Previous studies have indicated that amplification on
8q24 is common in HCC samples, but a significantly higher mutation rate (80%) was observed
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Fig 2. Multiple alterations were observed in S1. UGT2B17 deletion is significantly severe in S1 than S2-S4. Subcluster mRNA4 is enriched in

S1, and b) mRNA4 genes were enriched in GO terms involved in lipid metabolism. On methylation level, c) DCDC gene promoter region were

hypomethylated, as indicted by the black rectangle. Onco-proteins were d) highly expressed in S1, while e) tumor suppressor proteins were lowly

expressed in S1.

doi:10.1371/journal.pone.0165457.g002
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in S4 in comparison to other subgroups. Transcriptomic specific cluster features were not
detected in S4. However, unlike the other groups, the epigenetic changes in S4 were sub- cluster
Methyl1 and Methyl7. Hypermethylation of the promoter region of MARCH11, an E3 ligase,
was observed in Methyl7 (Fig 4A). MicroRNAs including mir-203 were highly expressed in

Fig 3. Telomere hypo-methylation was a characteristic of S2 and S3. a) The distribution of methylation clusters. Among them, Methyl1/2/6/7

were hypermethyalted, the others were hypomethylated (shown in Fig 1A). Prognostic marker b) CRP/CYP2E1, and c) miRNA mir-199a-1/mir-

199a-2/mir-199b were significantly different in S2 and S3. Consistent with the hypomethylation of telomere, enzymes involved in d) telomere

elongation and methylation were down regulated.

doi:10.1371/journal.pone.0165457.g003
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this subgroup (Fig 4B), whereas the gene AXIN2 was less expressed in S4 than in the other sub-
groups (Fig 4C). We also detected that the protein expression level of PTEN in S4 was signifi-
cantly higher than those in the other groups at the protein level, whereas the expression of
CCND1was low (Fig 2D and 2E).

Molecular characteristics of S5

Due to the small sample size of S5, the important characteristics of S5, including the protein
levels of TP53/BAK/PTEN/CCND1,were analyzed across S1 to S4 (data not shown). The most
important signatures of S5 were clusters mRNA10, mRNA12, mRNA15, and miRNA6 (Fig
1A), and the related features had lower concentrations in S5 (Fig 5A–5C). The mRNA10-asso-
ciated genes were enriched in multiple metabolic pathways, especially oxidoreductase (Fig 5A).
The mRNA12 and mRNA15 genes were enriched in extracellularmatrix terms (Fig 5B–5C),
although the features of S5 occurred rarely on the other platforms. These results suggest that
the alteration of S5 is limited to the transcriptomic level.

Fig 4. Molecular characters of S4. a) Promoter hypermethylation of MARCH11 is detected in S4. On transcriptomic level, prognostic marker b) mir-

203 and c) AXIN2 were highly/lowly expressed in S4, respectively.

doi:10.1371/journal.pone.0165457.g004

Integrated Multiple "-omics" Data Reveal Subtypes of Hepatocellular Carcinoma

PLOS ONE | DOI:10.1371/journal.pone.0165457 November 2, 2016 9 / 15



Fig 5. Expression level of mRNA10/12/15 and GO term of the included genes. The expression heat map of mRNA10/12/

15 cluster (a-c, left panel) and the rasult of GO analysis of the related genes (a-c, right panel).

doi:10.1371/journal.pone.0165457.g005
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Biomarkers of each subgroup

The multiple types of biological data comprehensively reveal the alterations characteristic of
the individual subtypes (Table 2). However, this type of classification is not sufficient for appli-
cation to clinical studies. To facilitate the differentiation of the subgroups, we evaluated DNA
methylation, miRNA, and mRNA data to find biomarkers to distinguish these subgroups with
area under curve (AUC) of a receiver operating characteristic (ROC) curve (Table 3). We
found that MYBL2 (gene), SMOC2 (gene), SLC1A5 (gene), cg27046920 (CpG loci), and F2
(gene) were effective biomarkers of S1, S2, S3, S4 and S5, respectively, with relatively high AUC
for each subtype, indicating the diagnostic efficacy of these genes.

Discussion

The integration of multiple biological levels of data facilitates cancer classification, especially
for highly heterogeneous cancer. In our work, we integrated the copy number variation, DNA
methylation, gene expression and microRNA expression in more than 400 samples. Among
them, all data for multiple biological levels were available for 256 samples. We performed “clus-
ter of cluster” analysis of these samples, and five distinct subgroups were identified.We vali-
dated the findings with cross-validation and PCA analysis, and the differences between
subtypes were also detected at the genetic mutation level. Each subgroup had molecular signa-
tures that were either previously reported or newly found. Consistent with this result, the clas-
sification is associated with gender, alcohol intake, AFP level, and the AJCC staging system.
Altered features in most samples include the amplification of the 8q24 genes HLA-DQB/

DQB and the overexpression of IGF2/H19. Among the samples, 8q24 is a frequently amplified

Table 2. Summary of molecular characters of S1-S4.

S1 S2 S3 S4 S5

Clinical worst survival medium survival Best survival medium survival median survival

CNV UGT2B17/PRSS2/

PRSS3P2 deletion, 8q24

amplication

NA NA 8q24 amplication NA

Methylation DCDC2 promoter

hypomethylation

telemere

hypomethylation

more telemere

hypomethylation

MARCH11 promoter

hypermethylation

NA

mRNA low expression of lipid

metabolism and oxidation

genes

highly expressed cell

cycle genes

lowly expressed cell cycle

genes,CRP and highly

expressed CYP2E1

Lowly expressed

AXIN2

low expression of

oxidoreductase, extracellular

matrix, and PPAR pathway

miRNA NA highly 199a-1,199a-

2,199b

lowly 199a-1,199a-2,199b high miRNA 203 low expression of hsa-mir-194-

1, hsa-mir-194-2, hsa-mir-192,

hsa-mir-122

mutation High TP53 mutation NA high CTNNB mutation NA NA

protein High BRAF/CCND1; low

TP53/CTNNB/BAK

NA Low BRAF/CCND1; high

TP53/CTNNB/BAK

low CCND1 NA

doi:10.1371/journal.pone.0165457.t002

Table 3. The AUC of character features for each subgroup.

Gene Name Entrez S1 S2 S3 S4 S5

MYBL2 4605 0.866716 0.509491 0.779459 0.568002 0.632479

SMOC2 64094 0.609527 0.784682 0.756944 0.504313 0.528965

SLC1A5 6510 0.794274 0.61019 0.882749 0.524755 0.812599

cg27046920 / 0.591139 0.677123 0.540643 0.859033 0.789807

F2 2147 0.650253 0.57023 0.601754 0.541061 0.99905

doi:10.1371/journal.pone.0165457.t003
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locus containing a set of oncogenes in many cancer types [19, 20]. Increased expression of
H19/IGF2 was observed in our study, as in previous reports [21, 22].
We noted that UGT2B17, an enzyme that catalyzes the transfer of glucuronic acid from uri-

dine diphosphoglucuronic acid to a variety of substrates, was significantly deleted in S1.
UGT2B17 is a frequently reported gene in various cancers and is frequently associated with
polymorphism deletion. According to previous reports, up to 44% of the patients had a deletion
of UGT2B17 in ChineseHBV affectedHCC samples [4], and deletion of this gene was reported
to be associated with increased prostate cancer risk, TP53 mutation, and relapse of head and
neck carcinoma. Additionally, hypermethylation of the DCDC2promoter was detected in S1.
DCDC2 is a candidate tumor suppressor gene and is associated with poor prognosis [23]. In
addition, well-known tumor suppressor genes including PTEN and TP53 were decreased,
whereas oncogenes were highly expressed in S1. The instability of the genome, epigenome,
transcriptome, miRNome and proteome makes the S1 survival rate lower than the other sub-
groups, which suggests that the pathology of this subtype may be a top-down dysfunction of
multi “-omics”.
Both S2 and S3 had hypomethylated chromosome terminal regions and lower TERT and

DNMT1/3B expression levels (as observed in Methyl3 and Methyl4). However, the hypo-
methylation of Methyl5/6 was also identified in S3, which suggests that S3 is less stable. Some
transcriptomic characteristic genes were associated with poor prognosis, including increased
CYP2E and attenuated CRP and other genes involved in the cell cycle. According to a previous
study, CYP2E1 is decreased in HCC, and the overexpression of CYP2E1 [24] can induce apo-
ptosis of HCC cell lines [25]. A high CRP expression level is associated with poor prognosis
and promotes portal vein invasion in HCC [26, 27]. TERT and DNMT1/3b expression is sig-
nificantly lower than in the other groups. The hypomethylation of telomeres and lack of
enzymes to elongate telomeres causes cell death. Cells with low DNMT1/3B expression are
prone to apoptosis, which is consistent with the result that the tumor size (AJCC T stage) was
relatively smaller than in the other groups, leading to a better survival rate. Micro-RNAs,
including has-mir-199a/b, which has been reported to be a poor prognosis marker in HCC,
were also expressed at a low level in S3 [28]. One of the targets of hsa-mir-199a/b is FZD7, the
most important WNT receptor in cancer development and progression [29]. Additionally, the
mutation rate of CTNNB1 in S3 was significantly higher than that of the other subgroups.
CTNNB1mutation was correlated with a favorable prognosis of HCC according to previous
reports [30,31]. We suspect that the underlying pathology of S3 may be the activation of WNT
signaling pathways, thus bypassing telomerase activation and other prognostic biomarkers,
which makes the overall survival rate of S3 higher. S2 may activate or suppress other important
pathways, including cell cycle-related genes, and to some extent, bypasses telomerase.
The number of distinct molecular signatures in S4 was much lower than those of the other

groups. However, we still noticed that in S4, miRNA 203, a tumor suppressor gene that is
involved in invasion and migration [32] and is down-regulated and activates many targets dur-
ing the carcinogenesis of HCC[33,34], was highly expressed in S4. AXIN2, a key gene in the
WNT signaling pathway, had low expression in S4.
Taken together, our integration of multiple biological data levels revealed the landscape of

heterogeneity of HCC and successfully classified subtypes that are associated with cancer sur-
vival by their molecular signatures.

Supporting Information

S1 Fig. Work flow of this work.
(TIFF)
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S2 Fig. Density of a-d) CNV/mRNA/miRNA/methylation in COC analysis and e) “Consensu-
sClusterPlus” analysis show that the subgroup is stable when the number reached 5.
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