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Abstract

Maternal nutrition during the period of early organ development can modulate the offspring’s ability to metabolise excess fat as young
adults when exposed to an obesogenic environment. This study examined the hypothesis that exposing offspring to nutrient restriction
coincident with early hepatogenesis would result in endocrine and metabolic adaptations that subsequently lead to increased ectopic
lipid accumulation within the liver. Pregnant sheep were fed either 50 or 100% of total metabolisable energy requirements from 30
to 80 days gestation and 100% thereafter. At weaning, offspring were made obese, and at ~ 1 year of age livers were sampled. Lipid
infiltration and molecular indices of gluconeogenesis, lipid metabolism and mitochondrial function were measured. Although hepatic
triglyceride accumulation was not affected by obesity per se, it was nearly doubled in obese offspring born to nutrient-restricted mothers.
This adaptation was accompanied by elevated gene expression for peroxisome proliferator-activated receptor y (PPARG) and its
co-activator PGC1a, which may be indicative of changes in the rate of hepatic fatty acid oxidation. In contrast, maternal diet had no
influence on the stimulatory effect of obesity on gene expression for a range of proteins involved in glucose metabolism and energy
balance including glucokinase, glucocorticoid receptors and uncoupling protein 2. Similarly, although gene expressions for the insulin
and IGF1 receptors were suppressed by obesity they were not influenced by the prenatal nutritional environment. In conclusion, excess
hepatic lipid accumulation with juvenile obesity is promoted by suboptimal nutrition coincident with early development of the fetal liver.
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Introduction

Chronic excess energy intake combined with sedentary
behaviour results in obesity, hyperlipidaemia and insulin
resistance (Bellisari 2008). These adaptations are associ-
ated with the development of the metabolic syndrome
and non-alcoholic fatty liver disease (NAFLD; Dixon
et al. 2001), conditions now occurring in substantial
numbers of children and adults (Moscatiello et al.
2007, Lidofsky 2008). We have recently established an
ovine model for the metabolic syndrome, which
demonstrates differential adaptations following exposure
to a post-weaning obesogenic environment that is
dependent on the animal’s prenatal nutritional environ-
ment (Williams et al. 2007, Sebert et al. 2009). This is
important because in fast developing countries, such as
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India and China, the adoption of a more western lifestyle
has resulted in generations of children and young adults,
many previously undernourished in utero, being
exposed to an environment of plenty, potentially
predisposing them to the early development of obesity
and its complications.

Irrespective of the in utero environment, young
adult obese sheep exhibit raised fasting plasma non-
esterified fatty acid (NEFA), leptin and insulin (Williams
et al. 2007, Sebert et al. 2009), together with molecular
markers of inflammation in the kidney and adipose tissue
(Sharkey et al. 2009a, 2009¢). However, obese offspring
born to nutrient-restricted mothers demonstrate greater
insulin resistance as indicated by raised insulin (Sebert
et al. 2009), enhanced ectopic lipid accumulation in
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the heart (Chan et al. 2009) and impaired function of the
endoplasmic reticulum in adipose tissue (Sharkey et al.
2009b). These findings raise the question as to whether
in utero nutritional programming followed by exposure
to an obesogenic environment fits with a ‘two hit’
hypothesis for the pathogenesis of NAFLD (Day 2002).
The first challenge would cause insulin resistance and
chronic inflammation (Xu et al. 2003), while the second,
following exposure to an obesogenic environment,
would result in hepatic steatosis (Brunt 2007), fibrosis
and abnormal mitochondrial B oxidation (Tessari et al.
2009). We therefore hypothesised that ectopic lipid
accumulation would be amplified with obesity in
offspring born to nutrient-restricted mothers as hepatic
endocrine sensitivity to both glucocorticoids and insulin-
like growth factors (IGF) is reset during development in
these animals (Hyatt et al. 2007).

To date, numerous small animal models dependent on
the presence of a genetic defect and/or the consumption
of more extreme diets either in adulthood (Weltman
et al. 1996, Enriquez et al. 1999, Lieber et al. 2004,
Ayala et al. 2009, Fu et al. 2009, Li et al. 2009) or in early
life (Bruce et al. 2009) have been adopted to study
NAFLD. They have shown that peroxisome proliferator-
activated receptor o (PPARA), a regulator of a number of
mitochondrial fatty acid metabolising enzymes in the
liver, underpins the development of NAFLD. We,
therefore, examined some of these primary regulators
of hepatic energy metabolism in order to determine
whether these are differentially affected by obesity and
in utero exposure to maternal nutrient restriction.
Ultimately, we aimed to establish a developmental
model of NAFLD based on a large mammal and
mediated by changes in dietary intake, rather than
composition, through pregnancy. Studies in NAFLD are
particularly confusing due to the multiple potential
sources of excess triglyceride (TAG), i.e. de novo
synthesis, uptake of NEFA released from adipose tissue
lipolysis, uptake of dietary TAG, reduced hepatic fatty
acid oxidation and reduced release of TAG in the form of
very low-density lipoproteins. In a recent study (Fabbrini
et al. 2008, 2009), NAFLD was associated with changes
in all of these indices. Sheep therefore represent a
particularly interesting model for examining lipid
trafficking between tissues because de novo synthesis
of NEFA is restricted to adipose tissue, which is the only
source of long-chain TAG (Ingle et al. 1972).

Results
Body composition, liver weight and metabolic profile

Complete body composition and metabolic profiles at
1 year of age for all lean (L), obese (O) and obese offspring
born to nutrient-restricted mothers (NRO) have been des-
cribed previously (Williams et al. 2007, Sebert et al. 2009)
but data essential for the full interpretation of the new
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data obtained from the liver are included in this study.
Obesity resulted in an increased total fat mass irrespective
of the prenatal nutritional environment (i.e. L: 2.540.3;
O: 8.04+0.3; NRO: 7.7+0.6 g/kg (P<0.001)) and had
no effect on relative liver weight (i.e. L: 10.3+0.3;
0:9.940.6; NRO: 10.1 0.6 g/kg). Obesity was accom-
panied by raised fasting plasma NEFA, leptin and insulin
concentrations, with the insulin response being enhanced
in the NRO animals (insulin — L: 0.6+0.1; O: 1.0+0.3;
NRO: 1.6 +0.3 ng/ml (P<0.05)) but all animals remained
normoglycaemic (glucose — L: 4.6+0.3; O: 5.94+0.7;
NRO: 5.3 +0.7 mmol/l).

Hepatic TAG concentration and histological analysis

Although juvenile-onset obesity alone had no effect on
hepatic TAG content, this was significantly raised in
obese offspring born to nutrient-restricted mothers
(Fig. 1a). Hepatic lipid content, determined by Oil red
O staining as an index of macrovesicular lipid infiltra-
tion, was only raised in obese animals born to control fed
mothers (Fig. 1b). In contrast, microvesicular steatosis
was observed in the NRO group (Fig. 2). This was
confirmed by the raised Kleiner scores for both steatosis
(L: 0; O: 1; NRO: 3) and ballooning (L: 0; O: 0; NRO: 1)
(but not inflammation) that is in accord with the TAG
analysis (Brunt 2007).
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Figure 1 Effects of juvenile-onset obesity and early-to-mid gestational
maternal nutrient restriction on hepatic (a) triglyceride content and
(b) macrovesicular lipid infiltration as assessed by Oil red O staining.
Values are expressed as means +s.e.m. for lean (L, n=28), obese

(O, n=8) and offspring born to nutrient-restricted mothers during
early-mid gestation (NRO, n=9) at 1 year of age. Significant effects
of juvenile-onset obesity (i.e. L versus O) and prenatal nutrient
restriction (O versus NRO) were assessed using Student’s unpaired
t-test: *P<0.01, **P<0.005.
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Figure 2 Effects of juvenile-onset obesity and early-to-mid gestational maternal nutrient restriction on hepatic macrovesicular lipid infiltration as
assessed by Oil red O staining with typical examples of liver histology from each of the following groups (a) lean; (b) obese and (c) obese offspring
born to nutrient-restricted (NR) mothers. Magnification is X 20; note the macrovesicular lipid infiltration in the obese animals (b) compared with the
microvesicular steatosis (as indicated by the arrow) as observed in the obese offspring born to nutrient-restricted mothers (c).

Hepatic gene expression

Following obesity, expression of genes that determine
hepatic sensitivity to cortisol (i.e. the glucocorticoid
receptor and 118 hydroxysteroid dehydrogenase (HSD)
type 2) and glucose (i.e. phosphoenolpyruvate carboxy-
kinase (PCK2 (PEPCK)) and glucokinase IV) were all
significantly increased while insulin-responsive genes
including insulin receptor (IR), IGF1 receptor (IGFIR),
IGF-binding protein 3 (IGFBP3), GH receptor (GHR)
and PPARA were all decreased irrespective of prenatal
diet (Table 1).

Mitochondrial uncoupling protein 2 (UCP2) was also
significantly increased in obese animals, a response that
was unaffected by maternal diet during pregnancy.
Maternal nutrient restriction followed by juvenile-onset
obesity resulted in an upregulation of PPARG, its
co-activator (PGCla) and IGFBP1 in adult livers of
1-year-old obese sheep. There was no effect of either

prenatal diet or postnatal obesity on hepatic mRNA
abundance for energy-sensing AMP-related kinase
(AMPK), insulin-sensitive adiponectin or inflammatory
markers TNF and interleukin 6 (/L6; Table 1).

Discussion

We have shown that while exposure to a sedentary post-
weaning obesogenic environment alone has no effect on
hepatic TAG content, when this is preceded by prenatal
nutrient restriction coincident with early organogenesis
of the fetal liver, this is significantly raised by early
adulthood. These findings are in accord with adverse
adaptations previously established within adipose tissue
(Sharkey et al. 2009b) and the heart (Chan et al. 2009). In
addition, hepatic TAG accumulation was accompanied
with microvesicular steatosis that is indicative of
advanced steatosis and, therefore, NAFLD (Reddy &
Sambasiva Rao 2006). Taken together, these findings

Table 1 Hepatic gene expression for lean (L, n=38), obese (O, n=8) animals and NR obese (NRO, n=9) at 1 year of age.

Juvenile-onset Prenatal
Metabolic pathways mRNA L (0] NRO obesity restriction
Glucose metabolism PCK2 1.0£0.1 2.7+0.9 4.4+1.1 * NS
Glucokinase IV 1.0£0.4 11£3.4 30+8.4 * NS
Insulin sensitivity and growth Insulin receptor 1.0+£0.4 0.34+0.06 0.240.1 * NS
IGFIR 1.0£0.2 0.3£0.05 0.6%0.1 * NS
IGFBP1 1.0£0.3 1.1+0.2 2.7+0.4 NS *
IGFBP3 1.04+0.2 0.4+£0.1 0.4+£0.1 * NS
GH receptor 1.04+0.2 0.440.1 0.440.1 * NS
Glucocorticoids and inflammation ~ Glucocorticoid 1.0+0.2 3.8+1.1 2.940.5 ¥ NS
receptor
HSD11B1 1.0£0.1 1.7+0.4 4.7+1.1 NS *
HSD11B2 1.010.1 2.0£0.2 4.6%1.0 * *
TNF (o) 1.0£0.3 1.0+0.4 1.2+0.5 NS NS
L6 1.04+0.2 0.5+0.1 0.340.1 NS NS
Lipid metabolism and mitochondrial PRKAA2 1.0+£0.2 22408 2.6+1.0 NS NS
bioactivity PPARA 1.0+0.3 0.2£0.05 0.240.1 * NS
PPARG 1.0£0.7 2.240.6 6.3+1.2 NS *
PGCla 1.0£0.1 0.410.03 6.4£0.1 ! ¥
uce2 1.0£0.1 3.7£0.2 3.94+0.3 ¥ NS

Significant effects of juvenile-onset obesity (i.e L versus O) and prenatal nutrient restriction (O versus NRO) were assessed using Student’s unpaired

ttest: *P<0.05, TP<0.01, *P<0.005.
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support the ‘two hit" hypothesis and offer the possibility
of using the sheep as a model for investigating the
pathogenesis of NAFLD. The lack of NAFLD in those
obese animals born to normally fed mothers is likely
to reflect the much longer duration of exposure to an
obesogenic challenge required to produce these symp-
toms in offspring that have not been nutritionally
programmed (Bruce et al. 2009). Importantly, the hepatic
TAG content of 3% in lean sheep is in accord with
lean adult humans (Szczepaniak et al. 2005), as is the
doubling in TAG accumulation with NAFLD (Kleiner et al.
2005). This is despite the fact that, in sheep, de novo
synthesis of NEFA is restricted to adipose tissue, which
is, therefore, the only source of long-chain TAG (Ingle
etal. 1972).

Obesity and hepatic mitochondrial function

Our study confirms that, as in humans, PPARG gene
expression is normally minimal in the liver and was only
raised in those offspring born to nutrient-restricted
mothers in which lipid accumulation was occurring,
indicative of the onset of NAFLD (Medina-Gomez et al.
2007). Previously, the significance of this adaptation has
been overlooked in small animal models of liver disease
as it is not consistently observed, apparently being
confined to those models showing leptin resistance, i.e.
ob/ob mice (Friedman et al. 1991). Upregulation of
hepatic PPARG in obese offspring born to nutrient-
restricted mothers could, therefore, be a consequence of
raised TAG and/or an increase in IGFBPT mRNA
abundance, which would, if translated into protein,
reduce hepatic bioavailablity of both IGF1 and 2 (Jones
& Clemmons 1995). One consequence of this would be
a decrease in cell proliferation and/or apoptosis in
steatotic hepatocytes (Kmiec 2001).

Obesity, alone, induced a reduction in PGCT«, an
expected response that is normally associated with
hyperglycaemia (Medina-Gomez et al. 2007). PPARG
and its co-activator PGCTa induce the expression of
genes involved in adipogenesis and have a prominent
role in mitochondrial B oxidation of NEFA (Medina-
Gomez et al. 2007). Upregulation of both of these genes
in the livers from offspring born to nutrient-restricted
mothers may represent a compensatory mechanism to
the increased fat within the liver. Conversely, decreased
mRNA abundance of both PGCTa and PPARA in obese
sheep suggests a decrease in hepatic NEFA oxidation but
this was not accompanied by any lipotoxic effects. Mice
deficient in PPARA show a minimal steatotic phenotype
under fed conditions but manifest an exaggerated
steatotic response to fasting (Lee & Gonzalez 1996),
indicating that defects in PPARA-inducible NEFA
oxidation determine the severity of fatty liver phenotype
in conditions reflecting energy-related stress. The
severity of NAFLD would, therefore, be expected
to progress faster with obesity in offspring born to
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nutrient-restricted mothers. Despite an increased
abundance of UCP2 mRNA with obesity, indicative
of increased reactive oxygen species production
(Arsenijevic et al. 2000), PRKAA2 (AMPK) mRNA
remained unchanged and, therefore, would not provide
a protective effect against oxidative stress, which is
consistent with some, but not all, animal (Chavin et al.
1999) and clinical (Ribeiro et al. 2004) studies.

Obesity and hepatic glucose metabolism

In this study, although obesity was accompanied with
hyperinsulinaemia all animals were able to remain
normoglycaemic. Plasma insulin was, however, raised
further in offspring born to nutrient-restricted mothers,
which reflects a resetting of insulin-glucose homeostasis
(Sebert et al. 2009). This response may be mediated
in part through compromised pancreatic develop-
ment (Jones & Ozanne 2009) in conjunction with a
marked insulin resistance within the adipose tissue
(Sharkey et al. 2009b). All obese sheep exhibited raised
expression of glucose-sensitive genes including GR
(NR3CT), PCK2 and glucokinase IV. However, it is unclear
whether this is due to increased cortisol sensitivity as
HSD11B types 1 and 2 were both raised by the same
amount and are likely to be mirrored by changes in activity
(Whorwood et al. 2001). Therefore, it appears unlikely
that hepatic sensitivity to cortisol was reset.

Adult obese sheep were able to maintain normogly-
caemia despite increased transcription of gluconeogenic
genes. The extent to which this adaptation is mediated
by an increase in glycolysis, glycogen storage or
increased uptake in glucose-sensitive tissues remains to
be determined. However, increased glycogen storage
seems unlikely due to the presence of raised plasma
NEFA concentrations (Williams et al. 2007, Sebert et al.
2009), which would be predicted to decrease glucose
conversion into glycogen for storage (Melania et al.
2004). Regardless of the prevailing plasma glucose
concentration, lipid influx and de novo synthesis in
NRO sheep exceeds hepatic lipid export and utilisation,
thereby resulting in the storage of excess glucose as
intrahepatic TAG. Increased glucokinase gene
expression and TAG deposition in NRO animals were
accompanied by the formation of microvesicular lipid
droplets within the hepatocytes. This is an indication that
macrovesicules have burst and is, therefore, a marker of
the severity of NAFLD (Reddy & Sambasiva Rao 2006) in
these animals. In order to clarify this, further studies
should investigate the effects on signalling molecules
(Jump et al. 2005) that act by the transcription factors
hepatocyte nuclear factor 4 (HNF4) and sterol regulatory
element-binding protein-1c (SREBF1 (SREBP-1¢)) to
regulate hepatocyte differentiation and overall lipid
metabolism (Jump et al. 2005, Hayhurst et al. 2008).
Modification of both HNF4 and SREBF1 has been found
associated with obesity-related diseases and may explain
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the link between insulin resistance and lipid-related
alterations (Ueki et al. 2004). Their influence on NAFLD
as yet to be uncovered but their unique ability to use
NEFA as co-factors raises the question as to whether
increase fat deposition in the liver promotes alteration
upon the activity of the factors thus altering lipid
metabolism.

A further finding of this study is that insulin-sensitive
genes within the liver including IR, GHR and IGFIR,
IGFBP3, PPARA and PGCla were downregulated
following juvenile-onset obesity despite the absence of
TAG accumulation. Insulin resistance is an important
mediator of hepatic TAG accumulation (Day 2002),
promoting lipolysis in adipose tissue and influx of NEFA
into the liver. The hyperinsulinaemia that accompanied
obesity is, therefore, likely to have promoted de novo
lipogenesis as well as indirectly inhibiting NEFA
oxidation (Azzout-Marniche et al. 2000). This was
potentially mediated by the decrease in both PPARA
and PGCla gene expression. The exacerbated insulin
response, in conjunction with reduced expression of the
IR, seen in obese offspring born to NR mothers is
predicted to promote insulin resistance (Sanderson &
Smyrk 2005) and is likely to be an important contributory
factor to the onset of NAFLD. Taken together, our
findings suggest that, with time, these animals would
become metabolically unstable, ultimately leading to
hyperglycaemia, oxidative stress and the development of
hepatic fibrosis.

Obesity and hepatic inflammation

Cytokines such as IL6 and TNF, produced by the liver,
are established to play a role in the pathogenesis of
NAFLD (Kmiec 2001, Jarrar et al. 2008), a process that
has been suggested to be ameliorated by adiponectin
(Kmiec 2001). In our sheep model, however, we did not
observe an associated local hepatic inflammatory
response as seen in more advanced clinical cases (Larter
& Farrell 2006, Tessari et al. 2009). The absence of
inflammation is not unexpected, as adult clinical studies
of NAFLD have also demonstrated a limited degree of
hepatic inflammation (Brunt et al. 2009). We can now
use this model to follow the more progressive disorders
associated with NAFLD, which may be specific to
fibrosis and the onset of non-alcoholic steatohepatitis
(Larter & Farrell 2006, Larter & Yeh 2008). These studies
could be combined with an assessment of the changes
in cytokine receptor expression, which are likely to have
an important role in the pathogenesis of NAFLD.

In conclusion, a combination of in utero nutrient
restriction targeted during the period of early liver
development is necessary to promote ectopic lipid
accumulation within the liver following obesity. This
developmental model of an early life nutritional
intervention is confined to changes in the amount of
feed consumed, rather than composition, now offers
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the potential to further understand developmental
influences on fatty acid composition and liver enzymes
with respect to fatty acid oxidation, lipid partitioning,
fibrosis and on both the onset and severity of NAFLD.

Materials and Methods
Experimental animals and tissue collection

The experimental design of this study has been published
previously (Williams et al. 2007, Chan et al. 2009, Sebert et al.
2009). Briefly, 25 twin-bearing sheep of a similar weight and
body condition were randomly assigned to receive either a
control (~7-8 MJ/day of metabolisable energy, n=16) or
nutrient-restricted diet (50% of control, n=9) from 30 to
80 days of gestation (term 147 d) and were fed to requirements
at all other times (~12-13 MJ/day). Offspring were delivered
spontaneously and reared by their mothers as singletons (one
twin was killed on day 7) until weaning (10 weeks) with no
mothers producing twins of discordant body weight. There was
no difference in growth rates between the groups either over the
first week of life or subsequently up to the time of weaning. Then
after weaning, control offspring were randomly assigned to either
a lean (L; field (n=8)) or an obesogenic (O; group housed in a
barn 50 m?, i.e. restricted activity (n=8)) environment with the
ratio of male to females being 1:2. NR offspring were also
exposed to an obesogenic environment (i.e. NRO). Obese and
NRO offspring had access to hay and concentrate pellets (crude
protein 140 g/kg, oil 3%, 12.7 MJ/kg dry matter; Manor Farm
Feeds, Oakham, UK) ad libitum in a restricted physical activity
environment to promote increased fat deposition and juvenile-
onset obesity. Obese offspring had ~30% increase in food intake
and ~65% reduction in physical activity, as described previously
(Williams et al. 2007). In contrast, lean animals remained at
pasture and had unrestricted physical activity. Adult offspring
were humanely killed by electrocortical stunning and exsangui-
nation at 1 year of age to enable liver tissue sampling. After
weighing, a representative liver sample from the right hepatic
lobe was flash frozen in liquid nitrogen and stored at — 80 °C until
analysis was undertaken, in duplicate, for each animal. All
procedures were performed in accordance with the UK Animals
(Scientific Procedures) Act, 1986 and approved by the local
ethics committee of the University of Nottingham.

Molecular and biochemical analyses
Lipid extraction and TAG assay

Lipids were extracted from frozen liver tissue (~400 mg) with a
mixture of chloroform and methanol (1:1) and dissolved in tert-
butyl alcohol/Triton X-100 mixture (1/1 by volume) before
enzymatic measurement (Infinity Triglycerides Liquid Stable
Reagent; Thermo Electron, Worthing, UK; Folch et al. 1957,
Danno et al. 1992).

Histological analyses

Approximately, 1 cm?® blocks of frozen liver tissue were cut
from the centre of the right hepatic lobe, embedded in
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optimum cutting temperature compound (OCT; Tissue-Tek;
Miles, Naperville, IL, USA) and stored at —80 °C until being
processed. Frozen OCT liver tissue was cut into 10 um serial
sections using a cryostat (Bright OTF model cryostat, specimen
temperature set at —21 °C). Three random liver sections per
animal were fixed in 3.7% formaldehyde, stained with
haematoxylin-eosin and imaged with a Leica DMRB
microscope connected to Hamamatsu-Open Lab imaging
system under X20 and X40 magnification lenses to assess
liver architecture and density of voids resulting from
lipid infiltration.

Oil red O staining for assessment of intracellular TAG
content and assessment of severity of NAFLD

Oil red O staining was used for quantitative determination of
accumulated TAG in hepatocytes. Briefly, hepatic cryosections
were fixed for 1 h in 3.7% formaldehyde, incubated in a 37%
Oil red O solution for 30 min and washed with distilled
water. Sections were counterstained with Harris’s haema-
toxylin for 1 min, washed with hydrochloric acid (0.1%) for
30s, air dried and mounted with 10% glycerol in Tris-buffered
saline solution. The staining procedure was repeated for three
separate sections per animal to obtain representative results.
Once stained, sections were imaged as above and quantified by
histomorphometry using Volocity software (Improvision,
PerkinElmer, Coventry, UK). The slides were analysed three
times at X40 magnification under a light microscope (Leica
Microsystems, Milton Keynes, UK) for Oil red O staining. The
average surface area of stained lipid droplets was calculated.
Stained cryosections were further analysed for macro- and
microvesicular steatosis. The extent of macrovesicular stea-
tosis, ballooning and lobular inflammation was graded based
on the Kliener scoring system (Kleiner et al. 2005). The intra-
and inter-assay coefficients of variances were <5 and 10%
respectively. All histological analyses were undertaken while
blinded to each intervention group.

Total RNA isolation and RT

Total RNA was extracted from ~500 mg of frozen liver tissue
using Tri-Reagent (Sigma). Total RNA samples were treated
for potential genomic DNA contamination with DNase 1
(Promega Ltd) and their A260/A280 ratio was assessed to confirm
purity and concentration. cDNA was synthesised from 3 ug RNA
using 200 U Superscript Il (Invitrogen Ltd) by RT in accordance
with the manufacturer’s protocol. Standard curves comprising a 1
in 10 dilution of primer-specific gel-purified amplicon:
1-10~% ng/ul was used to ensure PCR amplification efficiency
(1.95-2.0) as described previously (Chan et al. 2009); 78S rRNA
was used as a housekeeping gene and was not found to be
different between any of the study groups. All results were then
calculated using the 272" method (Livak & Schmittgen 2001).

Quantitative real-time PCR analyses

The relative abundance of mRNA transcripts for each gene
together with 785 was determined by quantitative PCR
amplification, using a real-time thermocycler (Quantica,
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Techne Incorporated, Barloword Scientific Ltd, Stone, UK),
Quantitect SYBR green PCR kit (Qiagen Ltd), diluted RT
reactions and 10-15 pmol of the forward and reverse primers
as previously described (Chan et al. 2009). Primer sequences
have been previously published (Bispham et al. 2005,
Muhlhausler et al. 2007, Williams et al. 2007, Sebert et al.
2009) with the exception of GHR (F: AAG CCT GGA GGA AAC
CAT ACG, R: TGC CAC TGC CAA GGT CAA Q), IGF1 receptor
(IGF1R) (F: TCTAAC TTT GTC TTT GCA AGA A, R: TCA CTG
GCC CAG GAA ATG TC), glucokinase IV (F: GAC ATT GAC
AAG GGCATC CT, R: GTG GCCACA GTG TCATTC AC), IGF-
binding protein 1 (IGFBPT) (F: GAT TAG CCA GGG AGC AGC
AGA AG, R: CCG TCC AGC GAA GTC TCA CAC) and IGFBP3
(F: TCC AAG CAT GAG ACA GAATAC GG, R: TTATCC ACA
CAC CAG CAG AAA CC). Real-time PCR conditions were 95 °C
(15 min); 35-40 cycles of 94 °C (45 s), 60 °C (30 5), 72 °C (45 s);
72 °C (15 min) for all primer sets. Gene expression data were
normalised to the lean group (assigned as 1.0) and are,
therefore, presented as a fold change.

Statistical analysis

Normality of data was assessed using the Kolmogorov—Smirnov
test, using SPSS version 16.0 (SPSS, Inc., Chicago, IL, USA) and
log transformed where necessary. Hepatic lipid content and
gene expression data were first analysed by a univariate general
linear model (GLM) procedure with the treatment group as a
fixed factor. Owing to the unbalanced design of the study,
offspring gender was added as a covariate. Selected a priori
comparisons to test for the effects of prenatal nutrition (O versus
NRO) and postnatal obesity (L versus O) were performed using
Student’s unpaired t-tests. Data are expressed as mean values
with their standard errors. For all comparisons, following
Bonferroni correction, statistical significance was accepted
when a probability of 5% was observed (P<0.05).
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