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Objective. )is study aimed to develop a novel ferroptosis-related gene-based prognostic signature for esophageal carcinoma
(ESCA). Methods. )e TCGA-ESCA gene expression profiles and corresponding clinical data were downloaded from the TCGA
database. Ferroptosis-related genes were identified from the literature and public databases, which were intersected with the
differentially expressed genes between ESCA and normal samples. After univariate Cox regression and random forest analyses,
several ferroptosis-related feature genes were identified and used to construct a prognostic signature.)en, the prognostic value of
the complex value and the correlation of the complex value with immune cell infiltration were analyzed. Moreover, function
analysis, mutation analysis, and molecular docking on the ferroptosis-related feature genes were performed. Results. Based on the
TCGA dataset and ferroptosis pathway genes, 1929 ferroptosis-related genes were preliminarily selected. Following univariate
Cox regression analysis and survival analysis, 14 genes were obtained. )en, random forest analysis identified 10 ferroptosis key
genes. )ese 10 genes were used to construct a prognostic complex value. It was found that low complex value indicated better
prognosis compared with high complex value. In different ESCA datasets, there were similar differences in the proportion of
immune cell distribution between the high and low complex value groups. Furthermore, TNKS1BP1, AC019100.7, KRI1, BCAP31,
and RP11-408E5.5 were significantly correlated with ESCA tumor location, lymph node metastasis, and age of patients. KRI1 had
the highest mutation frequency. BCAP31 had the strongest binding ability with small molecules DB12830, DB05812, and
DB07307. Conclusion. We constructed a novel ferroptosis-related gene signature, which has the potential to predict patient
survival and tumor-infiltrating immune cells of ESCA.

1. Introduction

Esophageal carcinoma (ESCA) is a malignant digestive
system cancer with high morbidity and mortality worldwide
[1]. It has two main histopathological subtypes: esophageal
adenocarcinoma (EAC), which is common in western
countries, and esophageal squamous cell carcinoma (ESCC),
which is a dominant pathological type in Asia [2]. Presently,
there are several treatment modalities for ESCA, among
which surgery and radiotherapy are the most common ones
[3, 4]. )ereinto, endoscopic mucosal resection is mainly
used for the treatment of precancerous lesions and early

ESCA [5]. Nevertheless, ESCA is characterized by a high rate
of lymph node metastasis and tumor invasion of adjacent
tissues and organs, resulting in a high percentage of patients
with metastasis before diagnosis [6]. Due to the metastasis,
ESCA patients have a poor prognosis, with a 5-year survival
rate of only 18.3% [7]. Because of the limited therapeutic
strategies for ESCA, there is an additional need for the
development of novel prognostic models.

Ferroptosis is an iron-dependent form of programed cell
death, which is driven by accumulation of iron-dependent
lipid reactive oxygen species [8]. It is well known that a
major hallmark of cancer is its success in evading the
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regulated forms of cell death [9]. )us, the induction of
ferroptosis has recently emerged as a promising alternative
treatment to trigger cancer cell death, especially for ma-
lignancies that are resistant to conventional treatments
[10, 11]. Many genes have been suggested to promote fer-
roptosis in cancer cells, such as tumor protein P53 (TP53)
[12], F-box and WD repeat domain containing 7 (FBXW7)
[13], and glucose-6-phosphate dehydrogenase (G6PD) [8].
DnaJ/Hsp40 homolog subfamily B member 6 (DNAJB6) was
recently reported to promotes ferroptosis in ESCC [14].
Importantly, Lu et al. [15] reported a ferroptosis-related
gene-based prognostic model that independently associated
with the overall survival (OS) of ESCC. Song et al. [16] also
develop a ferroptosis-related gene-based prognostic signa-
ture to predict the OS of ESCC and monitor the immune
status. However, most of the studies focused on ESCC.

In the present study, we intended to develop a novel
ferroptosis-related gene-based prognostic signature for
ESCA based on the gene expression profiles and corre-
sponding clinical data of ESCA patients from public data-
bases. After univariate Cox regression and random forest
analyses, we identified several ferroptosis-related feature
genes and constructed a prognostic complex value.)en, the
prognostic value of the complex value and the correlation of
the complex value with immune cell infiltration were ana-
lyzed. Moreover, function analysis, mutation analysis, and
molecular docking were performed on these ferroptosis-
related feature genes.

2. Materials and Methods

2.1. Data Collection and Processing. )e TCGA-ESCA ex-
pression profile data, variation data, clinical information,
and follow-up information were downloaded from the
XENA database, and the samples of adults older than 18
years were screened. GSE161533 and GSE44021 [17] ex-
pression data and sample information were downloaded
from GEO database. For data preprocessing, probes were
mapped to genes according to the annotation file, and empty
probes were removed. When multiple probes correspond to
the same gene, the maximum value is selected as the ex-
pression level of the gene. )e genes with low expression
were filtered out according to the gene expression level
greater than 1 in at least 10% of the samples.

2.2. Ferroptosis Gene Set Selection. )e ferroptosis-related
gene signature in research of cancers [18, 19], and the da-
tabases of FerrDb [20], MsigDB [21], GeneCards [22] and
KEGG [23], a ferroptosis gene set are integrated. Further-
more, we conducted correlation analysis between these
genes and the normalized expression data of the TCGA-
ESCA dataset, and screened the genes with Pearson’s cor-
relation coefficient greater than 0.6 and a P value less than
1e− 10 as ferroptosis candidate genes.

2.3. Differentially Expressed Genes Analysis. Differentially
expressed gene analysis was performed on the FPKM nor-
malized data in TCGA-ESCA using the limma package [24]

in R. )e |fold change| >1.2 and P value <0.05 were used as
the thresholds for screening differentially expressed genes
(DEGs) between tumor and normal tissues.

2.4. Cox Regression Analysis. )e coxph function of the
survival package [25] was used for univariate Cox analysis of
individual genes or clinical characteristics (stage, gender, and
age). P< 0.05 was used as the threshold to screen prognostic
genes or clinical characteristics. After extracting the corre-
sponding modeling parameters, the forest map was drawn
using the forestplot package [26]. )en, the obtained genes or
clinical characteristics were subjected to multivariate Cox
analysis using the coxph function of the survival package.

2.5. Survival Analysis. Genes related to survival analysis
were screened and grouped by the surv_cutpoint function in
the survminer package [27] or expression median according
to the expression level. Survival information and grouping
information were fitted by the survfit function of the survival
package. Finally, ggsurvplot function in the survminer
package was used for analysis and visualization.

2.6. Feature Factor Screening by RandomForest. )e random
forest was used to further screen potential ferroptosis factors.
)e carat package was used to build a three-fold 10-fold
crossover model, and random forest package [28] was used
for analysis according to the optimized parameters. Finally,
the genes with top 10 MeanDecreaseGini scores were selected
as ferroptosis feature genes. Based on these feature genes,
tumor samples were used to perform prognostic evaluation
and ROC curves were plotted using the pROC package [29].

2.7. Gene Set Variation Analysis (GSVA). )e expression
values of the ferroptosis feature genes were obtained from
the normalized expression data of TCGA-ESCA, and the
GSVA package [30] was used for GSVA analysis of the
normalized expression data to obtain the complex values.

2.8. Prognostic Complex Survival Prediction. )e screened
ferroptosis genes were constructed as the GSVA set. )e
GSVA package was used for GSVA analysis of tumor
samples to obtain the complex value. )e coxph function of
the survival package [25] was used to conduct regression
modeling for the complex value, and the surv_cutpoint
function was used to divide the samples into high- and low-
risk groups according to the complex value, and the pro-
gression-free interval was analyzed.

2.9. Radiotherapy Effect Analysis. )e TCGA-ESCA radio-
therapy data were downloaded using the TCGAbiolinks
package [31]. )e complex score of these cases were divided
into high and low complex value groups using the surv_-
cutpoint function, and then, the radiotherapy effect was
statistically analyzed.
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2.10. Independence Verification of the Complex Value and
NomogramConstruction. In order to verify the independent
prognostic efficacy of the complex value, univariate Cox
analysis was performed on the TCGA-ESCA dataset by
combining clinicopathological features (stage, gender, age,
and complex value). )en, multivariate Cox regression was
used to analyze the overall prognosis of the abovementioned
four factors (stage, gender, age, and complex value) to verify
the independent prognostic effect of the risk score. )e cph
function in the R package RMS [32] was used to construct
the Cox proportional risk regression model, and the survival
package was used to calculate the survival probability. Fi-
nally, a nomogram was constructed using the nomogram
function and a correction curve was drawn to evaluate the
prediction accuracy of the nomogram.

2.11. Immune Cell Infiltration Analysis. )e immune cell
infiltration score file of TCGA was downloaded from the
TIMER2 database [33], and the data related to TCGA-ESCA
samples were screened. )e CIBERSORT [34] score data
were used to compare the differences of immune cells in
samples with different tumor survival times, and the t-test in
the R package rstatix [35] was used to analyze the differences
and calculate Pearson’s correlation between the complex
value and the proportion of immune cells. In addition, the
normalized expression data of GSE161533 and GSE44021
were used for the immune infiltration score analysis using
TIMER2, followed by the difference analysis of immune cells.

2.12. Gene Set Enrichment Analysis (GSEA). )e key fer-
roptosis genes were analyzed with GO biological process
(BP) and KEGG pathway enrichment analyses using the
ClusterProfiler package [36]. Additionally, GO BP enrich-
ment analysis was further conducted using GSEA [37]. For
the same biological processes enriched in the two steps,
similarity calculation and hclust clustering were performed
using the GOSemSim package [38].

2.13. Correlation Analysis of Key Genes and Clinical
Characteristics. )e esophageal tumor location, lymph node
metastasis, radiographic evidence and age in tumor samples, and
the expression levels of the key ferroptosis genes were selected
for mosaic correlation analysis using the vcd package [39].

2.14. Mutation Analysis. TCGA-ESCA Mutect2 mutation
files were downloaded using the R package TCGAbiolinks
[31], followed by the visualization of mutation types using
the R package maftools.

2.15. Molecular Docking. )e corresponding compound
structure information was downloaded from the DrugBank
database [40] and screened according to Lipinski’s rule
(hydrogen bond receptor ≤10, hydrogen bond donor ≤5,
rotatable bonds ≤10, log value of lipo-hydro partition co-
efficient ≤5, molecular weight 180–480, and polar surface
area ≤140). A total of 5464 small molecule compounds were

obtained. )e 3D structural information of the protein
encoded by the tumor characteristic ferroptosis genes was
searched in the PDB database [41]. )e relevant structural
information of BCAP31 was found, and the corresponding
PDB file 4JZL was downloaded. After the related parameters
of AutoDock Vina were set, AutoDock Vina [42] was used to
dock with small molecular compounds, and the interaction
force analysis was performed using the PLIP website [43].
)e result was demonstrated with Pymol.

3. Results

3.1. Data Acquisition. )e TCGA-ESCA dataset included
161 tumor and 11 normal samples; the GSE161533 dataset
included 28 tumor and 28 normal samples; the GSE44021
dataset contained 73 tumor and 73 normal samples. By
integrating the ferroptosis pathway genes in the literature
[18, 19], and the databases of FerrDb, MsigDB, GeneCards,
and KEGG, a ferroptosis gene set containing 292 genes was
obtained. After correlation analysis of these genes and the
normalized expression data of the TCGA-ESCA dataset, 4192
ferroptosis candidate genes were screened with Pearson’s
correlation coefficient greater than 0.6 and P value less than
1e− 10. After integration, 4484 genes were finally obtained.

3.2. Principal Component Analysis (PCA) and Differential
Expression Analysis. )e FPKM expression data of TCGA-
ESCA were processed with the limma package, and low
expression genes were filtered and standardized, followed by
PCA analysis, which showed significant differences between
tumor and normal tissues (Figure 1(a)).

Differential expression analysis revealed that there were
7610 upregulated genes and 6132 down-egulated genes in the
ESCA samples compared with the normal samples
(Figure 1(b)). Venn analysis showed that there were 1929
intersection genes between the DEGs and the ferroptosis
candidate genes (Figure 1(c)).

3.3. Univariate Cox Regression for Prognostic Factors
Screening. )e tumor samples in the TCGA-ESCA dataset
were screened and univariate cox regression analysis was
performed on 1929 ferroptosis candidate genes. )e results
showed that 44 genes were significantly associated with
prognosis of ESCA. )e forest map of the prognostic genes is
shown in Figure 2(a). Tumor OS analysis was performed on
these 44 genes. Using the gene expression median as a
threshold, the samples were classified into high-expression and
low-expression groups. )e expression levels of 14 genes were
significantly correlated with the survival of ESCA (Figure 2(b)),
which were considered as potential ferroptosis factors.

3.4. Further Screening of Ferroptosis Key Genes by Random
Forest. )e potential ferroptosis factors were further
screened by random forest. Genes with the top 10 Mean-
DecreaseGini scores were selected as ferroptosis key genes,
including TNKS1BP1, AC019100.7, RNF185, KRI1,
SPDL1, SLC2A6, BCAP31, RP11-796E10.1, RPL11-
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480I12.5, and RP11-408E5.5 (Figure 3(a)). )e heatmap of
the expression level of these genes is shown in Figure 3(b).
)e results of survival analysis of ESCA samples for these
ten genes are shown in Figure 3(c). )e ROC curves of
each gene to analyze the tumor prognosis are shown in
Figure 3.

3.5. Construction of a Prognostic Complex Value Based on the
Key Genes. )e ten ferroptosis key genes were constructed
as the GSVA defined set. )ere were significant differences
in PFS between groups with high-and low-complex values
(Figure 4(a)). Risk distribution and survival prognosis time
distribution of each group are shown in Figures 4(b) and
4(d). )e correlation heatmap between the key gene ex-
pression levels and high/low complex values is shown in
Figure 4(c).

Based on the TCGA-ESCA radiotherapy data, the ra-
diotherapy effect of patients with a low complex score was
better than that of high complex score. But there was no
significance most likely due to the small sample size
(Figure S1).

3.6. Construction of a Nomogram. Univariate Cox analysis
was performed on the TCGA-ESCA dataset in combination
with tumor stage, gender, age, and progression-free interval
(PFI) survival data, as shown in Figure 5(a). Multivariate
Cox regression analysis suggested that the complex value
was an independent prognostic factor (Figure 5(b)). )en,
the nomogram and calibration curves for one- and three-
year survival were drawn (Figure 5(c)).

3.7. Correlation Analysis of the Complex Value and Immune
Cells Infiltration. )e immune cell distribution differences

in TCGA-ESCA, GSE161533, and GSE44021 datasets are
shown in Figure 6(a). It was found that there was similar
immune cell distribution between groups with high- and
low-complex values in different ESCA datasets. )e corre-
lation analysis between the complex value and the top 5 high
proportions of immune cells (macrophage M0, T cell CD4+
memory resting, Tcell regulatory (Tregs), mast cell activated,
and myeloid dendritic cell activated) is shown in Figure 6(b).

3.8. Functional Analysis of Ferroptosis Key Genes. )e ten
ferroptosis key genes were significantly enriched in the
ubiquitin-dependent ER-associated degradation (ERAD)
pathway, regulation of response to endoplasmic reticulum
stress, and regulation of the ERAD pathway based on the
clusterProfiler package (Figure 7(a)). By using GSEA, GO,
and BP terms of carbohydrate homeostasis, cornification,
digestion, epidermal cell differentiation, and epidermis
development were identified (Figure 7(b)). For the same BP
obtained from clusterProfiler and GSEA, they were mainly
classified into three categories (Figure 7(c)), suggesting that
these genes were involved in similar BP.

3.9. Correlation Analysis between Key Genes and Clinical
Features. )e TNKS1BP1, AC019100.7, KRI1, BCAP31, and
RP11-408E5.5 genes were found to be significantly corre-
lated with esophageal tumor location, radiographic evidence
of lymph node metastasis, and age. )e esophageal tumor
location was distal in most cases, and a small number of
samples presented radiographic evidence of lymph node
metastasis. High expression of KRI1 and BCAP31 predis-
posed to lymph node metastasis in patients under 60 years of
age. Low expression of RP11-408E5.5 reduced lymph node
metastasis in patients with distal esophageal tumor location.
In patients over 60 years of age with high expression of
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Figure 1: (a) Principal component analysis of the TCGA-ESCA dataset. (b) )e Volcano plot of differentially expressed genes between
ESCA and normal samples in TCGA. (c) Venn diagram of the intersection of differential genes and ferroptosis-related genes.
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Figure 2: (a) )e forest map of 44 prognostic genes. (b) )e survival curves of 14 ferroptosis-related genes.
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heatmap of ferroptosis key genes. (c) )e ROC tumor prognosis curve of ferroptosis key genes.
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TNKS1BP1 and low expression of AC019100.7, their
esophageal tumor location in the middle part was less prone
to lymph node metastasis (Figure 8).

3.10. Mutation Analysis of Key Genes. )ere was a high
incidence of missense mutation in the key genes
(Figure S2A). Specifically, missense mutation and frame shift
mutation accounted for 43% in KRI1, missense mutation
and splice site accounted for 29% in RNF185, and missense
mutation accounted for 14% in BCAP31, SLC2A6, and
TNKS1BP1. )e point mutation type is shown in Figure S2B.
)e point mutation distribution of KRI1 is shown in
Figure S2C.

3.11. Screening of Potential!erapeutic Compounds Based on
Molecular Docking. )e top three small molecule com-
pounds with the strongest binding ability for BCAP31 were
DB12830, DB05812, and DB07307 (Figure 9). )e top 10
compounds with the highest docking score with BCAP31 are
shown in Table 1.

4. Discussion

Selective induction of cancer cell death is presently the most
effective anticancer treatment [44, 45]. )ere are accumu-
lating evidence showing that ferroptosis, a type of pro-
grammed cell death identified in recent years, plays a crucial
role in tumorigenesis and the efficacy of cancer treatment
[9, 45, 46]. )erefore, analysis of ferroptosis-related genes in

ESCA may help identify novel biomarkers for prognosis and
targeted therapy.

In this study, we focused on ferroptosis-related genes
and investigated their influence on the prognosis of ESCA.
Based on the TCGA dataset and the ferroptosis pathway
genes obtained from the literature and public databases,
1929 ferroptosis-related genes were preliminarily selected.
Following univariate Cox regression analysis and KM sur-
vival analysis, 14 genes were screened as ferroptosis-related
factors. )en, random forest analysis further screened 10
ferroptosis key genes, which were used to construct a
prognostic complex value. )e low-complex value group
indicated a better prognosis and radiotherapy effect com-
pared with the high-complex value group. Further univariate
and multivariate Cox regression analyses revealed that the
complex value was an independent prognostic factor. Ad-
ditionally, in different ESCA datasets, there were similar
differences in the proportion of immune cell distribution
between high- and low-complex value groups. Furthermore,
TNKS1BP1, AC019100.7, KRI1, BCAP31, and RP11-408E5.5
genes were significantly correlated with ESCA tumor lo-
cation, lymph node metastasis, and patient age. Mutation
analysis revealed that KRI1 had the highest mutation fre-
quency. Molecular docking results showed that BCAP31 had
the strongest binding ability with small molecules DB12830,
DB05812, and DB07307.

Based on a series of analyses, ten ferroptosis key genes
were identified and used to construct a prognostic complex
value. )e low-complex value group indicated a significantly
better prognosis compared with the high-complex value
group. Additionally, the complex value was an independent
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Figure 4: (a))ere were significant differences in PFS between groups with high- and low-complex values. (b))e risk distribution of each
group. (c) )e correlation heatmap between the key gene expression levels and high/low complex values. (d) )e survival prognosis time
distribution of each group.
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prognostic factor. )e results suggested that these ferrop-
tosis-related genes may serve as a prognostic signature of
ESCA. Radiotherapy has an indispensable role in the
management of ESCA. In recent years, radiotherapy has
achieved a better balance between improving treatment
efficacy and reducing toxicity [47]. In the present study, we
analyzed the radiotherapy effect between the low- and high-
complex value groups and found that the radiotherapy effect
was better in the low-complex group, which was inconsistent

with the results mentioned above that the low complex value
group had a significantly better prognosis.

)e protumor or antitumor state of immune cell infil-
tration in cancers is crucial for the efficacy of cancer
treatment [48]. Recently, immunotherapy with immune
checkpoint inhibitors has completely reversed the tradi-
tional treatment of ESCA [49]. In this study, the complex
value was positively correlated with macrophage M0, and
myeloid dendritic cell activated while negatively correlated
with T cell CD4+ memory resting, T cell regulatory (Tregs),
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Figure 5: (a, b) Univariate (a) and multivariate (b) Cox regression analysis results. (c) Nomogram and calibration curves for one-and three-
year survival.
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and mast cell activated. A recent study reported a prognostic
model established by immune genes associated with
memory CD4+ Tcells, follicular helper cells, and monocytes
for patients with ESCA [50], which was inconsistent with our
results.

It was reported that the prognosis of ESCA depends on
the extent of the primary tumor and lymph node metastasis
[51]. Lymph node status is the most important prognostic
factor, and an increased number of metastatic lymph nodes
are related to a poor prognosis in ESCA [52]. Five ferrop-
tosis-related genes (TNKS1BP1, AC019100.7, KRI1, BCAP31,
and RP11-408E5.5) were found to be significantly correlated
with radiographic evidence of lymph node metastasis.
TNKS1BP1 is a tankyrase-binding protein, which interacts
with the actin-capping proteins and involves in cell motility
and invasion in cancers [53]. BCAP31 is located on the
endoplasmic reticulum membrane and involves in the
crosstalk between the endoplasmic reticulum and the mi-
tochondria to regulate apoptosis [54, 55]. It has been sug-
gested that BCAP31 regulates the migration and invasion
ability of cancer cells by regulating the expressions of

cytoskeletal proteins [56, 57]. )e roles of the other three
genes in cancers have rarely been reported based on the best
of our knowledge.

Mutation is one of the important factors leading to gene
dysfunction [58]. It has been suggested that TP53 is the most
significantly mutated genes in ESCC with a mutation fre-
quency reaching 93% [59].KRI1 is an ortholog ofKRIT1, and
KRIT1 mutation has been identified in cerebral cavernous
malformations [60]. Additionally, KRIT1 was recently re-
ported to control the progression of melanoma by acting as a
tumor suppressor, suggesting the role of KRIT1 in human
cancer [61]. To our best knowledge, there has been no report
aboutKRI1 gene mutation in patients with ESCA. Given that
KRI1 had the highest mutation frequency in ESCA, we
speculated that KRI1 may play a critical role in ESCA.

Finally, the molecular docking results showed that
BCAP31 had the strongest binding ability with small mol-
ecules DB12830, DB05812, and DB07307, which suggested
that DB12830, DB05812, and DB07307 may serve as can-
didate agents for the treatment of ESCA by targeting
BCAP31.
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In conclusion, we constructed a novel ferroptosis-related
gene signature, which has the potential to predict the sur-
vival and tumor-infiltrating immune cells of ESCA. )is
gene signature could have a promising value in the indi-
vidualized treatment of patients with ESCA.
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