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Little is known about the dynamics of the early stages of untreated active pulmonary
tuberculosis: unknown are both the rates of progression and the model “scheme”. The
“parallel” scheme assumes that infectiousness of tuberculosis cases is effectively pre-
defined at the onset of the disease, and the “serial” scheme considers all cases to be non-
infectious at the onset, with some of them later becoming infectious.
Our aim was to estimate the progression of the early stages of pulmonary tuberculosis
using data from a present-day population. We used the routine notification data from
Moscow, Russia, 2013e2018 that contained the results and time of the last fluorographic
screening preceding the detection of tuberculosis cases. This provided time limits on the
duration of untreated tuberculosis.
Parameters of TB progression under both models were estimated. By the goodness of fit to
the data, we could prefer neither the “parallel”, nor the “serial” model, although the latter
had a bit worse fit. On the other hand, the observed rise in the fraction of infectious
tuberculosis cases with the time since the last screening was explained by the “serial”
model in a more plausible way e as gradual progression of some cases to infectiousness.
The “parallel” model explained it through less realistic quick removal of non-infectious
cases and accumulation of the infectious ones.
The results demonstrate the potential of using such detection data enriched with reas-
sessments of the previous screenings.

© 2022 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi
Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Tuberculosis (TB) is a communicable disease with a complex natural history characterised by long-lasting latent infection
and usually slow disease progression. Observational data on the dynamics of TB infection and early stages of the disease are
extremely scarce because the processes are mostly asymptomatic and hard to detect. Yet, quantitative parameters of these
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processes are crucial tomodelling of TB epidemiology. In this study, we propose a novel approach to quantifying the dynamics
of early stages of active pulmonary TB on the basis of modern routine notification data.

The natural history of disease is generally defined as “the course of a disease from its pathological onset or inception to its
resolution (either through complete recovery or eventual death)” (Porta (ed.), 2014), especially in the absence of treatment. In
case of TB, its natural history usually encompasses all processes from the initial infection with M. tuberculosis (MTB, the
causative agent of TB), through latent TB infection, and to active TB disease. After the detection (diagnosing) of a TB case and,
hence, the start of their treatment, the course of their disease is usually not considered “natural” anymore. For a long time, the
natural history of TB was modelledmostly as a two-stage process (latent infection and active disease), but recently it has been
realised that the continuous spectrum of TB infection and disease must be subdivided into more stages in order to analyse it
correctly and produce better control policies (Barry et al., 2009; Drain et al., 2018; Esmail et al., 2014; Frascella et al., 2021;
Houben et al., 2019; Kendall et al., 2021). The definitions and terminology differ from article to article, but the most discussed
modification is splitting TB disease into clinical (symptomatic) and subclinical (asymptomatic) TB. Earlier stages of active TB
are also recognised: “incipient TB” in (Drain et al., 2018; Kendall et al., 2021), and “minimal TB” in (Frascella et al., 2021)e see
Fig. 1.

Because TB cases are usually detected at advanced stages of the disease, little is known about the earlier stages of TB and
their dynamics (Kendall et al., 2021). Furthermore, since it is unethical to deprive diagnosed TB patients of therapy, it is not
possible to obtain modern data on the natural course of TB. There are some meta-analyses of the data from the pre-
chemotherapy era when no effective treatment for TB was available (Ragonnet et al., 2021; Tiemersma et al., 2011), but
they do not provide enough information, and their estimates are relevant for patients from the beginning of the 20th century.

Besides that, it is unclear what structure the model of the progression of active TB should have: the stages may be
sequential (as in (Frascella et al., 2021), Fig. 1) ewe call it “serial model”, or the stages may be alternative to each other ewe
call it “parallel model” (see details below).

This study takes advantage of the features of Russian anti-TB system and its notification data:
Fig. 1. The model of the natural history of tuberculosis infection and disease by (Frascella et al., 2021). Boxes represent states (stages) of the model. Green are
Mycobacterium tuberculosis (MTB) infection. Blue denotes active tuberculosis disease. Arrows show possible state transitions. Dashed arrows represent super-
infection. Bacteriological confirmation is detection of MTB in sputum. “Symptomatic” usually means “prolonged cough (>2e3 weeks)”, but other subjectively
noticeable TB-associated symptoms may be used. TB ¼ tuberculosis.
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� Russian general population is relatively regularly actively screened for TB (with fluorography, i.e. chest X-ray) e at least, in
big cities;

� by Russian standards, pulmonary TB cases are stratified by bacterioexcretion (i.e., by presence or absence of a significant
amount of MTB in sputum);

� in the notification data, available is the information on the previous regular screening (time and results); this imposes
limits on the duration of the untreated disease that precedes detection.

These features enabled us to build mathematical models of progression of active pulmonary TB with stages defined by
bacterioexcretion (Tþ group e excreting MTB; T- group e not excreting MTB) and estimate their parameters. Tþ group in
Russian statistics comprises both subclinical and clinical TB as defined in (Frascella et al., 2021), and T- group is approximately
equivalent to minimal TB from (Frascella et al., 2021) e see Fig. 1. Thus, our study may be interpreted as modelling the
interplay between minimal and subclinical/clinical TB.

We compared two “types” of mathematical models describing the progression of TB in terms of bacterioexcretion
(infectiousness): “parallel model”with T- and Tþ forms of TB effectively separated from the onset of the disease (Fig. 2A) (this
“scheme” was used by the majority of epidemiologic modelling works, e.g. (Baltussen et al., 2005; Blower et al., 1995; Dye
et al., 1998)), and “serial model” that assumes that all TB cases start as T-, with some of them later progressing to Tþ
(Fig. 2B) (it was used by a smaller number of works, e.g. (Avilov et al., 2015; Brogger, 1967; Perelman et al., 2004; Yaesoubi &
Cohen, 2013)). There exist recent pathophysiological (Dannenberg, 1999) and empirical (Okada et al., 2012) evidences in
favour of the serial model structure, but they are neither conclusive, nor provide quantitative estimations of the parameters of
the model.

Our study does not attempt to build a full model of the natural history of TB: ourmodels do not include latent infection and
its activation, or TB-induced mortality. They are the models of the progression of active TB disease only.

1.1. Brief information on tuberculosis

Tuberculosis is a communicable disease caused by mycobacteria of M. tuberculosis complex (MTB) (Davies et al., 2014). It
spreads from human to human mostly by airborne droplets. The most prevalent and the most epidemiologically significant
form is pulmonary TB, with pulmonary TB cases excreting or not excreting detectable amounts of the bacilli with breathing,
coughing, etc. The feature of TB is that the vast majority of infected individuals (about 90%) never develop active TB disease in
their lifetime remaining latently infected with M. tuberculosis. On the other hand, if the infection activates and causes active
TB disease, it can be lethal: TB is the leading cause of death from a single infectious agent (more than HIV/AIDS), and it is
estimated that in 2019 about 10 million people developed active TB worldwide, and 1.4 million died from TB (World Health
Organization, 2020). The average duration of untreated active TB is estimated to be 3 years (Tiemersma et al., 2011) or about
1.5 years for smear-positive TB and about 5 years for smear-negative TB (Ragonnet et al., 2021). Case-fatality rate is about 70%
for smear-positive TB and about 20% for smear-negative TB in both studies (Ragonnet et al., 2021; Tiemersma et al., 2011).

2. Materials and methods

2.1. Data

We used a register of TB cases detected in Moscow, Russia, 2000e2018, provided by the Moscow Research and Clinical
Center for Tuberculosis Control of theMoscowGovernment Department of Health. The register contains information onmany
parameters of the individual detected TB cases including bacterioexcretion status at detection, mode of detection (active or
Fig. 2. Two basic structures of mathematical models of the progression of untreated active TB with regard to bacterioexcretion. A) Parallel model. B) Serial model.
Transitions between groups T- and Tþ are possible in both directions in both structures, but in the parallel model, the transitions are very weak to absent.
TB ¼ tuberculosis, Tþ ¼ TB with bacterioexcretion, T- ¼ TB without bacterioexcretion.
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passive), and results of the last TB X-ray screening preceding the detection event (based on expert reanalysis of the fluo-
rography pictures; it was possible to obtain them for 68.1% of TB cases of the appropriate type).

It is important to note that it was not a cohort or follow-up study. The register contains data only on those persons who
were eventually diagnosed with active TB. The true number of screened persons and their data are unknown.

The register works from the following definitions:

� Bacillary pulmonary TB (TB with bacterioexcretion, infectious TB)e pulmonary TB with MTB presence in sputum detected
by cultural or bacterioscopic (including sputum smear microscopy) methods. Detection of MTB via polymerase chain
reaction (PCR) tests only is not considered as bacterioexcretion. Thus, “bacillary TB” is basically “bacteriologically
confirmed TB”, and it comprises both clinical and subclinical TB as defined in (Frascella et al., 2021).

� Non-bacillary pulmonary TB (TB without bacterioexcretion, non-infectious TB) e active pulmonary TB without MTB
presence in sputum, as per cultural and bacterioscopic methods (both tests are always performed). In this case, the
diagnosis of active TB is made by an expert board of phthisiologists on the basis of a sum of clinical, radiological, and
laboratory data. The data include clinical symptoms like prolonged cough, chest X-ray and computed tomography results,
PCR and IGRA tests (T-SPOT.TB, etc.), advanced CFP10-ESAT6 skin tests (Diaskintest) and others. In rare uncertain cases, the
final diagnosis is made after a presumptive anti-TB treatment. Hence, non-bacillary TB may be viewed as approximately
equivalent to “minimal TB” from (Frascella et al., 2021).

� Fluorography screening e regular screening with chest X-ray. The formal requirement for the adult general population of
Russia is to be screened once a year, although it is rarely strictly fulfilled. Some groups (healthcare and social service
workers, teachers, kindergarten workers, recovered TB patients, etc.) are screened more often. The screening results are
“abnormal” if there are any shadows on the X-ray picture that are expertly considered to be suspicious of TB. Otherwise,
the result is normal or “healthy”.

� Actively detected TB case e a TB case detected at a screening (mostly fluorography). The patient had no particular impetus
to be screened other than general screening schedules.

� Passively detected TB casee a TB case diagnosed when they have presented to a doctor with TB-associated symptoms (i.e.,
some symptoms or general bad feeling caused by TB have urged the patient to seek medical advice or triggered the cli-
nician's suspicion).

Results of the previous TB screening are provided in the register in categorial form: “never screened”, “previous fluo-
rography picture is not found”, “healthy”, “ill (missed pathologic process in the lungs)”; the time since the previous screening
is discrete: “<1 yr”, “1e2 yrs”, “3e5 yrs”, “>5 yrs”.

Main inclusion criteria in the study were: newly detected pulmonary TB, age �15 years, the result of the previous
screening is “healthy”, detection years 2013e2018 (see further details and more patients’ characteristics in Appendix A). This
resulted in total 5616 cases included in the study, which is 66.7% of all TB cases of the appropriate type detected in Moscow in
2013e2018 and registered in the database. The infection status of the persons in hand at screening was unknown: they could
have been either sensitive or latently infected. We used the data only from a narrow time-frame because our computational
model required an assumption of constant detection parameters, and there was a significant increase in the fraction of
actively detected cases in years before 2013 (see Appendix A, Fig. AF1), which most likely signals a change in the case-
detection methodology.

The distribution of the cases with regard to bacterioexcretion andmode of detection is presented in Fig. 3 and in Appendix
B.

The vast majority of Russian citizens is immunised with the BCG vaccine at birth, which is believed to reduce active TB in
children severely, although its influence on the adult population is uncertain (Abubakar et al., 2013). For this reason, we used
the data only from TB cases of at least 15 years old.

As the study used only retrospective depersonalised notification data, ethics approval was not required.
2.2. Modelling principles

Our goal is to construct a mathematical model that describes the progression of active pulmonary TB in terms of stages
defined by the presence or absence of bacterioexcretion. So, given the data described above, we could say that, since the
detected disease had started sometime between the previous screening with “healthy” result and the moment of detection,
the observed growth of Tþ fraction among the detected cases with the time since the previous screening (Fig. 3B) is a directly
measured progression rate of the disease because the more time has passed since the screening, the more time the disease
had to progress. But it would bewrong because the data is a product of both disease progression and case-detection processes,
with case-detection depending upon both the time since the previous screening and the severity of the disease (details
below). This creates non-uniformity of the distribution of the disease onset time-points over the “screening-detection in-
terval” and makes the detected cases a skewed sample of the undetected ones. So, we had to create a combined model of the
progression of TB and the case-detection process and fit it to the detection data, thus estimating the parameters of both
processes.
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Fig. 3. Data on the newly detected pulmonary TB cases in Moscow, Russia, 2013e2018, 15þ years old, healthy at the last screening before detecting TB. A) Raw
numbers of cases, stratified by bacillary status at detection and active/passive detection mode. B) Fractions of bacillary (Tþ) cases and actively detected cases
among all detected cases. TB ¼ tuberculosis, Tþ ¼ TB with bacterioexcretion, T- ¼ TB without bacterioexcretion.
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It is possible to construct an agent-basedmodel in calendar time, as we did in our previous work (Avilov et al., 2019), but it
proved to be not effective. The new approach is to simplify the assumptions so that an analytical model is feasible. By
assuming that case-detection parameters and the force of TB infection do not change with calendar time, we have all detected
TB cases undergoing the same probabilistic “background process” from their last screening to detection. So, we could
equivalently model the probability distribution of a single screened person to develop TB and then be detected at every stage
of TB via every detection method, or we could model the fate of a large group of individuals screened at one moment in time
and calculate the detection counts they generate. By choosing the latter variant, we modelled a virtual cohort of people who
had undergone their most recent X-ray screening with “healthy” result at time t ¼ 0 (so t becomes “time since screening”
instead of “calendar time”) e we call them “model population”. With t growing, the people undergo new regular screenings
(which withdraws them from the model population and implicitly sends them back to t ¼ 0), develop active TB, self-cure or
die from TB, and are detected as TB cases via the active method (if they are screened again while ill) or the passive method
(with constant rates depending on T-/Tþ state). The model detection fluxes are then fitted to the real ones.

The possibility tomerge all real TB cases regardless of their calendar time of detection and tomodel them as coming from a
single virtual cohort is based on the fact that if, in a simulational model, for each possible day of screening we created a
separate, yet identical cohort and then measured at a given day (or time interval) the incidence generated by these cohorts
and the corresponding distribution of the “times since the last screening”, we would obtain the same distribution as
generated by a single cohort. Obviously, the property is lost if the “day cohorts” are not identical to each other (e.g., if they
experience different case-detection rates).

The general principles of our mathematical model follow the vast majority of published models of TB epidemiology (e.g.,
(Avilov et al., 2015; Baltussen et al., 2005; Blower et al., 1995; Brogger, 1967; Dye et al., 1998; Murray & Salomon, 1998;
Perelman et al., 2004; Waaler et al., 1962; Yaesoubi & Cohen, 2013)): we used a compartmental epidemiological model based
on ordinary differential equations; it had no stratification by age or sex in the model population, but clearly differentiated T-
and Tþ TB cases by using two separate groups for them (thus forming the submodel of the progression of active TB). Tran-
sitions betweenmodel groups were defined by constant or time-dependent per capita rates. In spite of the extreme simplicity
of the model and possible underrepresentation of the complexity of underlying processes, such models are widely used as
analytical and policy-making tools (including the basic SLT model in TB (Waaler et al., 1962) and general epidemiological SEIR
model (Anderson &May 1992)). One of our aims was to test the applicability of the serial and parallel structures of models of
the progression of active TB under the current modelling paradigm, and so we used the very basic standard approaches to
modelling the progression of TB.

Modelling case-detection is more ambiguous. Not so many published TB epidemiological models explicitly include case-
detection processes. In this work, we followed a simple per capita rate-based detection model that we had used in our
previous works (Avilov et al., 2015, 2019). This model assumes that all individuals in the population have equal access to
health care, which appears to be a reasonable first approximation for the resident population of a big city like Moscow.

Just like in (Avilov et al., 2019), passive case-detection was modelled by time-independent per capita rates which were
different for T- and Tþ cases. This corresponds to the plausible assumption that the longer the patient is ill, the higher is their
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cumulative chance to seek medical care because of the symptoms. We expected passive detection to be more effective for Tþ
cases who have more severe symptoms on average, which gives Tþ cases more impetus to seekmedical help. T- cases, because
of mild symptoms, are expected to be less likely to seekmedical care or to trigger the clinician's suspicion if they contact the ill
for some non-TB-related reason.

Active case-detection (screening) could not be modelled by a constant rate because of the aforementioned fluorography
regularity rules andminimal time-intervals between screenings. Thus, the fluorographic active screening rate 4a in the model
varied over t, with 4a(t ¼ 0) ¼ 0, peaking at t ¼ 1… 3 yrs, and likely going down afterwards to crudely model the selection of
individuals less compliant to regular screening. In our model, active case-detection is equally effective in detecting T- and Tþ
patients if they undergo screening: we assumed that high-quality fluorography is able to detect both small and big pathologic
processes in the lungs with similar sensitivity.
2.3. Mathematical model

We constructed a combined compartmental mathematical model that can be trimmed to either the parallel or serial
model by zeroing out certain constants. The scheme of themodel is presented in Fig. 4, and the ordinary differential equations
that govern the model are in Appendix A.

We used a simplified one-group submodel of TB infection and activation. Normally, it would consist of at least two model
groups (S e susceptible, L e latently infected) which allow explicit modelling of infection (S/L flux) and activation (L/T
flux). But since wewere not trying to build a full model of the natural history of TB (that starts from the moment of infection)
and were focused only on the progression between the stages of active TB disease, the only relevant quantity from the S and L
stages was the total active TB incidence. In a full model, the incidencewould be a combined result of the starting prevalence of
latent infection, the force of infection, the rate of activation, and the rates of re-screening and death. Yet in practice, if the
epidemiologic situation is relatively stable and only a minute fraction of individuals develops active TB, all these processes
would stack and affect the resulting TB incidence multiplicatively, with re-screening totally dominating all other processes.
Thus, we got rid of the unneeded free parameters by merging both susceptible and latently infected individuals into a single
group bS and introducing the effective (stacked) infection-and-activation rate bl so that the total instantaneous TB incidence
became blbS. bS starts at t ¼ 0 as an arbitrary very big number, and bl is always a free parameter that scales the total incidence to
the needed value. Individuals from bS are also withdrawn by screening (at the time-dependent rate 4a(t)) and general mor-
tality (m). So, the function of group bS is basically to feed incident TB cases to T- and Tþ at a rate that diminishes with t pro-
portional to the fraction of people having not screened again by time t. Parameter bl is purely technical, and it has no practical
epidemiological interpretation.

The disease progression submodel consists of two groups: T- for untreated TB cases without bacterioexcretion, and Tþ for
ones with bacterioexcretion. b is the fraction of incident cases that develop bacterioexcretion very quickly, effectively
instantaneously. m- and mþ denote combined rates of death and self-cure of T- and Tþ. Here, self-cure is defined as spontaneous
cessation of any active TB disease. The reason to combine death and self-cure of TB cases is that, in practical calculations based
on case-detection counts, only the sum of these rates matters. If a few self-cured persons returned back into group bS, it would
change the size of bS by a vanishingly small amount and similarly negligibly affect incidence blbS (see Appendix A for discus-
sion). From the computational point of view, the effect would be lost in data noise and would only generate numerical
instability. So, we chose to stabilise the model by withdrawing the self-cured from the model population and disregarding
short-term TB relapse. g is the rate of progression to bacterioexcretion (moving from T- to Tþ), and d is the rate of regression to
non-bacillary TB (moving from Tþ to T-).
Fig. 4. Scheme of the combined model. Solid boxes are model groups (bS, T-, Tþ). Dashed boxes are accumulated detection fluxes. Arrows show instantaneous
fluxes and labels their intensities. The model population is a virtual cohort of people who underwent their last screening at time t ¼ 0 with “healthy” result. 4aðtÞ
is the screening rate which depends upon t, the time since the last screening. Description of other parameters is in Table 1. TB ¼ tuberculosis.
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Active case-detection is modelled by the same 4a(t) rate for both T- and Tþ. Passive detection rates 4p- and 4p þ are time-
independent but different for T- and Tþ. Time dependence of 4a(t) is modelled as piece-wise linear function, with values at
time-nodes being free parameters (see details in Appendix A).

2.4. Fitting the model to data

The main fitting target is to approximate the real TB detection data (Fig. 3A) by the four model detection fluxes (Fig. 4). To
do so, themodel detection fluxeswere integrated in the respective time intervals. For “<1yr”, “1e2yrs”, and “3e5yrs” bins, the
limits are obvious: t2[0; 1], [1; 3], [3; 5] years. The “�5yrs” bin is ambiguous: it was approximated by t2[5; 10] years interval
because by 10 years after screening almost all individuals are re-screened and the remaining ones are a very selected and non-
representative subset of the starting population.

Besides that, a regularization of the fitting process was used in the form of targeting the average duration of untreated TB.
Average disease duration Dwas calculated analytically from the parameters of the TB progression submodel (see Appendix A).
The target value of D was D0 ¼ 3 years (in accordance with (Tiemersma et al., 2011)).

The final target function to be minimized was

F ¼wðD� D0Þ2 þ
X
i¼�;þ

X
j¼a;p

X
k¼1…4

�
Fmodel
i;j;k � Fdata

i;j;k

�2
;

whereFi,j,k is the count of cases in the detection bin i, j, k (i¼�,þ denotes non-bacillary and bacillary TB, j¼ a,p denotes active
and passive detection, and k ¼ 1 … 4 denotes the time-bin: 1 ¼ ”<1yr”, 2 ¼ ”1e2yrs”, 3 ¼ ”3e5yrs”, 4 ¼ ”�5yrs”), and w is a
weight coefficient chosen heuristically to obtain good fit to both detection data and disease duration.

We used a library version of the interior-point minimisation algorithm supplied in the Optimization Toolbox™ of
MathWorks Matlab (fmincon function). Because the optimisation process sometimes got stuck in local minima or did not
converge properly, we restarted each optimisation task 50 times using random initial values of free parameters (see Appendix
A and code in Appendix C) and chose the solution with the lowest value of function F. This allowed us to obtain stable and
reliable results.

To convert the basic model into the parallel or serial one, we forced certain coefficients to be zero: for the parallel model,
we set g ¼ d ¼ 0; and for the serial model, we set b ¼ 0. The combined model is the basic model as is.

2.5. Sensitivity analysis

We estimated the sensitivity of our models to variation of their parameters. In other words, we determined howmuch the
progression parameters can be varied without losing good fit to the real data. To do so, two approaches were used.

First approach: each of the parameters related to the progression of TB (b, g, d, m-, mþ) was varied over a grid within wide
limits, with all other parameters except the varied one remaining at the optimal values. Goodness-of-fit for each set of tested
parameters was measured by coefficients of determination (R2) of the real detection data by the model predictions. Since R2-s
for the absolute numbers of detected TB cases (R2F) were usually very high, a more practically valuable measurewas also used:
R2 for the fraction of bacillary cases among the detected ones (R2þ). The reason for this is that we want to “recreate” with our
models not only Fig. 3A, but also Fig. 3B.

Second approach: we varied the same progression parameters and additionally the target disease length D0, but all other
model parameters (including the detection rates) were re-optimised, i.e., a new best fit to the data was found with all pa-
rameters except the varied one being free variables in the optimisation process. Goodness-of-fit was measured just as in the
first approach. The second method appears to give more practically meaningful estimations.

The results were presented as graphs of R2-s as functions of the varied parameter. In most cases, the optimised value of
each parameter is close to the maximum point of R2-s. So, by choosing an arbitrary cut-off for R2-s for a “still good fit”, it is
possible to determine the limits of the varied parameter. Furthermore, if R2-s fall off quickly around the optimal value of a
parameter, the parameter is called “critical” for the model.

2.6. Adjusted serial model

As it will be shown in the Results, the pure serial model produces an unrealistically low estimation of self-cure and
mortality rate inTþgroup mþ. At the same time, the sensitivity analysis will show that coefficients m- and mþ in the serial model
can be varied in a wide range with practically no reduction in goodness-of-fit, provided other parameters are re-estimated
accordingly. Thus, we can choose any value of mþ in the allowed range and declare it as the optimal parameter for the se-
rial model, but there is no definitive argument to prefer one value of mþ over all others.

A very rough criterion can be constructed by targeting the total case-fatality rate (CFR): if we assume that all TB cases
leaving the model from T- are cured (i.e., m- represents only self-cure), and all TB cases leaving the model from Tþ in fact die
from TB (i.e., mþ represents only mortality), then the fraction of those leaving from Tþ (denotedMþ, see Appendix A and data
in Appendix B) becomes the total CFR. Another rough estimate is 45% total CFR for untreated pulmonary TB: 70% CFR for
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sputum-smear positive TB, 20% CFR for sputum-smear negative TB (Ragonnet et al., 2021; Tiemersma et al., 2011), and
approximately 50%/50% split between sputum-smear positive and sputum-smear negative TB among the new cases. So, we
can scan the results of the sensitivity analysis of the serial model with re-optimisation with various values of m- and mþ in the
allowed range and choose a set of parameters that has Mþ as close to 45% as possible. This set is shown in the results as
“adjusted serial model”.

The “adjusted serial model” can be viewed as a more plausible variant of the serial model. Although the criterion used to
choose its parameters is extremely questionable (especially in ascribing self-cure and mortality exclusively to m- and mþ), and
so all other “allowed” parameter sets for the serial model can still be regarded as plausible.

Furthermore, the “adjusted serial model” should not be taken as a wider model of the progression of TB with clearly
separated and quantified TB mortality and self-cure. It is just a an extremely crude method to select a set of parameters of the
serial model within the mathematically allowed range and with believable values.
3. Results

3.1. Basic fitting

We fitted three variants of the “basic” model to the data: the parallel, the serial, and the combined one. The fitting results
are shown in Table 1 and Fig. 5 together with the results for the adjusted serial model. It can be easily seen that the combined
model has effectively converged to the parallel one. The graphs of active detection rate 4a(t) are presented as a part of
sensitivity analysis in Appendix A.
3.2. Sensitivity analysis without re-optimisation

The graphs of R2F and R2þ as functions of the progression parameters are presented in Appendix A. For the parallel model
and all varied parameters (b, m-, mþ), the results without re-optimisationwere similar: the fit to the absolute detection counts
(R2F) remained good, although the fit to the more practically valuable Tþ fraction (R2þ1…3) fell quickly when the parameters
deviated from their optimal values. For the serial model without re-optimisation, parameters g, d, and mþ exhibited the same
behaviour, although varying m- resulted in relatively quickly falling R2F while R2þ and R2þ1…3 remained nearly unchanged. Thus,
without re-optimisation, significant variation of all parameters appeared to be detrimental to the fit of themodels. Thismeans
that no parameter is redundant.
3.3. Sensitivity analysis with re-optimisation

With re-optimisation, the results were quite different. The fit of detection counts (measured by R2F and R2F1…3) was
extremely good in all cases for both models.

For the parallel model, coefficient mþ was “critical” in the sense that even the smallest deviations from the optimal value
did not let the model to fulfil the disease length requirement. Coefficient m- was found to be variable in a ~10e15% range from
the optimal value, although variations to the low side tended to break the disease length requirement. Coefficient b was
Table 1
Parameters and diagnostic values of four variants of the “basic” mathematical model fitted to the TB detection data from Moscow, Russia, 2013e2018.

Symbol Description Parallel
model

Serial
model

Adjusted serial
model

Combined
model

Dimension

bS0 bS value at t ¼ 0 108a 108a 108a 108a pers.
m General mortality 0.008074a 0.008074a 0.008074a 0.008074a 1/yrbl Infection-and-activation rate 0.0000525 0.0000459 0.0000443 0.0000525 1/yr
b Fraction of incident cases instantly progressing to bacillary TB (Tþ) 0.334 0a 0a 0.334 e

g T- to Tþ progression rate 0a 2.98 2.97 0 1/yr
d Tþ to T- regression rate 0a 3.17 2.85 0 1/yr
m� T- mortality þ self-cure rate 0.876 0.644 0.350a 0.876 1/yr
mþ Tþ mortality þ self-cure rate 0.149 0.00209 0.316 0.149 1/yr
4p� T- passive detection rate 0.155 0.164 0.164 0.155 1/yr
4pþ Tþ passive detection rate 0.346 0.380 0.380 0.346 1/yr
R2F Coefficient of determination for all detection fluxes Fi;j;k 99.79% 99.28% 99.28% 99.79% e

R2F1…3 Coefficient of determination for detection fluxesFi;j;k in time-bins k ¼
1…3

99.79% 99.51% 99.50% 99.79% e

R2þ Coefficient of determination for the fraction of Tþ cases among
detected

95.83% 73.40% 73.55% 95.82% e

R2þ1…3 Coefficient of determination for the fraction of Tþ cases in time-bins
k ¼ 1…3

95.35% 94.23% 94.16% 95.40% e

D Average TB duration 3.004 3.002 3.000 3.004 yr

a ¼ fixed value; TB ¼ tuberculosis, Tþ ¼ TB with bacterioexcretion, T- ¼ TB without bacterioexcretion.
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Fig. 5. Comparison of the fractions of bacillary TB cases (Tþ) in the data and in the models' best fits. A) Parallel and combined models (their predictions differ only
in the 5th decimal digit, so one graph represents both of them). B) Serial model and adjusted serial model (their predictions are practically indistinguishable too).
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variable within a ~10e15% range too. Variation of the target disease length D0 in the 2 … 4 years range did not significantly
affect any goodness-of-fit metrics.

For the serial model, coefficients m- and mþ could be varied in a wide [0, 0.65 1/yr] range, with their sum remaining nearly
constant. Coefficients g and d permitted big variation too, and increasing them from their optimal values improved R2þ1…3
very slightly andworsened R2þ muchmore strongly. For the practical ranges for g and d, see Appendix A. Variation of the target
disease length D0, just as for the parallel model, did not affect goodness-of-fit metrics.

3.4. Active detection rate

The active detection rate 4a(t) had similar time-profiles for both models and all parameters with reasonably good fit to the
data (see Appendix A). 4a(t) grew significantly from t ¼ 0 to t ¼ 1 yr, vanished by t ¼ 5 yrs, and then grew again to t ¼ 10 yrs.

3.5. Adjusted serial model

Among the results of the sensitivity analysis of the serial model with re-optimisation, with m- and mþ being in the range
where the goodness-of-fit metrics are practically indistinguishable from the pure serial model, we chose a set of parameters
that hadMþ as close to 45% as possible (see data in Appendix B). This set has fixed m-¼ 0.351/yr, and estimated mþ ¼ 0.3161/yr
and Mþ ¼ 45.9%. The set is placed in Table 1 as “adjusted serial model”.

The “adjusted” estimation of mþ ¼ 0.316 1/yr looks much more realistic than the pure serial model's mþ ¼ 0.00209 1/yr. So,
because of the negligible difference in goodness-of-fit between the pure and the adjusted parameter sets of the serial model,
we recommend to consider the adjusted one as the resulting estimate in this study.

4. Discussion

4.1. General

The starting point of this study was the need to estimate the parameters of progression between stages of active pul-
monary TB for a modern population. The estimates would be useful in both epidemiologic models of TB and models that
estimate case-detection quality from standard TB notification data (Avilov et al., 2015). Since we worked with the data from
Moscow, Russia, we used the definitions of stages of TB that are standard in Russian healthcare. When compared to the
recently published classifications of TB stages (Drain et al., 2018; Frascella et al., 2021; Kendall et al., 2021), Russian “non-
bacillary TB”may be roughly matched to “minimal TB”, and Russian “bacillary TB”matches both “subclinical TB” and “clinical
TB” from (Frascella et al., 2021). Under the definitions used in (Drain et al., 2018; Kendall et al., 2021), “non-bacillary TB”
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covers both “incipient TB” and a part of “subclinical TB”, while Russian “bacillary TB” constitutes another part of “subclinical
TB” and “clinical TB”. So, our study was aimed at measuring the parameters of progression fromminimal TB to subclinical and
clinical one. For this reason, we did not try to build a comprehensive model of the natural history of TB infection and TB
disease: we did not separately model the activation of TB infection (i.e., transition from a latent infection to an active TB
disease) and disregarded the balance between self-cure and death of TB cases (we merged both in a single process of
“termination of TB disease”).

Still, as compared to other works quantifying the activation of TB infection (Behr et al., 2018; Drain et al., 2018; Emery et al.,
2021; Esmail et al., 2014) or estimating the case-fatality rate and the duration of TB disease (Ragonnet et al., 2021; Tiemersma
et al., 2011), our study explores a novel area of quantitative parameters of the early stages of active pulmonary TB, thus
contributing to the overarching goal of the comprehensive natural history model.
4.2. Modelling

The controversy of the parallel and serial “schemes” of mathematical models of the progression of TB exists almost as long
as these models exist. We compared these approaches on the basis of fit to the modern real data on a relatively big number of
cases. Although our definitions of the “early” and “advanced” types of active TB differed from the more prevalent ones (often
“infectious” and “non-infectious TB” are defined as “sputum smear positive” and “sputum smear negative TB”), our modelling
still added some new knowledge on the problem, especially with regard to the dynamics of the early stages of active TB.

Under our study design, it was not possible to model the progression of TB as a “stand-alone” phenomenon because TB
detection data are always strongly affected by case-detection systems and methods. So, we used a combined mathematical
model that comprised progression and case-detection sub-models. Thus, all judgements about the progression submodel
implicitly included the assumption that the detection submodel is correct, which is unlikely to be absolutely true. The time-
dependent submodel of active detection seems to be realistic enough, but the constant-rate passive detection submodel
might be an oversimplification.
4.3. Fitting results

Both the parallel and serial models were capable of good fit to the real data in the first three fluorography time-bins, with
the serial model being slightly worse in describing the more ambiguous fourth time-bin (”5þ years”).

The following observations can be made:

� The parallel model has a low rate of death and self-сure from Tþgroup (mþ ¼ 0.148 1/yr) as compared toT- group (m-¼ 0.876
1/yr). In the serial model, the balance of m- and mþ can be arbitrarily chosen under the empirical condition m-þmþz0.66 1/
yr and with an appropriate change in other parameters. This enabled us to derive the “adjusted serial model” with more
epidemiologically sound parameters than the straightforward fitting generated. But, in any case, the parallel model
predicts higher overall death and self-cure rate of TB cases.

� The fraction of incident cases who under the parallel model instantly develop bacterioexcretion (b¼ 0.334) is not extreme
and, hence, is plausible.

� The T- to Tþ and Tþ to T- rates in the serial model (g, d) are quite high and approximately equal (z3 1/yr), which may
conform to the well-known from the pre-chemotherapy era “wave-like” course of untreated TB.

� The passive detection rates in bothmodels are similar and “reasonable” in that the rate for T- cases (4p-) is less than a half of
the one for more severe Tþ cases (4pþ). The active detection rates 4a(t) have believable bell-like dynamics on the t ¼ 0 …

5 yrs interval and are growing after that; the growth can be attributed to the highly selected nature of the patients in the
“>5 yrs since the previous screening” bin and uncertain practical time boundaries of the bin. For this reason, we mostly
disregarded the goodness-of-fit in the last time-bin when comparing different models.

So, at the first glance, both models look as plausible. Yet, there is a profound difference in mechanisms that the models
employ to reproduce the increase in the fraction of bacillary (Tþ) cases with the time since the previous screening (Fig. 3B). In
the serial model, at low times t almost all active TB cases are T- (because all they start as T-), and they gradually percolate into
the Tþ state, thus increasing Tþ proportion among the detected ones (until a balance between T- and Tþ settles). In the parallel
model, on the contrary, Tþ cases appear instantly, and only the drastic disbalance of death and self-cure rates (m- and mþ)
makes T- cases to “die out” quickly, while the long-lived Tþ cases remain and so increase their proportion. Moreover, in the
parallel model, the average duration of untreated Tþ TB is 1/mþ ¼ 6.7 years, which appears to be unrealistic.

The sensitivity analysis showed that most parameters in both models can be varied to a certain extent depending onwhat
level of goodness-of-fit is considered acceptable. Bothmodels can easily accommodate to any target disease length D0 in the 2
… 4 yrs range with no reduction in goodness-of-fit.
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4.4. Which model?

Neither type of modelling of the progression of active TB can be readily dismissed as “completely unplausible” on the basis
of our model fitting.

The parallel model is somewhat better in approximation of the last “5þ years” time-bin (Table 1, Fig. 5). The combined
model converged to the parallel one when was fitted to the data. On the other hand, the parallel model predicts unrealistic
properties of untreated Tþ TB cases.

As for the serial model, there are pathophysiological (Dannenberg, 1999) and empirical (Okada et al., 2012) evidences that
in reality TB progresses “from stage to stage”, gradually acquiring new properties like infectiousness. Besides that, the pa-
rameters of our adjusted serial model look plausible, and they can be adjusted further, given the discovered “hidden free
variable” in the serial model. Yet, the serial model does not fit the last time-bin of the data well, and it predicts the relaxation
of the Tþ fraction among the detected TB cases to a steady state, which appears to be absent in the available data.

So, we are inclined to interpret the results of our adjusted serial model as a rough estimation of the dynamics of early TB
disease progression, with a caveat that the active case-detection submodel should be revised (to fix the “5þ years” time-bin
problems) and this will likely alter the estimates. The parallel model can still be valid as an “instrumental”model that simply
disregards a very short T- to Tþ progression period.

One possible explanation for the models of both structures fitting the real data equally well is, as we hypothesise, the
heterogeneity of the real population the data come from. Earlier it was shown that there is a significant heterogeneity in
resistance to TB infection among the staff of Russian TB hospitals (Romanyukha et al., 2009). Extrapolating this to the whole
population of Moscow, wemay assume that less resistant TB cases progress towards bacterioexcretion quickly after the onset
of the disease (effectively following the parallel model), and other, more resistant cases progress slowly (as the serial model
commands). So, the real data come from a mixed process. On the other hand, the convergence of the combined mathematical
model (that is amixture of both basic models) to the parallel onemay indicate that considering bacterioexcretion status as the
onlymeasure of disease progression gives too little information, and inclusion of other patients’ parametersmay be beneficial
for reverse-engineering the natural history of TB.
4.5. Limitations

The results and conclusions of the study are limited by several factors:

� Because of the mass vaccination with BCG at birth, the average parameters of TB cases in Russia may be different from
those in other populations.We included only adult (15þ years old) TB cases into our study, so that the influence of BCGwas
minimized. Still, some protection from BCG is possible, and so our estimations of the progression rates may be lower than
average.

� Our model did not allow for age, sex, and other risk factors of the TB cases. Although many of these parameters were
available in the database, we did not use them because the number of cases included into our study is too small to
subdivide it by age or sex and carry out similar analysis in each of the subgroups with reasonable statistical stability. This
may also limit the ability to extrapolate our findings to other populations with different age and sex structures.

� We used very simple linear ordinary differential equations to describe our model. A more flexible mathematical apparatus
(with, at least, non-exponential distribution of time in a model group) could fit the data better.

� The case-detection submodel is likely oversimplified in favour of the simplicity of the differential equations. A more
detailed analysis of the real detection process and its features might produce a better detection model.

� The study provides only point estimates of the parameters, but no confidence intervals or other measures of uncertainty.
Since our current study is more of a “proof of the concept” of obtaining useful information from the fluorography data, our
parameter estimates are not final. The “practical” model of the progression of the early stages of active TB will be much
more complex, and it will worth developing the statistical apparatus to estimate the uncertainty of its parameters.
5. Conclusion

By utilising the data on the previous fluorographic screening of detected TB cases, the study demonstrated the possibility
of inferring useful information from such type of data. The analysis entitled neither the parallel, nor the serial mathematical
model of the progression of active pulmonary TB as a clear “winner”, but for bothmodels the parameters were estimated. Yet,
we slightly prefer the serial model of TB progression because it explains the growth of the fraction of bacillary TB cases with
time in a more plausible way and, besides that, because of existing empirical evidences in its favour.

We used an oversimplified submodel of TB case detection and only very simple markovian two-group submodels of the
progression of TB. More complex models e including those using more stages and more detailed information on the health
status at detection and accounting for heterogeneity of patients e will likely better approximate the real data and enable
deeper insights into the natural history of TB and modelling of the TB case-detection process.
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For these reasons, our current conclusions and parameter estimates should be viewed as preliminary ones only. Despite
that, this study revealed the very different mechanisms that the parallel and serial model of the progression of active TB
employ to explain the growth of the fraction of bacillary TB with time.
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