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Dendritic cells (DCs) are professional antigen-presenting cells that act as a bridge between
innate immunity and adaptive immunity. After activation, DCs differentiate into subtypes
with different functions, at which point they upregulate co-stimulatory molecules and
produce various cytokines and chemokines. Activated DCs also process antigens for
presentation to T cells and regulate the differentiation and function of T cells to modulate
the immune state of the body. Non-coding RNAs, RNA transcripts that are unable to
encode proteins, not only participate in the pathological mechanisms of autoimmune-
related diseases but also regulate the function of immune cells in these diseases.
Accumulating evidence suggests that dysregulation of non-coding RNAs contributes to
DC differentiation, functions, and so on, consequently producing effects in various
autoimmune diseases. In this review, we summarize the main non-coding RNAs
(miRNAs, lncRNAs, circRNAs) that regulate DCs in pathological mechanisms and have
tremendous potential to give rise to novel therapeutic targets and strategies for multiple
autoimmune diseases and immune tolerance-related diseases.
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INTRODUCTION

The first study of dendritic cells (DCs) was published in 1973, when Ralph Steinman and Zan Cohn
discovered a small group of cells with unique stellate morphology by microscopic studies of glass-
adhering mouse splenocytes (1). In the mononuclear phagocyte system (MPS), someMPS cells retain
incompletely degraded antigen and present it to T cells, thus activating T cells (2). These so-called
antigen-presenting cells (APCs) initiate a response by activating T cells, which subsequently
stimulate antibody production from B cells, thus bridging innate immunity and adaptive
immunity (3). DCs serve as a bridge between innate immunity and adaptive immunity, and the
discovery of DCs is the result of efforts to understand the cellular initiating factors of the adaptive
immune response (2).
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Recent research shows that DCs can be classified into major
subtypes based on origin and differentiation state. Human DCs
are produced through a lymphoid-specific bone marrow
haematopoiesis pathway. DC subset differentiation is affected
by different specific transcription factors, among which the roles
of IRF8 and IRF4 are particularly important (4–7). Under the
regulation of these cellular transcription factors, DCs can
differentiate into three main subgroups: plasmacytoid DCs
(pDCs), type 1 myeloid/conventional DCs (cDC1s) and type 2
myeloid/conventional DCs (cDC2s) (8). In 2019, Brown et al.
further classified cDC2s into cDC2A(T-bet+) and cDC2B(T-bet-)
by assessing the expression of T-bet, and they are different from
proinflammatory and anti-inflammatory phenotypes in vivo (9).
In addition, increasing evidence has shown that mature DCs can
limit effector T cells and promote the differentiation of regulatory
T (Treg) cells to promote the formation of immune tolerance in
related diseases (10–12).

Researchers have found that genes encode not only functional
products such as proteins but also a variety of unique RNAs (13).
Despite a lack of protein-coding regions, Caenorhabditis elegans
was found to carry some RNAs with conserved functions
required for cell development (14). Owing to advances in
sequencing technologies, researchers have found a large
number of various non-coding RNAs. These non-coding RNAs
can be divided into several subsets, including microRNAs
(miRNAs), circular RNAs (circRNAs), long non-coding
RNAs (lncRNAs), tRNA-derived small RNAs (tsRNAs),
ribosomal RNAs (rRNAs), and PIWI-interacting RNAs
(piRNAs) (14). Some highly conserved RNAs, including
miRNAs (15), circRNAs, and lncRNAs, lacking conservation
between species (16), account for approximately 60% of the
transcriptional output of human cells (17, 18). It is clear that
cellular processes and pathways can be regulated though non-
coding RNAs in developmental and pathological settings.

Noncoding RNAs play various roles in the regulation of
immune cell differentiation and function. Kuiper et al.
Abbreviations: DCs, dendritic cells; pDCs, plasmacytoid dendritic cells; cDCs,
myeloid/conventional dendritic cells; APCs, antigen-presenting cells; MPS,
mononuclear phagocyte system; IRF, interferon regulatory factor; Treg, T
regulatory cells; STAT3, Signal Transducers and Activators of Transcription 3;
GDF15, growth differentiation factor 15; PRRs, pattern-recognition receptors;
ConA, Concanavalin A; BDCA, blood dendritic cell antigen; TNF-a, tumour
necrosis factor alpha; AIH, autoimmune hepatitis; Tol-DCs, Tolerogenic
dendritic cells; MHC, major histocompatibility complex; Mcl-1, myeloid cell
leukaemia-1; Bcl-2, B-cell lymphoma-2; TREM-1, Triggering receptor expressed
on myeloid cells-1; TGF-b, transforming growth factor beta; MSK1, mitogen-and
stress-activated protein kinase 1; NOD2, nucleotide-binding oligomerization
domain 2; IBD, Inflammatory bowel disease; CD, Crohn’s disease; UC,
ulcerative colitis; MDP, muramyl dipeptide; pSS, primary Sjogren’s syndrome;
RA, Rheumatoid arthritis; SLE, Systemic lupus erythematosus; ATP, adenosine
triphosphate; IDO, indoleamine 2,3-dioxygenase; CNS, central nervous system;
EAE, experimental autoimmune encephalomyelitis; MS, multiple sclerosis;
MoDCs, monocyte derived dendritic cells; SSc, Systemic sclerosis; EAM,
experimental autoimmune myocarditis; aGVHD, acute graft-versus-host
disease; allo-HCT, allogeneic haematopoietic cell transplantation; LPS,
Lipopolysaccharide; E2F1, E2F transcription factor 1; ceRNA, competing
endogenous RNAs.
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observed that conditional depletion of Dicer in mouse CD11c+
DCs did not affect the presence of transient resident DCs in
lymph nodes or spleen. However, the lack of miRNAs led to a
selective loss of these cells in the epidermis, and those cells that
did exist lacked the capacity to mature and present antigens (19).
Wang et al. demonstrated that lnc-DCs, exclusively expressed in
human conventional DCs (cDCs), decreased DC differentiation
and reduced the antigen presentation ability of DCs by
increasing the expression of STAT3 (20). Zhang et al. found
that the expression of circular malat-1 (circ_malat-1) was
attenuated by GDF15, leading to repression of the maturation
of DCs (21).

Due to the unique role of DCs in immune diseases,
researchers have paid more attention to the regulation of DCs
by non-coding RNAs in recent years, considering this an
important mechanism for further studying the relevant
mechanisms and pathological processes in immune diseases.
This review summarizes recent developments in non-coding
RNA and DC research related to various autoimmune diseases
and transplantation immunity, especially highlighting the
immunomodulatory role of miRNAs, circRNAs, and lncRNAs
in the processes of immune diseases mediated by DCs (Table 1).
PLASMACYTOID DENDRITIC
CELLS (PDCs)

pDCs are a small subset of DCs that share a similar origin, and
pDCs express a narrow range of pattern-recognition receptors
(PRRs), including Toll-like receptor 7 (TLR7) and TLR9 (45).
Under the stimulation of the above receptors and exogenous or
endogenous nucleic acids, pDCs can secrete a large amount of
type I IFN and other pro-inflammatory cytokines.

The numbers of pDCs in lymphoid tissues and related target
organs, as well as the level of peripheral type I IFN, change in
autoimmune diseases such as systemic lupus erythematosus
(SLE), rheumatoid arthritis (RA) and psoriasis (46–48). In SLE,
differentiation of Exfo B cells into AFCs requires activation of
TRL signalling, which requires the involvement of pDCs (49).
Some researchers, therefore, maintain that depletion or
functional impairment of pDCs may serve as a viable and
potentially specific treatment strategy for lupus (50). In
addition to acting directly on autoimmune diseases, pDCs can
also affect autoimmunity by regulating other immune cells.
Nakamoto et al. demonstrated that bone marrow-derived
pDCs induce IL-35 production through Treg cells during
ConA-induced acute hepatitis, and the level of type I IFN
released by pDCs was also increased. Consequently, the role of
pDCs in autoimmune diseases cannot be ignored.
CONVENTIONAL DENDRITIC
CELLS (CDCs)

According to the dependence of transcription factors on
development, different subtypes of cDC can be divided into
July 2021 | Volume 12 | Article 678918
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cDC1 and cDC2 (51). In the MHC I environment, cDC1s present
antigens to immature CD8+ T cells, while in the MHC II
environment, cDC2s present more antigens to immature CD4+
T cells (52).

As cells that play a significant role in nonspecific and specific
immunity, cDCs are also involved in a variety of autoimmune
diseases. The number of cDCs in the peripheral blood of patients
with autoimmune diseases (SLE or RA) is related to their
localization in the target tissue (53–56). In RA patients, the
number of cDCs was found to be increased in synovial fluid and
decreased in peripheral blood (57). cDCs appear to express a
unique chemokine receptor: CCL6, the CCL20 receptor. CCL20
leads to infiltration of a variety of inflammatory cells, including
immature DCs and Th17 effector lymphocytes, and the
production of inflammatory cytokines, including TNF-a, IL-1,
and IL-17, in inflammatory synovial tissue, which induces
recruitment of local cDCs (58, 59). We demonstrated that the
Frontiers in Immunology | www.frontiersin.org 3
role of abnormal autophagy in the immunogenic maturation of
cDCs in autoimmune hepatitis should not be ignored, and
inhibition of autophagy may be a novel therapeutic strategy for
AIH (60).
TOLEROGENIC DENDRITIC CELLS
(Tol-DCs)

DCs can promote the tolerance of autoreactive T cells and induce
effector T cell differentiation in specific tissue environments, thus
affecting autoimmunity, immune tolerance, or both (61). DCs in
this state are called tolerogenic DCs (Tol-DCs). However,
whether there is a specific sensitized cell origin in the body or
whether the sensitized phenotype of DCs reflects their activation
state is still unclear (62).
TABLE 1 | The targets and regulatory effect of noncoding RNAs on DCs in autoimmune and immune tolerance-related diseases.

Disease Non-coding RNAs Type of
regulation

DCs (subsets or
sources)

Predicted/
identified
targets

Function Refs

SLE miR574 ↑ pDC TLR7 Promote pDC maturation and secretion of IFN-a,
TNF- and IL-6

(22)
miR LET7b miR21
miR-361-5p, ↓ pDC TLR7 Increase IFN-a secretion (23)
miR-128-3p miR-181a-2-3p
miR-155 ↑ pDC TLR7 MHC class II, CD40, CD86 expressions and IFN-a

secretion increased
(24)

miR-29b ↓ pDC TLR9 Mcl-1, Bcl-
2

Promote pDCs apoptosis (25)
miR-29c
miRNA-150 ↓ cDC TREM-1 inflammation decreased in SLE (26)
miR-142-3p ↑ cDC ND Increase secretion of related cytokines, inhibit Treg,

and promote proliferation of CD4+T
(27)

RA miR-34a ↑ DCs (CD1c+) AXL Promote DCs activation of T cells (28)
miR-363 ↓ cDC (CD11C+av+) ND Increase Th17 cells differentiation (29)

pSS miR-29a ↓ pDC ND Increase pDCs survival (30)
mir-29c
miR-708 ↓ cDC (CD1c+) TLR3, TLR7/8 Increase the secretion of IL-12 and TNF-a (31)
miR-130a MSK1

IBD miR-10a ↓ cDC (CD11c+) IL-12/IL-23p40 Low inflammatory environment in the intestines (32)
MS miR-233 ↓ cDC (CD11b+CD11c+) ND Inhibit activation of Th17 by decreasing levels of

IL-1, IL-6, IL-23
(33)

SSc miR-31 ↑ cDC (CD11c+) ND Reduce the number of DC migrations to CNS (34)
miR-618 ↑ pDC IRF8 Reduce the development of pDCs in SSc (35)

Autoimmune
myocarditis

miR-223-3p ↑ Tol-DC NLRP3 Inhibition of DCs maturation (36)

GVHD miR-155 ↑ DCs (BMDC) ND Decrease the migration and inflammatory activation
of DC

(37)

miR-146a ↓ DCs (BMDC, MoDC) JAK-STAT Upgrade histopathological GVHD scores (38)
miR-29a ↑ DCs (BMDC, MoDC) TLR7 (mouse) promote DC maturation, migration and activation of

T cell proliferation
(39)

TLR8 (human)
SLE lnc-DC (ENST00000604411.1,

ENST00000501122.2)
↑ DCs(MoDC) ND Positive correlation with SLEDAI Score (40)

Autoimmune
myocarditis

lncRNA NEAT1 ↓ cDCs (CD80+, CD86+,
MHC II+)

Sponge miR-
3076-3p NLRP3

Increase DC induced Tregs and inhibited T cells
proliferation

(41)

lncRNA MALAT1 ↑ Tol-DCs (DC-sign+) mir155-5p Promote the formation of Tol-DCs (42)
SLE circHLA-C ↑ DCs miR-150 Promote pDCs maturation (43)
Autoimmune
myocarditis

circSnx5 ↑ cDC (CD80+, CD86+,
MHC II+)

miR-544 Reduce inflammation of EAM by regulating SOCS1,
PU.1

(44)

circ_Malat-1 ↓ cDC (CD11c+CD80+,
CD86+, MHC II+)

GDF15 Increase tolerogenic phenotype of DCs (21)
NFkB
July 2021 | Volume 12 | Article 67
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The role of Tol-DCs in autoimmunity is characterized by low
expression of costimulatory molecules, production of
immunomodulatory cytokines, and inhibition of the proliferation
of T cells (63). In addition, the important interaction between
Tregs and Tol-DCs in the maintenance of peripheral tolerance in
mice and humans cannot be ignored (64). Tol-DCs can promote
the differentiation of Treg cells through various mechanisms, such
as the production of IL-10, IL-27, TGF and other cytokines and the
expression of indoleamine 2,3-dioxygenase (IDO), thereby
changing the levels of extracellular adenosine triphosphate (ATP)
and adenosine (12, 65–68). Furthermore, treatment centred on tol-
DCs administration is yielding promising results as an alternative
to immune modulators (69). Tolerant dendritic cells inhibited
T cell proliferation and delayed the occurrence of GVHD in
mice through lactic acid synthesis (70).
MicroRNAs REGULATE DENDRITIC CELL-
MEDIATED AUTOIMMUNE AND IMMUNE
TOLERANCE-RELATED DISEASES

Some previous studies have shown that miRNAs can act
as regulatory molecules to affect the expression of target
Frontiers in Immunology | www.frontiersin.org 4
genes, thereby altering the immune state of the body
(71). MiRNAs influence the pathogenesis of a variety of
autoimmune and immune tolerance-related diseases by
regulating DCs (Figure 1). In terms of treatment, pri-miRNAs
may even become innovative drugs for the treatment of immune
diseases (72).

Systemic Lupus Erythematosus (SLE)
The cause of SLE is multifactorial, including the environment,
random factors and genetic susceptibility (73). Large amounts of
type I IFN and various cytokines produced by pDCs are typically
found to be statistically related to the aetiopathogenesis of SLE
(74). Salvi et al. purified exosomes from plasma collected from
SLE patients and extracted miRNAs (idiopathic inflammatory
myopathy (IIM) miRNAs: miR574, LET7b, and miR21) that
could induce the production of type I IFNs in human pDCs from
these exosomes. These miRNAs can act as survival factors for
human pDCs, activate the maturation of pDCs, increase the
expression of CD86 and decrease BDCA-2 levels as well as the
production of IFN and pro-inflammatory cytokines (TNF-a,
IL-6) and phosphorylated p65 (a subunit of NF-kB). Moreover,
IIM miRNAs represent potential endogenous ligands of human
TLR7, which is the specific endosomal single-stranded RNA
(ssRNA) receptor expressed by pDCs (22). Hoogen et al.
FIGURE 1 | Typical microRNA-mediated pathways in DCs. 1) Activation of TLR7 by the TLR7 agonist R837 resulted in increased miR155 expression, which in turn
promoted pDC maturation (elevated MHC class II/CD86 expression) and increased IFN-a secretion. 2) Under the stimulation of extraneous inflammatory factors,
TLR7/8/3 was activated, which increased the expression of miR-708/miR-130a, leading to the inhibition of MSK1 and promoting the secretion of IL-12/TNF-a in
cDCs. 3) The increased expression of miR-223-3p was followed by inhibition of NLRP3 inflammocytes, thereby promoting the DC tolerance phenotype (decreased
EXPRESSION of MHC Class II/CD86/CD80), leading to increased secretion of IL-10/TGF-b and promoting Treg proliferation. 4) Activation of TLR7 by exosome-
derived microRNAs through cell membranes can promote pDC maturation and increase IFN-a secretion.
July 2021 | Volume 12 | Article 678918
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analysed 131miRNAs in pDCs in SLE and related diseases (SLE +
antiphospholipid syndrome and primary antiphospholipid
syndrome) and found that 73 of them showed reduced
expression. Of the 73 miRNAs, miR-361-5p, miR-128-3p and
miR-181a-2-3p were expressed at lower levels in patients with a
high IFN signature than in patients with a low IFN signature and
healthy controls (23). By employing pDCs from murine models
of lupus, Tam et al. discovered that the upregulation of miR-155
was the strongest, and the upregulation of miR-155 was
significantly higher in active pDCs from the symptomatic
group than in those from the control group. In agreement with
this, TLR7-mediated miR-155 overexpression has been shown to
lead to elevated CD40 expression (24). This finding is consistent
with another study showing that MHC class II, CD40, and CD86
expression is decreased by miR-155 knockdown in Kupffer cells
(75). pDCs activated by the TLR pathway are resistant to
glucocorticoid-induced apoptosis, which makes glucocorticoids
ineffective in the treatment of type I IFN-related autoimmune
diseases. In another study, miR-29b and miR-29c promoted pDC
apoptosis by directly targeting Mcl-1 and Bcl-2, which elevated
the therapeutic effect of glucocorticoids in SLE (25). TLR and
IFN receptors are innate immune receptors, and dysregulation of
TLR and IFN signalling can lead to innate immune system
disorders; these pathways have been shown to be important in
lupus pathogenesis (76). As we have previously described,
dysregulated miRNAs influence the progression of SLE by
regulating pDCs activated by TLRs and/or IFN, as well as by
inducing the secretion of inflammatory cytokines.

Not only pDCs but also active cDCs play important roles in
the development of SLE. Triggering receptor expressed on
myeloid cells-1 (TREM-1) might play a part in the
pathogenesis of autoimmune disorders such as lupus through
TLR-induced inflammatory responses (77). By selecting and
analysing splenocytes from MRL/lpr mice, Gao et al. found
that the expression of miR-150 could downregulate the levels
of TREM-1, suggesting that TREM-1 may be a therapeutic target
for the prevention of inflammatory cDC effects in SLE (26). In
addition, miR-142-3p promoted monocyte-derived DCs
(moDCs) to secrete CCL2, CCL5, CXCL8, IL-6, TNF-a and
other SLE-related cytokines. Moreover, overexpression of miR-
142-3p in moDCs inh ib i t ed the pro l i f e r a t ion o f
CD4+CD25+Foxp3+ Treg cells and recruited more CD4+ T
cells, which impacted moDC-CD4+ T cell interactions (27).
Regarding Tol-DCs, although a recent publication detailing
that adoptive transfer of drug-induced Tol-DC1s and Tol-
DC3s reported beneficial therapeutic effects in MRL-Faslpr

lupus-prone mice (78), to date, there have been no relevant
studies on the role of miRNAs in regulating DC tolerance in SLE.

Rheumatoid Arthritis (RA)
RA is a chronic and inflammatory synovitis systemic autoimmune
disease and is the most frequent autoimmune polyarthritis,
with a lifetime prevalence of 3.6% in women and 1.7% in men
(79, 80). Activation of DCs is involved in the pathogenesis of RA.
Synovial fluid can contain both conventional CD1c+ and
inflammatory CD1c+ cells, and these cells not only prime
naive T cells (81) but also stimulate TLR7/8 ligands; in
Frontiers in Immunology | www.frontiersin.org 5
response, cytokines such as TNF are produced, thereby
promoting synovial inflammation (82). Changes in the
expression level of miRNAs can affect the abundance of DC
surface receptors and thus regulate the maturation of DCs
to change the inflammatory state in RA. A study found that
CD1c+ DCs continuously expressed high levels of miR-34a,
which inhibited the expression of cellular AXL, a tyrosine
kinase receptor, thus contributing to the development of
experimental arthritis. This expression of miR-34a may shift
DCs towards a mature state, and mature DCs can support
autoreactive T cells. Furthermore, in animal studies, compared
with wild-type (WT) mice, miR-34a−/− mice had a significantly
lower incidence and severity of arthritis (28), which means that
miR-34a inhibitors could be a potential treatment for RA. In
addition, miRNAs can also affect helper T cell differentiation by
regulating DCs, thus affecting the development of RA. Another
study found that CD11C+av+ DCs induced Th17 cell
differentiation. A possible mechanism has been proposed:
decreased miR-363 expression in DCs from RA patients was
shown to upregulate the expression of integrin av, which induced
the activation of TGF-b and promoted the differentiation of Th17
cells (29); Th17 cells can exacerbate RA and are directly involved
in cartilage and bone destruction (83).

Sjögren’s Syndrome
Primary Sjogren’s syndrome (pSS) is an autoimmune disease
characterized by inflammatory cells infiltrating multiple exocrine
glands, such as salivary glands and lacrimal glands, and leads to a
series of pathological manifestations, such as sicca
keratoconjunctivitis and xerostomia (84). The number of pDCs
in the peripheral blood of pSS patients is decreased (85), but in
the target organ and salivary glands, the quantity of IFN-a-
producing cells is increased (86, 87). Importantly, pDCs can also
be activated by endogenous nucleic acids (88). Therefore, pDCs
are considered to be the main contributor to the production of
type I IFN in pSS and a key mediator of immunopathology. In
addition, in pSS, multiple studies have shown that miRNAs are
abnormally expressed in multiple tissues and cells of the human
body, including purified immune cells, peripheral blood
mononuclear cells (PBMCs) and salivary gland tissues (89, 90).
In recent years, researchers have also noted the regulatory effects
of miRNAs on DCs in pSS. Hillen et al. focused on 20 miRNAs
that were differentially expressed between pDCs from patients
with pSS and normal controls by an OpenArray quantitative
PCR-based technique. In this study, abnormal regulation of the
miRNome affected the type I IFN secretion and death of pDC
from patients with pSS, and downregulation of pro-apoptotic
factors such as miR-29a and miR-29c strengthened the survival
of pDCs (30). Not only pDCs but also cDCs are involved in the
pathological processes of pSS. cDC2s, which characteristically
express CD1c, are the predominant cDCs in human blood,
tissues, and lymphatic organs (8). Importantly, CD4+ T cells,
the main target cells of cDC2s, play a crucial role in pSS
immunopathology (91, 92). Ana P. Lopes et al. found that
miR-708 and miR-130a expression in pSS cDC2s was
downregulated after activation of some TLRs (TLR3 and
TLR7/8), and this altered expression was involved in the
July 2021 | Volume 12 | Article 678918
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pathogenesis of pSS. In addition, the secretion of inflammatory
cytokines was increased. These results suggest that decreased
expression of miR-130a and miR-708 can reflect cDC2 activation
(31). Furthermore, miR-130a regulates the expression of MSK1,
a targeted signalling protein overexpressed in cDC2s in pSS and
an upstream mediator of NF-kB that regulates the secretion of
some pro-inflammatory cytokines by cDC2s (31, 93).

Inflammatory Bowel Disease (IBD)
A large number of microorganisms accumulate in the intestinal
mucosa shortly after birth (94). Studies have shown that in the
process of innate immune activation, specific miRNAs are
upregulated, thereby affecting the innate response to microbial
and viral infections (95). Mature DCs become highly specialized
APCs when they encounter microbial products and
inflammatory stimulation. Previous research has shown that
lamina propria DCs may be associated with specific immune
functions in the lamina propria and Peyer plaques (96).
Therefore, miRNA-based regulation of DCs in intestinal
immunity has gradually become a research focus. In one study,
owing to the effects of enteric microorganisms, the expression of
the miR-10a precursor was inhibited, which caused decreased
expression of IL-12/IL-23p40 in DCs. In line with this finding, a
miR-10a inhibitor promoted the expression of IL-12/IL-23p40.
The gene encoding IL-12/IL-23p40, IL-12B, has been closely
related to susceptibility to Crohn’s disease (CD) and somewhat
related to susceptibility to ulcerative colitis (UC) (97–99).
Another study determined whether abnormal expression of
miR-10a in human DCs could inhibit the expression of NOD2,
which is a prototypical member of the IL-12/IL-23P40 and nod-
like receptor family. Furthermore, NOD2 can be activated by
muramyl dipeptide (MDP) from bacteria (32, 100). Researchers
have long believed that the NOD2 polymorphism is related to
susceptibility to CD (101). Therefore, the regulation of DCs by
miR-10a may also be one of the pathological mechanisms
underlying IBD.

Multiple Sclerosis
Multiple sclerosis is an autoimmune disease characterized by
inflammatory demyelination of white matter in the central
nervous system (CNS). The most commonly involved areas are
the alba around the ventricle, optic nerve, spinal cord, brainstem
and cerebellum. Through analyses of experimental autoimmune
encephalomyelitis (EAE) and multiple sclerosis (MS) mouse
models, researchers have found that MoDCs, which are
Ly6chiCD11b+CD11c+, are important CNS-infiltrating cells
(102, 103). Another publication reported that miR-223, which
is among the upregulated miRNAs in MS patients (104), plays an
important role in inflammation in the CNS by controlling the
level of MoDC-secreted Th17-polarizing cytokines (including
IL-1b, IL-6 and IL-23) to regulate the induction of the Th17
response (33). Hoye et al. focused on the elevated expression of
miR-31 in DCs that migrate through the blood-brain barrier in
vitro. These results suggest that miR‐31 may have potential
regulatory effects on DC migration in the CNS during EAE
(34). In addition, a recent publication found that miPEP155 can
regulate the antigen-presenting capacity of dendritic cells in an
Frontiers in Immunology | www.frontiersin.org 6
inflammatory environment and has a good therapeutic effect on
two autoimmune diseases in mouse models of psoriasis and
multiple sclerosis (72).

Systemic Sclerosis (SSc)
Systemic sclerosis (SSc) is an autoimmune disease characterized
by fibrosis, vascular lesions, and immune dysfunction. pDCs
infiltrate the skin of SSc patients and become chronically
activated, leading to the secretion of IFN-a and CXCL4, which
is characteristic of the disease (105). One publication noted that
overexpression of miR-618 reduced the development of pDCs in
vitro and enhanced the ability of cells to secrete IFN-a,
suggesting that miR-618 may be an important epigenetic target
for regulating immune system homeostasis in diseases
characterized by a type I IFN signature (35).

Autoimmune Myocarditis
As the main cause of sudden death and dilated cardiomyopathy
in children and young adults, autoimmune myocarditis features
aseptic inflammation of cardiac tissues, and miRNAs play a
regulatory role in its induction by inducing the generation of
Tol-DCs. A large number of animal models have proven that
Tol-DCs can inhibit the occurrence and/or progression of
autoimmune diseases through adoptive transfer of BMDCs
into mouse models (106–108). A recent study found that the
inflammation of heart tissue and poor heart function in
experimental autoimmune myocarditis (EAM) mice were
reversed after transfusion of miR-223-3p-overexpressing DCs,
indicating that miR-223-3p is involved in inducing Tol-DCs and
regulating tolerance in autoimmune myocarditis (36).

Acute Graft-Versus-Host Disease (aGVHD)
Among immune tolerance-related diseases, acute graft-versus-
host disease (aGVHD) is a major immune complication that
occurs after allogeneic haematopoietic cell transplantation (allo-
HCT) due to a series of cytokine storms initiated by the recipient
(109). MiRNAs are small non-coding RNAs, and their role in
regulating inflammation and innate and adaptive immune
responses cannot be ignored. The expression of multiple target
mRNAs can be regulated by the same miRNA (110). In recent
years, some publications have focused on the crucial role of
miRNA dysregulation in DCs in the GVHD pathomechanism.
One study noted that miR-155 expression was increased in
activated DCs, and the severity of GVHD in miR-155−/−

transplant recipients was decreased when DC migration and
the level of inflammasome activation were attenuated (37).
Stickel et al. revealed that miR-146a can negatively regulate the
JAK-STAT signalling pathway in DCs, suggesting that miR-146a
variants can significantly increase the risk of acute severe GVHD
in human allo-HCT recipients (38). Another study identified a
partial role of miR-29a in stimulating DCs through TLR7 and
TLR8 (in mice and humans, respectively) to release pro-
inflammatory cytokines TNF and IL-6, which are critical
drivers of acute GVHD pathogenesis, and to increase T cell
proliferation (39). These studies provide a new research
paradigm for identifying more effective prevention and
treatment strategies for acute GVHD.
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LncRNAs REGULATE DENDRITIC CELL-
MEDIATED AUTOIMMUNE AND IMMUNE
TOLERANCE-RELATED DISEASES

LncRNAs, with lengths over 200 nt, are a group of non-coding
RNAs with structures similar to mRNAs but lack any significant
open reading frames (111, 112). In addition, they play crucial
roles in various biological processes, such as immune cell
differentiation, apoptosis and immune responses (20, 113).
Many lncRNAs can be induced by TLRs. For example,
stimulation of TLR4 induces the expression of lincRNA-Cox2
in CD11C+ BMDCs (15). In the following sections, we
summarize previous studies of lncRNAs affecting DCs in
autoimmune diseases and transplantation immunity.

Systemic Lupus Erythematosus (SLE)
LncRNAs may be involved in the molecular regulatory mechanisms
in lupus (114). Li et al. focused on the expression of lnc-DC in SLE
patients, which was significantly lower than that in healthy controls.
In contrast, the lnc-DC level was higher in the lupus nephritis group
than in the healthy control group. To identify the correlation
between differentially expressed lncRNAs in MoDCs of SLE
patients and the SLEDAI score, Wang et al. used lncRNA
microarrays and qPCR and found that the expression levels of
ENST00000604411.1 and ENST00000501122.2 were able to
estimate the activity of SLE. Specifically, the expression of these
two markers was positively correlated with the SLEDAI score (40).
These results suggest that lnc-DC could be a new biomarker for SLE.

Immune Tolerance
In transplantation immunity, abnormal lncRNA expression levels
can affect the transformation of DCs into Tol-DCs. Yu et al.
confirmed that the expression of the lncRNA NEAT1 was
increased in mature DCs induced by LPS. As a ceRNA, NEAT1
regulated NLRP3 expression by affecting the activity of miR-3076-
3P, and the expression of lncRNA NEAT1 could be regulated
although E2F1 activity mediated by miR Let-7i (Figure 2). Thus,
transfusion of NEAT1-knockdown DCs into mouse models with
EAM and heart transplantation reduced inflammatory cell
infiltration, inhibited T cell proliferation, and increased the
number of Treg cells (41). Another publication noted that the
functional lncRNA MALAT1 is involved in Tol-DC induction and
regulation of immune tolerance in heart transplantation and EAM.
MALAT1 regulates the formation of Tol-DCs and immune
tolerance by functioning as a miR155 sponge in the cytoplasm to
promote DC-SIGN and IL10 production (42).
CIRCULAR RNAs REGULATE
DENDRITIC CELL-MEDIATED
AUTOIMMUNE AND IMMUNE
TOLERANCE-RELATED DISEASES

Circular RNAs are widely found in human and mouse genomes,
so they are likely to be a common feature of eukaryotic gene
Frontiers in Immunology | www.frontiersin.org 7
expression and regulation, although they were previously
ignored (115). In addition, they have been subsequently found
in the genes of other animals, including flies and worms, by
microarray analysis (116, 117). There is mounting evidence that
circRNAs play an essential role in complex human pathologies.
circRNAs have been used in some studies as new noninvasive
biomarkers for certain autoimmune diseases (118). DCs are
regarded as an important class of APCs in autoimmunity. DCs
have been found to be involved in various autoimmune diseases
and immune tolerance-related diseases; therefore, an in-depth
study of the regulatory mechanisms by which circRNAs affect
DCs will not only improve our understanding of the molecular
mechanisms of these diseases but also make it possible to identify
future treatments for them.

Systemic Lupus Erythematosus (SLE)
Recent studies have suggested that circRNAs may play a
regulatory role in SLE by serving as miRNA sponges (119, 120)
and can be used as potential biomarkers for SLE (120). Another
study confirmed that the circRNA hsa_circ_0045272 negatively
regulates apoptosis and interleukin-2 secretion in SLE. There are
other relevant studies on the regulation of DCs. For example,
circHLA-C was shown to play a potentially important role in the
pathogenesis of lupus nephritis by sponging miR-150. In
addition, through GO analysis, it was found that upregulated
circRNAs are involved in regulating the differentiation of DCs
and other biological functions (43).

Immune Tolerance
A large number of studies have shown that circRNAs play an
important role in the immune system (121), and some circRNAs
have been found to be abnormally expressed in DCs with
different functions (21). The role of circRNAs in inducing Tol-
DCs cannot be ignored. A recent publication found that circSnx5
could bind with miR-544 as a molecular sponge by analysing
circSnX5-associated competing endogenous RNA (ceRNA)
networks to weaken the inflammatory phenotype of DCs and
enhance their tolerance in a heart transplantation mouse model
(44) (Figure 2). In addition, some upstream regulatory factors
may affect the expression of circRNAs to regulate the function of
DCs. Another study studied growth differentiation factor 15
(GDF15)-induced Tol-DCs by inhibiting the circ_Malat-1 and
NFkB signalling pathways (21). This study indirectly confirmed
that the circRNA Malat-1 has a regulatory effect on DCs in
immune tolerance.
THE THERAPEUTIC POTENTIAL
OF NONCODING RNAs IN
AUTOIMMUNE DISEASES

Changing the expression level of non-coding RNAs can further
affect the process of autoimmune diseases through the regulation
of DC function. As described above, the inflammatory response in
SLE can be reduced by reducing the expression of miR-142-3p and
miR-150 (27, 77). In addition, miR-29b and miR-29c can also
July 2021 | Volume 12 | Article 678918
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enhance the effect of glucocorticoids on SLE by promoting pDC
apoptosis (25). In addition, miR-142-3p, miR-363 and miR-29a
change the proliferation level of Treg and T cells through
regulation of DCs and then affect the level of inflammation in
related autoimmune diseases (29, 39, 77). For the other two types
of non-coding RNA (circRNA, lncRNA), representatively,
CircSnx5 and lncNEAT1 can bind miRNA via a ceRNA
network and change the inflammatory phenotypes of DCs in
Frontiers in Immunology | www.frontiersin.org 8
related autoimmune diseases (41, 44). In general, knockdown or
overexpression of non-coding RNAs may be a novel potential
therapeutic strategy for related autoimmune and tolerance-related
diseases. In the development process of different autoimmune and
tolerance-related diseases, it is of great potential to further
understand the abnormal expression of non-coding RNAs and
the regulation of these diseases through DCs, which can bring new
therapeutic targets or strategies for these complex ones.
FIGURE 2 | CircRNAs and lncRNAs regulate the function of DCs through the ceRNA network. 1) The combination of hnRNP C with circSnx5 promotes the
expression of circSnx5 in DCs, and circSnx5 sponging with miR-544 reduces the inhibitory effect of miR-544 on Socs1, thus reducing the expression of CD80/86
and the secretion of IL-10 and increasing the number of Tregs. In addition, circSnx5 combined with PU.1 can directly reduce the expression of MHCII; 2) miRNA let-
7i can regulate the expression of lncNEAT1 by binding E2F1, and lncNEAT1 is able to regulate NLRP3 inflammasome by inhibiting Mir-3076-3P, then increasing
expression of MHCII/CD80/86, promoting secretion of IL-17/12 as well as reducing the number of Tregs and increasing the activation of T cells.
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CONCLUSION AND FUTURE
PERSPECTIVES

Dendritic cells (DCs), typical APCs in the human body, play an
important role in connecting innate immunity and adaptive
immunity and affect the pathological mechanism of various
immune diseases. Our understanding of non-coding RNAs has
changed, and now, instead of being considered “junk”
transcription products, they are recognized as functional
regulators that mediate various cellular processes. This review
highlights the regulatory effects and potential therapeutic targets
targeted by DCs of abnormally expressed non-coding RNAs
(miRNAs, lncRNAs, circRNAs) in autoimmune diseases and
immune tolerance diseases. Although non-coding RNAs have
been proven to be potential diagnostic and prognostic
biomarkers, the specificity and sensitivity of most existing
noncoding RNA biomarkers are still insufficient for clinical
application. Further large-scale prospective clinical trials will
validate and promote the clinical application of noncoding
RNA biomarker candidates. Furthermore, the number and
profundity of studies on the effects of lncRNAs and circRNAs
Frontiers in Immunology | www.frontiersin.org 9
on DCs in these diseases remain scarce. Despite these defects,
further research on the regulatory mechanisms of non-coding
RNA in target cells in specific diseases may provide a more solid
foundation for diagnostic and therapeutic research in
autoimmune diseases and immune tolerance diseases.
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