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Abstract

Introduction We compared simultaneous measurements of
blood lactate concentration ([Lac]) in the right atrium (RA) and
in the pulmonary artery (PA). Our aim was to determine if the
mixing of right atrial with coronary venous blood, having
substantially lower [Lac], results in detectable decreases in
[Lac] from the RA to the PA.

Methods A prospective, sequential, observational study was
conducted in a medical-surgical intensive care unit. We enrolled
45 critically ill adult individuals of either sex requiring pulmonary
artery catheters (PACs) to guide fluid therapy. Immediately
following the insertion of the PAC, one paired set of blood
samples per patient was drawn in random order from the PAC's
proximal and distal ports for measurement of hemoglobin
concentration, O2 saturation (SO2) and [Lac]. We defined
∆[Lac] as ([Lac]ra - [Lac]pa), ∆SO2 as (SraO2 - SpaO2) and the
change in O2 consumption (∆VO2) as the difference in systemic
VO2 calculated using Fick's equation with either SraO2 or SpaO2

in place of mixed venous SO2. Data were compared by paired
Student's t-test, Spearman's correlation analysis and by the
method of Bland and Altman.

Results We found SraO2 > SpaO2 (74.2 ± 9.1 versus 69.0 ±
10.4%; p < 0.001) and [Lac]ra > [Lac]pa (3.9 ± 3.0 versus 3.7 ±
3.0 mmol.l-1; p < 0.001). ∆[Lac] correlated with ∆VO2 (r2 = 0.34;
p < 0.001).

Conclusion We found decreases in [Lac] from the RA to PA in
this sample of critically ill individuals. We conclude that parallel
decreases in SO2 and [Lac] from the RA to PA support the
hypothesis that these gradients are produced by mixing RA with
coronary venous blood of lower SO2 and [Lac]. The present
study is a preliminary observation of this phenomenon and
further work is needed to define the physiological and clinical
significance of ∆[Lac].

Introduction
Pulmonary artery (PA) blood comprises the mixed venous
effluent from all organs, with the notable exception of the
lungs. PA O2 saturation (SpaO2) has been promoted as an

index of tissue oxygenation [1,2] because it is thought to be
related to the average end capillary blood PO2 [3].

In a prior study [4], we measured the O2 saturation (SO2) of
right atrial blood (SraO2) and SpaO2 in samples drawn from the
R425

CV = coronary venous; CVP = central venous pressure; DO2 = systemic O2 delivery; DP = double product; ERO2 = oxygen extraction ratio; [Hb] = 
hemoglobin concentration; HR = heart rate; IVC = inferior vena cava; ∆[Lac] = lactate concentration gradient from right atrium to pulmonary artery; 
[Lac] = blood lactate concentration; LVSWI = left ventricular stroke work index; MAP = mean arterial pressure; MPP = mean pulmonary pressure; 
MVO2 = myocardial O2 consumption; PA = pulmonary artery; PAC = pulmonary artery catheter; PAOP = pulmonary artery occlusion pressure; RA = 
right atrium; SO2 = O2 saturation; ∆SO2 = O2 saturation gradient from right atrium to pulmonary artery; SVRI = systemic vascular resistance index; 
VO2 = O2 consumption.
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proximal and distal ports of PA catheters (PACs) placed in crit-
ically ill patients. We noted that SpaO2 was consistently lower
than SraO2 by approximately 5%. Others have noted a similar
step-down in O2 saturation from the right atrium (RA) to the PA
[5,6], and continuous measurements in critically ill patients
have shown a similar difference between SpaO2 and central
venous (CV) O2 saturation (ScvO2) of approximately 7% [7].

The RA to PA O2 saturation gradient (defined as ∆SO2 =
SraO2 - SpaO2) is likely the result of mixing atrial blood with
highly desaturated blood entering the right heart chambers
from the coronary veins. This includes blood flowing from the
coronary sinus, the great cardiac vein and other major epicar-
dial veins.

As a result of myocardial lactate extraction from the coronary
circulation, the CV lactate concentration ([Lac]cv) is the lowest
of any venous blood [8,9]. In the present study we compare
blood lactate concentration ([Lac]) in paired samples drawn
from the proximal and distal ports of PACs placed in critically
ill patients ([Lac]ra and [Lac]pa) to establish whether we could
also detect a decreasing lactate concentration gradient from
right atrium to pulmonary artery (∆[Lac] = [Lac]ra - [Lac]pa).

Methods
This was a prospective, sequential study performed in the
George Washington University Hospital intensive care unit.
The George Washington University Institutional Review Board
approved the study and informed consent was obtained from
the patient or from the next of kin.

The data presented were culled from a subset of patients
enrolled in a previous study [4]. We enrolled individuals older
than 18 years of age of either sex in whom their physicians
determined that a PAC was required to guide fluid therapy.
Enrollment in the study occurred at the time the patient or the
nearest relative consented to the introduction of the PAC. On
the basis of their medical history, we excluded patients with
uncorrected valvular incompetence, intra-cardiac shunting or
those who required insertion of the pulmonary artery catheter
through the femoral vein.

A 7.5 French, 5 lumen, 110 cm length, PAC with the right atrial
lumen positioned 30 cm from the tip (Edwards Lifesciences,
Irvine, CA, USA) was inserted through the internal jugular vein
or the subclavian vein using a percutaneous sheath introducer
(8.5 French; Edwards Lifesciences). The insertion technique is
described elsewhere [4]. Care was taken to place the distal
port catheter in the PA and the proximal port in the RA.

Immediately after the insertion of the PA catheter, each patient
had one set of paired blood samples drawn in rapid succes-
sion, and in random order, from the proximal and distal port.
We took proximal port blood to be representative of RA blood,
whereas distal port blood was considered to be PA blood. The

first 2 ml of blood drawn for each sample were discarded to
prevent contamination with flushing fluid. Blood samples were
drawn with the catheter balloon deflated to avoid contamina-
tion of the distal port sample with pulmonary capillary blood.
Arterial O2 saturation was determined from a previously in vivo
calibrated pulse oximeter.

Blood samples were placed on ice and taken to a central lab-
oratory for measurement of [Lac] (Ektachem 950 IRC Chem-
istry Analyzer with a Vitros Products lactate slide, Ortho-
Clinical Diagnostic, Inc., Rochester, NY, USA), hemoglobin
concentration ([Hb]) and O2 saturation (ABL700 Radiometer
America Inc., Westlake, OH, USA). We measured cardiac out-
put (CO) by the thermodilution method as the average of three
sequential determinations.

Systemic O2 delivery (DO2), O2 consumption (VO2), O2 extrac-
tion ratio (ERO2), double product (DP; heart rate (HR) × mean
arterial pressure (MAP)) and left ventricular stroke work index
(LVSWI) were computed using standard formulae. We
defined ∆VO2 as the difference in systemic VO2 calculated
with Fick's equation with either SpaO2 or SraO2 in place of the
mixed venous SO2 (SvO2); ∆VO2 = Qpa × 13.4 × [Hb] ×
(SraO2 - SpaO2) ml.min-1.

Paired Student's t-test was used to compare atrial to PA
measurements. [Lac]ra and [Lac]pa were compared by Spear-
man's correlation analysis [10]. The method of Bland and Alt-
man [11] was used to investigate the effect of lactate
concentration on the differences between paired observa-
tions. The relationships between ∆[Lac] and ∆SO2, ∆VO2 and
other hemodynamic parameters were analyzed by Spearman's
correlation analysis. Data are shown as mean ± SD with p <
0.05 denoting a significant difference.

Results
We enrolled 45 patients in the study, including 18 women. The
study group was composed of 31 post-operative patients (26
post-cardiac surgery), 11 patients in septic shock from various
medical conditions, 2 patients with severe gastrointestinal
bleeding and 1 patient in congestive heart failure. Demo-
graphic and hemodynamic parameters for the group are listed
in Table 1.

The mean SO2 and lactate concentrations for RA and PA
blood samples are shown in Table 2. SraO2 was greater than
SpaO2 (p < 0.001), with ∆SO2 = 5.2 ± 4.8%. [Lac]ra was
greater than [Lac]pa (p < 0.001), with ∆[Lac] = 0.2 ± 0.2
mmol.l-1.

Shown in Fig. 1 is a Bland-Altman plot comparing [Lac]ra and
[Lac]pa. There was a bias towards greater [Lac]ra of 0.2 mmol.l-
1 (p < 0.001) with a 95% confidence interval for the population
of -0.15 to 0.56 mmol.l-1. There was no discernable relation-
ship between [Lac]ra and ∆[Lac] (r2 = 0.03; p = 0.33),
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indicating that ∆[Lac] was not a concentration dependent phe-
nomenon. Moreover, we found no significant relationships
between [Lac]ra and SraO2 or between [Lac]pa and SpaO2.

There was a significant relationship between ∆[Lac] and ∆VO2
(∆[Lac] mmol.l-1 = 0.0026 ∆VO2 ml.min-1 + 0.0975; r2 = 0.34;
p < 0.0001) with a standard error of the estimate of 0.15
mmol.l-1 (Fig. 2). There were no significant correlations
between ∆[Lac] and cardiac index, DP, LVSWI, DO2, VO2 or
ERO2.

Discussion
We detected a decreasing ∆[Lac] when comparing paired
blood samples drawn from the proximal and distal ports of
PACs. We also noted ∆[Lac] correlated with ∆VO2. To our
knowledge, these novel findings have not been reported
elsewhere.

Only one other study in the literature has compared central
venous [Lac] to [Lac]pa. This study found no differences in
[Lac], although it was biased by the use of multiple blood sam-
ples (n = 50) drawn from 12 critically ill patients [12]. Our
study used only one comparison per subject, which perhaps
may explain the difference in results.

We used a standard clinical laboratory instrument to measure
[Lac] having a 95% precision of ± 0.1 mmol.l-1. Even assuming
a worst case scenario of a systematic instrument bias of -0.1
mmol.l-1, the difference in [Lac] between RA and PA would
have remained statistically significant.

The declining [Lac] gradient from RA to PA is likely the result
of mixing RA blood with blood of lower [Lac] emanating from
the coronary venous system. Lactate oxidation accounts for
10% to 20% of total myocardial aerobic energy production

Table 1

Study population demographic and hemodynamic parameters

Patient parameters (n = 45) Mean ± SD

Age (years) 57.6 ± 13.2

APACHE II score 13.8 ± 6.0

HR (bpm) 92.1 ± 16.5

MAP (mmHg) 81.8 ± 13.0

MPP (mmHg) 27.6 ± 9.9

PAOP (mmHg) 18.6 ± 7.0

CVP (mmHg) 15.0 ± 6.1

Cardiac output (ml.min-1) 6.1 ± 2.6

Cardiac Index (ml.min-1.m-2) 3.3 ± 1.5

LVSWI (g.m.m-2.beat) 39.7 ± 12.6

DP (mmHg.beat.min-1) 7694 ± 1944

SVRI (dynes.sec.m-5) 2002 ± 1316

Hemoglobin (g.dl-1) 10.8 ± 2.0

CVP, central venous pressure; DP, double product (HR × MAP); HR, heart rate; LVSWI, left ventricular stroke work index; MAP, mean arterial 
pressure; MPP, mean pulmonary pressure; PAOP, pulmonary artery occlusion pressure; SVRI, systemic vascular resistance index.

Table 2

O2 saturation and lactate concentration of paired RA and PA blood samples

RA blood PA blood Gradient (∆)

O2 saturation (%) 74.2 ± 9.1 (53.1, 94.3) 69.0 ± 10.4a (47.3, 90.5) 5.2 ± 4.8 (-8.1, 14.9)

Lactate concentration (mmol.l-1) 3.9 ± 3.0 (0.6, 11.7) 3.7± 3.0a (0.3, 11.9) 0.2 ± 0.2 (-0.3, 0.7)

aP < 0.001 when comparing atrial to mixed venous blood by paired t-test. Mean ± SD; range shown in parenthesis; n = 45. RA, right atrium; PA, 
pulmonary artery.
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[13], a proportion that increases substantially in sepsis [14].
As a result of myocardial lactate extraction, coronary venous
[Lac] is substantially lower than arterial [Lac] and is the lowest
of all venous effluents [15]. The dilution of RA blood by
coronary venous blood of lower [Lac] is a plausible explanation
for the small but detectable difference in [Lac] from RA to PA.

Since RA blood is the mixture of superior vena cava and infe-
rior vena cava (IVC) blood, the possibility exists that these
blood streams had not thoroughly mixed at the proximal PAC
sampling port. In this case, one could expect further mixing to
occur between IVC and RA blood while flowing into the pul-
monary artery. Our results do not support this hypothesis.
Direct measurements in humans show that IVC blood has the
highest [Lac] of any major vein [9] and further mixing of RA
with IVC blood would have produced higher, not lower,
[Lac]pa. A factual resolution of this question can only be
achieved by direct measurement of [Lac] from IVC to PA.

Only three individuals in our group had [Lac]ra < [Lac]pa. These
patients had no distinguishing features to help us differentiate
them from others in the group. It is possible that accidental
mislabeling of the samples may have accounted for a negative
∆[Lac] but we think it unlikely, given the care taken with the
labeling and measuring of the samples. Another possibility is
that these individuals experienced myocardial ischemia, a con-
dition associated with an upsurge in glucose metabolism and
net lactate release by the heart [17-19]. Myocardial lactate
release, as opposed to the normal state of myocardial uptake,
would have resulted in [Lac]ra < [Lac]pa.

Others have noted a linear relationship between myocardial
O2 consumption (MVO2) and myocardial lactate uptake,
reflecting the O2 cost of lactate utilization by the heart [14].
We did not measure MVO2 directly but calculated ∆VO2, a
parameter denoting the difference in systemic VO2 prior to and
immediately after entry of myocardial effluent blood into the

venous circulation. As such, ∆VO2 bears a direct relationship
to MVO2. We noted a linear relationship between ∆VO2 and
∆[Lac] (Fig. 2) similar to that described between MVO2 and
myocardial lactate uptake. This finding suggests that ∆[Lac]
also may be related, in a yet to be established fashion, to
MVO2.

Conclusion
We found decreases in [Lac] from RA to PA in this sample of
critically ill individuals. We conclude that parallel decreases in
SO2 and [Lac] from RA to PA support the hypothesis that
these gradients are produced by mixing RA with coronary
venous blood of lower SO2 and [Lac]. The present study is a
preliminary observation of this phenomenon and further work
is needed to define the physiological and clinical significance
of ∆[Lac].
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Figure 1

Bland-Altman plot comparing [Lac]ra and [Lac]paBland-Altman plot comparing [Lac]ra and [Lac]pa. Bias 0.21 mmol.L-1 
with a 95% confidence interval for the population of -0.15 to 0.56 
mmol.L-1.

Figure 2

Linear correlation of ∆[Lac] to ∆VO2Linear correlation of ∆[Lac] to ∆VO2. The latter represents the differ-
ence in VO2 calculated using either SraO2 or SpaO2 in place of mixed 
venous SO2 in the Fick's Equation (∆[Lac] mmol.L-1 = 0.0026 ∆VO2 
ml.min-1 + 0.0975; r2 = 0.34; p < 0.0001). Standard error of the esti-
mate 0.15 mmol.L-1.

Key messages

• Oxygen and lactate concentrations are lower in PA 
blood than in RA blood.

• The oxygen and lactate concentration gradients from 
RA to PA are likely the result of mixing atrial with coro-
nary venous blood.

• The possibility exists that these concentration gradients 
may reflect changes in myocardial energy requirements.
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