
ORIGINAL RESEARCH
published: 02 August 2019

doi: 10.3389/fninf.2019.00055

Frontiers in Neuroinformatics | www.frontiersin.org 1 August 2019 | Volume 13 | Article 55

Edited by:

Jose Manuel Ferrandez,

Universidad Politécnica de Cartagena,

Spain

Reviewed by:

Vinay Jayaram,

Max Planck Institute for Intelligent

Systems, Germany

Manuel Grana Nomay,

University of the Basque Country,

Spain

*Correspondence:

Sebastián Castaño-Candamil

sebastian.castano@blbt.uni-freiburg.de

Michael Tangermann

michael.tangermann@

blbt.uni-freiburg.de

Received: 28 February 2019

Accepted: 08 July 2019

Published: 02 August 2019

Citation:

Castaño-Candamil S, Meinel A and

Tangermann M (2019) Post-hoc

Labeling of Arbitrary M/EEG

Recordings for Data-Efficient

Evaluation of Neural Decoding

Methods. Front. Neuroinform. 13:55.

doi: 10.3389/fninf.2019.00055

Post-hoc Labeling of Arbitrary
M/EEG Recordings for Data-Efficient
Evaluation of Neural Decoding
Methods
Sebastián Castaño-Candamil 1*, Andreas Meinel 1 and Michael Tangermann 1,2*

1 Brain State Decoding Lab, Department of Computer Science and BrainLinks-BrainTools Cluster of Excellence, University of

Freiburg, Freiburg, Germany, 2 Autonomous Intelligent Systems, Department of Computer Science, University of Freiburg,

Freiburg, Germany

Many cognitive, sensory and motor processes have correlates in oscillatory neural

source activity, which is embedded as a subspace in the recorded brain signals.

Decoding such processes from noisy magnetoencephalogram/electroencephalogram

(M/EEG) signals usually requires data-driven analysis methods. The objective evaluation

of such decoding algorithms on experimental raw signals, however, is a challenge:

the amount of available M/EEG data typically is limited, labels can be unreliable,

and raw signals often are contaminated with artifacts. To overcome some of these

problems, simulation frameworks have been introduced which support the development

of data-driven decoding algorithms and their benchmarking. For generating artificial

brain signals, however, most of the existing frameworks make strong and partially

unrealistic assumptions about brain activity. This limits the generalization of results

observed in the simulation to real-world scenarios. In the present contribution, we show

how to overcome several shortcomings of existing simulation frameworks. We propose

a versatile alternative, which allows for an objective evaluation and benchmarking of

novel decoding algorithms using real neural signals. It allows to generate comparatively

large datasets with labels being deterministically recoverable from the arbitrary M/EEG

recordings. A novel idea to generate these labels is central to this framework: we

determine a subspace of the true M/EEG recordings and utilize it to derive novel labels.

These labels contain realistic information about the oscillatory activity of some underlying

neural sources. For two categories of subspace-defining methods, we showcase how

such labels can be obtained—either by an exclusively data-driven approach (independent

component analysis—ICA), or by a method exploiting additional anatomical constraints

(minimum norm estimates—MNE). We term our framework post-hoc labeling of M/EEG

recordings. To support the adoption of the framework by practitioners, we have

exemplified its use by benchmarking three standard decoding methods—i.e., common

spatial patterns (CSP), source power-comodulation (SPoC), and convolutional neural

networks (ConvNets)—wrt. Varied dataset sizes, label noise, and label variability. Source

code and data are made available to the reader for facilitating the application of our

post-hoc labeling framework.

Keywords: neural decoding, M/EEG labeling, data-driven neural decoding, brain computer interfaces, band-power

decoding
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1. INTRODUCTION

Brain oscillatory phenomena measured with non-invasive
imaging techniques, such asmagneto- or electroencephalography
(M/EEG), contain information about underlying neural
processes. The possibility to describe these is a prerequisite to
answer questions appearing in clinical contexts, as well as in
basic neuroscience research. Examples are the monitoring of
rehabilitation progress, the characterization of neurological and
neuropsychiatric disorders (Herrmann and Demiralp, 2005), the
investigation of memory processes (Klimesch et al., 2007), motor
performance (Tangermann et al., 2015; Meinel et al., 2016), and
visual perception (Marshall et al., 2018).

1.1. Benchmarking and Validation of
Data-Driven Neural Decoding Algorithms
Since the rise of brain-computer interface (BCI) systems, great
effort has been put into developing novel techniques for decoding
neural sources from noisy M/EEG recordings using linear
and nonlinear methods, both for classification and regression
tasks (Lotte et al., 2018). For the development, validation,
and benchmarking of such neural decoding algorithms, it is
desirable to have multichannel datasets with large amounts
of labeled data available. In the literature, two types of
frameworks prevail. First, frameworks making use of real
M/EEG recordings acquired during experimental sessions, and
second, those using synthetically generated pseudo-M/EEG
signals. Each comes with advantages and shortcomings, as
explained below.

1.1.1. Real M/EEG Recordings
Using recordings of M/EEG data has the great advantage that
their dynamics, the signal-to-noise ratio between oscillatory
sources of interest and undesired background activity as well as
any non-stationary behavior over time are provided naturally,
such that they do not need to be set by the experimenter.
Efforts have been made to provide benchmarking platforms, e.g.,
Jayaram and Barachant (2018) which contains real M/EEG data
that has been recorded under specific experimental paradigms.
However, the limitations of using such paradigm-specificM/EEG
data remains.

1.1.1.1. Small Datasets
The amount of labeled real M/EEG data acquired in a single
experimental session maximally lasts a couple of hours. This
limited dataset size is rendered even smaller by subsequent data
preprocessing steps, i.e., data segmentation, removal of inter-trial
pauses and rejection of artifactual segments. Bigger datasets may
be obtained by applying transfer learning techniques, with the
aim of merging inter-subject and inter-session data (Krauledat
et al., 2008). However, this comes with its own substantial
challenges and is subject to active research (Jayaram et al., 2016;
Lotte et al., 2018). Overall, the relative small dataset size is a
clear drawback of using real M/EEG data for the benchmarking
of algorithms.

1.1.1.2. Label Noise
In some experimental setups, M/EEG recordings are governed
by a varying but known experimental parameter—such as
the intensity of an external stimulus (Dähne et al., 2014b)—
this parameter can be used as a target variable z, which
serves as epoch-wise labels to support the supervised decoding
of correlated oscillatory M/EEG activity. Unfortunately, the
situation is more challenging, if an M/EEG correlate of open
behavior or even an imagery task shall be decoded: a reliable
behavioral surrogate is lacking, and the precise registration
of open behavior may also be difficult, thus, the investigator
may end up with a noisy estimate. This label noise can have
many different origins: subjects may be unable to execute
the task with a required timing, they may not follow the
experimental instructions consistently, may change their mental
strategies to solve a problem, or display varying levels of
engagement over time. Compared to clean labels z, noisy label
information is known to decrease the performance of decoding
algorithms (Castaño-Candamil et al., 2015b). A number of
decoding tasks, like the estimation of the motor tasks in imagery
experiments (Höhne et al., 2014) in BCI, the prediction of
hand motor performance (Meinel et al., 2016), or attention
decoding (Martel et al., 2014), are considered very challenging,
with label noise as a substantial part of the problem. As the
experimenter typically neither knows the level of label noise
contained in z nor can control it, behavioral experiments deliver
suboptimal data for the benchmarking of decoding algorithms.

1.1.1.3. Task-Specific
Last but not least, the use of real M/EEG data for benchmarking
comes with the drawback that switching between decoding
approaches, e.g., classification and regression, may require to
redesign M/EEG experiments and run them again to collect the
necessary novel label types.

1.1.2. Synthetic Pseudo-M/EEG Signals
Some shortcomings of real data can be mitigated with
synthetically generated M/EEG signals (Krol et al., 2018), which
are utilized preferably in the fields of brain mapping and
connectivity analysis (Castaño-Candamil et al., 2015a; Haufe and
Ewald, 2016). Here, the assumption of a linear mapping from the
neural source space to theM/EEG sensor space allows to simulate
a neural target source, whose activity overlaps with measurement
noise and task-irrelevant brain activity termed background
sources. Special attention is dedicated to the modeling of sources,
such that they match naturally occurring frequency spectra,
e.g., reproducing a 1/f -shaped frequency spectrum and a narrow-
band oscillatory target source. However, since these simulations
are based purely on synthetic data, they need to make strong
assumptions about brain dynamics.

1.1.2.1. Assumptions About Neural Dynamics
The assumptions made are expressed by the choices of, e.g., the
power ratio between target- and background sources, the noise
level on the sensor space, and the time series of the sources.
Synthetic datasets typically disregard more complex dynamics,
which are present in real datasets and pose substantial challenges
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for decoding methods. While being sufficient for proof-of-
concept purposes (Dähne et al., 2014b; Lindgren et al., 2018),
these purely synthetic datasets lack a sufficient level of realism
to allow for generalizing simulated performance estimates to
real-world scenarios.

1.1.2.2. Physiologically- and Functionally-Motivated Models
Simulated M/EEG time series are also used intensively in the
field of computational neuroscience. Here, physiologically
motivated linear and nonlinear stochastic systems are utilized
to describe e.g., the dynamics of Alzheimer’s disease, epilepsy,
or sleeping disorders (Robinson et al., 2002; Kim et al., 2007)
on the level of small networks and M/EEG. The complexity of
such methods span from linear univariate, to highly detailed
multivariate models motivated by complex functional and
physiological constraints. Univariate linear models disregard
the notion of spatiality inherent to M/EEG recordings and
resemble simple oscillators. Multivariate models—at the
other end of the complexity spectrum—account for highly
specific networks and dynamics in the brain, but require
control over a large number of parameters (Breakspear
et al., 2010). To determine them based on data is difficult
and may succeed only when very large data collections
are accessible. In contrast to the physiologically motivated
systems, purely data-driven approaches using recurrent
neural networks methods (Forney et al., 2015) have been
explored. These approaches are capable of generating a
single channel of realistic, albeit artificial, M/EEG time-
series but also disregard the spatial notion present in
M/EEG recordings.

1.2. Post-hoc Labeling of
Paradigm-Agnostic M/EEG Recordings
Motivated by the shortcomings of using real M/EEG recordings
(few data and noisy labels) as well as of synthetically generated
datasets (questionable assumptions about neural dynamics and
noise), we propose a novel generation framework for labeled
datasets. It is based on post-hoc labeling of pre-recorded real
M/EEG signals, that generates novel labels using unsupervised
subspace projection methods. As the original labels of the
dataset are discarded, the framework is agnostic wrt. the original
paradigm under which the M/EEG signals had been recorded,
and to its original trial structure.

As a result, with our framework we aim at obtaining datasets
with the following properties:

• Real neural dynamics, as contained in the M/EEG signals;
• highly efficient use of real M/EEG data (thus potentially

yielding larger datasets), and
• labels deterministically recoverable from the available data, i.e.,

free of noise.

Our proposed framework is compatible with existing
benchmarking frameworks, for instance the Mother of All
BCI Benchmarks (MOABB) introduced in Jayaram and
Barachant (2018).

2. METHODS

2.1. Generative Model of Brain Activity
Neural activity recorded by M/EEG can be represented by means
of a linear forward model (Baillet et al., 2001; Grech et al., 2008):

X = AS+ E , (1)

where X ∈ C ⊆ R
Nc×Nt is a multivariate signal in the channel

space C describingM/EEG data measured byNc M/EEG channels
at Nt discrete time samples, S∈ S ⊆ R

Ns×Nt describes the time
course ofNs neural sources in the source space S with covariance
matrix Q∈R

Ns×Ns ; and matrix A∈R
Nc×Ns describes the linear

projection S → C of the sources onto the sensor space, where
the columns of A, a ∈ R

Nc , are referred to as spatial patterns.
Furthermore, the matrix E contains i.i.d. Gaussian noise with
zero mean and a covariance matrix Qǫ∈R

Nc×Nc .
Under this representation, it is widely accepted that surrogates

of a wide range of cognitive processes can be decoded from the
power of narrowband frequency oscillatory sources in S (Dähne
et al., 2014b; Horschig et al., 2014). We will represent such a
surrogate by the row vector sTz ∈R

Nt of S, whereas its envelope—
the power of the source—will be denoted as z∈R

Nt and termed
target variable. It delivers the labels and, consequently, represents
the variable that is to be decoded for unseen data.

2.2. Post-hoc Labeling of
Paradigm-Agnostic M/EEG Recordings
Our novel framework refrains from making (potentially
problematic) assumptions about the dynamics of neural activity
or about the signal-to-noise ratio between an oscillatory source
of interest and background sources. The framework relies upon
an unsupervised projection of an arbitrary M/EEG dataset X
onto a source space S by means of a function f : C → S .

Assuming we can find such a function which decomposes the
M/EEG signals into reasonable sources (the next paragraphs will
deal with this), we also propose that any source in S could be
selected to serve as the target source sz and that the oscillatory
power of this source can be used to provide the labels z for the
purpose of benchmarking arbitrary decoding methods.

2.2.1. Determining f s a Linear Projection Function
We propose two alternative strategies to choose function f : the
first one uses an anatomically constrained source space Sa ⊆ S

while the second strategy defines the source space Sd ⊆ S in a
purely data-driven manner.

2.2.1.1. Anatomically Constrained Source Space Sa
If an anatomically motivated head model A, potentially
containing a very large number of sources, is available (Hallez
et al., 2007), then f can be selected such that X is projected
onto an anatomically constrained version of the source space,
Sa. To this end, a source reconstruction method may be used.
Specifically, the maximum a-posteriori estimate of S ∈ Sa can
be found as the minimizer of the following cost function (Grech
et al., 2008; Castaño-Candamil et al., 2015a):

argmin
S

{||X − AS||2Q + λΘ (S)} . (2)
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Here, ‖·‖Qǫ
is the matrix norm of the argument wrt. the

covariance matrix Qǫ , and λ ∈ R
+ is a regularization constant.

The penalty term Θ (S) : S 7→ R
+ can be utilized to formalize

arbitrary constraints imposed upon the neural source activity.
Many different algorithms, each with specific choices for Θ (S)

and Qǫ , have been introduced (Grech et al., 2008), each of them
representing different priors about the expected characteristics
of sources. For the sake of simplicity and assuming stationarity
wrt. Q and Qǫ , we have chosen Θ (S) = ||S||22 and Qǫ =

INc , where INc ∈ R
Nc×Nc is an identity matrix. This approach

is commonly termed ℓ2-norm regularization (Ng, 2004), also
known as minimum norm estimate (MNE) (Pascual-Marqui,
1999; Grech et al., 2008). For this choice of Θ , it can be shown
that the optimal solution for expression 2 is given conveniently by

S = AT(INc + λAAT)−1X (3)

where hyperparameter λ is determined, in our case, using the
generalized crossvalidation procedure, as described in Grech
et al. (2008).

Please note that the proposed post-hoc labeling framework is
not limited to using MNE, and therefore, the assumption about
stationary dynamics made by MNE is an external factor and is
not intrinsically embedded in the proposed framework. If non-
stationary dynamics in the underlying sources shall be taken into
account, more complex mapping methods, as time-frequency
mixed norm estimates (TF-MxNE) (Gramfort et al., 2013b)
or spatio-temporal unifying tomography (STOUT) (Castaño-
Candamil et al., 2015a) can be used to obtain S in Sa.

2.2.1.2. Data-Driven Source Space Sd
Choosing a data-driven approach, a set of underlying target
sources can be estimated from X using standard unsupervised
linear decomposition methods such as PCA, ICA, factor analysis,
among others. In the following, we use the fastICA algorithm
(Hyvärinen and Oja, 2000), which—among the different blind
source separation methods—has been widely employed for the
analysis of neural data (Makeig et al., 1996; Vigário et al., 2000;
Delorme and Makeig, 2004). For this choice, the function f is
defined as S = f (X) = 8X, where 8 ∈ R

Ns×Nc is a matrix
spanning Sd, a space of maximally independent components.
Independence is achieved by maximizing non-Gaussianity of the
sources S ∈ Sd. Please note again, that the proposed dataset
generation framework is not dependent on this specific choice
of fastICA, and therefore, other blind source separation methods
(including adaptive approaches, capable of dealing with non-
stationary dynamics), can be used for estimating S in Sd.

2.2.2. Extraction of Target Variable z
Once a set of sources has been determined by the two approaches
mentioned above (or any analog thereof), a target source sz is
to be selected. The choice could be guided by a prior about
the benchmarking problem (e.g., strong components only, or
components that stem from a brain region known to be involved
in a certain experimental task) or simply by random selection.
Similarly, a arbitrary combination of sources could also be
selected as target source. In this regard, our post-hoc labeling

framework offers absolute flexibility regarding the criteria used
for obtaining the target source. After it has been selected, the
labels z are computed in the following three-step procedure:

1. Since it is expected that the target source provides surrogate
information about a cognitive process by means of its power
in a narrow frequency band (Horschig et al., 2014),X is filtered
with a bandpass filter to reflect this assumption and then
projected onto S , where a target source sz is selected.

2. The band power envelope of the selected source is determined
by computing, e.g., the magnitude of its Hilbert transform

z = |H {sz}| (4)

3. If desired, the data and the labels can be segmented into
epochs. It is important to remark that this step depends on
the algorithm which shall be benchmarked later on.

The dataset resulting from these steps consists of real EEG
recordings X and a noiseless continuous variable z containing
the corresponding target labels. Using X and z, any arbitrary
supervised decoding algorithm can be benchmarked and
validated. Furthermore, the proposed formulation may be
extended to obtain discrete labels y by assigning a class label
depending on percentile memberships of individual labels zi,
thus extending the applicability of our proposed framework to
classification tasks. Figure 1 illustrates the general idea of the
proposed post-hoc labeling framework for datasets generation.

3. EXPERIMENTAL SETUP

3.1. Decoding Methods
Among many different neural decoding methods found in
the literature, linear subspace decomposition methods come
with the advantage of computational simplicity and offer
interpretability of the decoded information (Haufe et al., 2014b).
Besides extracting label-informative oscillatory components,
these approaches are often put to work for dimensionality
reduction before applying more advanced processing methods.
The pioneering work on joint covariance diagonalization
presented by Fukunaga (2013) and reformulated by de Cheveigné
and Parra (2014) serves as a generalized foundation for popular
supervised linear subspace decomposition algorithms. One
representative is the common spatial patterns (CSP) algorithm,
suitable for the classification of oscillatory processes related to
motor execution, motor imagery, and attemptedmotor execution
tasks (Koles et al., 1990; Lemm et al., 2005). The relevance of
CSP is not only indicated by its extensive use (Tangermann
et al., 2012), but also by the plethora of derivatives that
have been introduced after its original presentation, like finite
impulse response CSP (FIR-CSP) (Higashi and Tanaka, 2013),
sub-band CSP (SBCSP) (Novi et al., 2007), filter-bank CSP
(FBCSP) (Ang et al., 2008), spectrally weighted-CSP (SPEC-
CSP) (Tomioka et al., 2006), among others. While CSP is a
supervised algorithm preferred for classification problems, the
source power comodulation algorithm SPoC (Dähne et al.,
2014b), together with its extensions canonical SPoC (cSPoC)
(Dähne et al., 2014c) and multimodal SPoC (mSPoC) (Dähne
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FIGURE 1 | Illustration of the post-hoc labeling dataset generation framework. M/EEG recordings in the sensor space (Left) are represented by a scalp map. The

information contained in these signals is mapped to the source space (Right) by a so-called inverse projection. This projection is the key ingredient for our post-hoc

labeling and can be performed either via source reconstruction techniques or by unsupervised decomposition methods.

et al., 2014a), lends itself to solve supervised linear regression
tasks (Meinel et al., 2016). Unsupervised linear neural decoding
methods are also extremely popular: After principal component
analysis (PCA), the most widely applied class of algorithms
is probably the family of independent component analysis
(ICA) methods, which realize blind source separation (Makeig
et al., 1996). Last but not least, in the context of unsupervised
extraction of specific oscillatory components, the spatio-spectral
decomposition (SSD) approach introduced by Haufe et al.
(2014a) deserves to be mentioned.

In addition to these linear subspace methods, nonlinear
decoding methods have been introduced. A recent example are
convolutional neural networks (ConvNets) used for, e.g., the
classification of motor tasks (Schirrmeister et al., 2017), visually
evoked potentials (Lawhern et al., 2016), error-related negativity
responses, movement-related cortical potentials, and sensory
motor rhythms. Further decoding approaches which make use
of various machine learning models have been described in the
literature (see the review provided in Schirrmeister et al., 2017;
Lotte et al., 2018).

We implemented three different decoding methods to
exemplify the application of a our post-hoc-labeling framework.
Specifically, we will report on two classification tasks (using CSP
and ConvNets for a two- and three class classification problem,
respectively) and SPoC for a regression task, covering a wide
range of popular decoding algorithms. We will benchmark these
methods wrt. several dataset-inherent parameters, i.e., dataset
size, label noise level, and variance of the target label z.
The performance of these decoding methods is evaluated
using arbitrarily selected accuracy metrics for the sake of
illustration, i.e., AUC, classification performance, or linear
correlation coefficient.

3.1.1. Common Spatial Patterns (CSP)
The CSP algorithm is an established supervised method in the
BCI community, used in classification tasks for constructing a set
of Nc spatial filters WCSP ∈ R

Nc×Nc that optimally discriminates
epochs of two classes characterized by differing band-power
features, where the labels are defined as y ∈ {1, 2}, corresponding
to a discretization of the continuous label z.

Assuming that M/EEG data X have been bandpass filtered to
the frequency band of interest and segmented into a set of N
epochs, where X(e) represent the e-th epoch of the M/EEG data,
the CSP objective function is mathematically formalized as

argmax
WCSP

WT
CSP (C1 − C2)WCSP

WT
CSP CWCSP

. (5)

with the spatial covariance matrices of classes one and two
defined as C1,2 = N−1

1,2

∑N
e X1,2(e)X1,2(e)

T and with C being the
pooled spatial covariance matrix. It can be shown that a solution
to the CSP optimization problem can be found by solving the
generalized eigenvalue problem

WT

CSP (C1 − C2) = 3WT

CSPC (6)

with WCSP being a matrix containing (column-wise) the
eigenvectors (i.e., spatial filters) which are related to the
eigenvalues provided by the entries of the main diagonal of
3 ∈ R

Nf×Nf .
For our tests, we reduced the full filter matrix to

ŴCSP ∈ R
Nc×2. Thus, it contains two eigenvectors only, one

corresponding to the largest and one to the smallest eigenvalues
in 3, representing each class, respectively. The selection of
the number of CSP filters is an important hyperparameter for
obtaining an optimal decoding performance. However, according
to Blankertz et al. (2011), a good rule of thumb indicates that
between 2 and 8 filters are likely to deliver a good performance.

Note that a spatial filters derived by CSP does not deliver
an estimate of the target variable ẑ(e) yet. To derive estimates
of the target variable, we thus trained a regularized LDA
(rLDA) classifier on the power features (delivered by 2x(e) =

var[ŝ](e)) of the spatially filtered data ŝ(e) = Ŵ
⊤
CSPX(e)

(Blankertz et al., 2011).
The results reported here were computed using the

CSP implementation provided in the MNE toolbox by
Gramfort et al. (2013a, 2014).
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3.1.1.1. Decoding Accuracy
Depending on the application, an arbitrary metric can be used,
which matches well with the given decoding method, e.g.,
classification accuracy, Type I/II errors, etc. To characterize CSP
performance we chose the area ander the ROC curve (AUC).

3.1.2. Source Power Comodulation (SPoC)
Analogously to CSP, the multivariate neural decoding method
SPoC (Dähne et al., 2014b) utilizes a supervised regression
approach in order to estimate a spatial filter wSPoC ∈ R

Nc ,
onto which X will be linearly projected to extract the underlying
continuous target source z.

Specifically, a SPoC spatial filter wSPoC ∈ R
Nc is optimized

such that the power of a projected epoch, 2x(e) = var[ŝ](e),
maximally covaries with the target variable z(e):

argmax
w

{cov
[
2x(e), z(e)

]
} ∀ e (7)

It can be shown that solving this optimization problem is
equivalent to solving the generalized eigenvalue problem

CzwSPoC = λCwSPoC (8)

whereC = N−1
∑N

e X(e)X(e)T is the spatial covariance matrix of

X andCz = N−1
∑N

e z(e)X(e)X(e)T is the epoch-wise z-weighted
spatial covariance matrix.

Given a spatial filter wSPoC, the target variable z can
subsequently be estimated as ẑ for each single epoch of unseen
test data Xte via ẑ(e) = var[w⊤

SPoCXte(e)].
The results reported here were computed using the SPoC

implementation provided in the MNE toolbox by Gramfort et al.
(2013a, 2014).

3.1.2.1. Decoding Accuracy
In this specific scenario, the accuracy of the decoding provided
by SPoC is assessed in terms of the linear correlation ρ between
the estimated target labels ẑ and the true labels z.

3.1.3. Convolutional Neural Network (ConvNet)
Finally, the third use-case for our post-hoc labeling framework
shall be provided by a ConvNet as proposed and implemented
by Schirrmeister et al. (2017). ConvNets provide an end-to-end
decoding of raw EEG signals and thus may be a good method
to chose when prior knowledge about relevant EEG features is
missing. Specifically, we utilized a shallow ConvNet architecture.
It focuses on both temporal and spatial convolutions and thus has
the capacity to detect features in both time and spatial domains,
similarly to features extracted by filters derived by CSP and
SPoC. Unlike CSP and SPoC, however, the input representation
of the EEG signals to the ConvNet does not assume any type of
frequency pre-filtering. Instead, it consists of theNc channels and
Nt time points of the (epoched) raw EEG.

3.1.3.1. ConvNet Architecture
As shown in Figure 2, the temporal convolution step made
use of a kernel size of 25 samples, containing 40 neural

units. Subsequently, a layer with 40 units performed a spatial
convolution step on all the channels. Finally, a log-power
computation precedes amean pooling stage and a fully connected
layer with 3 units (softmax activation), one for each class.

3.1.3.2. Decoding Accuracy
We chose classification accuracy as evaluation metric for the
shallow ConvNet. Nevertheless, as in CSP and SPoC, any given
metric might have been utilized for this purpose, depending on
the focus of the analysis.

3.2. The EEG Dataset
3.2.1. Signal Acquisition
The EEG signals for our use-case were recorded from seven
healthy subjects (three females) with a mean age of 28 years.
Seventy three minutes of EEG data on average were recorded in
a single session while subjects sat calmly in front of a computer
screen and performed the sequential visual isometric pinch
task (SVIPT) (Reis et al., 2009). Given the paradigm-agnostic
character of the post-hoc labeling framework, details about the
SVIPT paradigm remain outside the scope of this paper but can
be consulted in Meinel et al. (2016). EEG signals were recorded
from 31 passive Ag/AgCl electrodes (EasyCap GmbH, Germany)
placed according to the extended 10-20 system. Impedances
were kept below 20 k�. All channels were referenced against the
nose at recording time and were re-referenced against the EEG
common average during the post-hoc analysis. The EEG signals
were registered by BrainAmp DC amplifiers (Brain Products
GmbH, Germany) at a sampling rate of 1 kHz, with an analog
lowpass filter of 250Hz applied before digitization.

3.2.2. Pre-processing Only for post-hoc Labeling
All processing steps necessary to generate the post-hoc
labeled datasets were performed in Matlab using the BBCI
toolbox (Blankertz et al., 2016). The EEG signals were bandpass
filtered between 0.2 and 48Hz with a 5th order Butterworth
filter and then sub-sampled to 120Hz. Assuming the alpha band
being in the focus of a benchmarking scenario, EEG data were
further filtered with a 5th order Butterworth bandpass filter with
cut-off frequencies at 8 and 12Hz. This target frequency band
can be modified according to different analysis goals, but for the
sake of compactness in the use-case analysis, we have kept this
parameter fixed. Finally, the label extraction procedure described
in section 2.2.2 was applied, in order to obtain a labeled dataset
comprised by X and z.

For the generation of the datasets containing anatomical
constraints on the sources, the publicly available
New York Head (Huang et al., 2016) was used. It describes
a finite element model containing 2,000 sources located on
the cortical surface. These sources were subsampled from a
highly detailed model containing 74,382 sources, which had
been computed from a non-linear average of 152 human brains.
The New York Head takes scalp, skull, cerebro-spinal fluid, gray
matter, and white matter into account. Sources were assumed to
be perpendicularly oriented wrt. the cortical surface, however,
our framework could also be used with models that allow for free
source orientation.
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FIGURE 2 | Architecture of the ConvNet. Modified from Schirrmeister et al. (2017) with the permission of the authors.

On the other hand, for the data-driven approach, a fixed
number of 20 ICA components were extracted for each subject.
Ideally, only components corresponding to actual neural sources
should be selected for further analysis. For the identification of
such neural components, themultiple artifact rejection algorithm
(MARA) (Winkler et al., 2011) was applied, using a posterior
probability threshold of 10−8 for components classified as having
neural origin.

3.2.3. Pre-processing for Algorithm Benchmarking
The pre-processing pipeline we chose to apply on the newly
labeled data was selected to match the requirements of the
decoding methods presented as use-cases; consequently, it is
independent of the post-hoc dataset generation framework.

For outlier detection, the continuous EEG data X were
bandpass filtered between 0.7 and 25Hz with a 5th order
Butterworth filter. Segments of the continuous data with peak-
to-peak amplitude exceeding 80µV were marked as artifactual
for later removal in the pre-processing pipeline. Only for CSP and
SPoC, the original continuous data X, was filtered by a 5th order
Butterworth filter to the band of 8–12 Hz. For ConvNets, the
original raw data was used. Then, EEG data and the target source
z were segmented in non-overlapping windows of 1 s duration.
At this point, epochs marked earlier as artifactual were removed.
For the remaining segments, the epoch-wise average power of z
was extracted and used as the target variable to train the decoding
algorithms. For CSP and ConvNet, epoch-wise discrete labels
were generated. For the binary classification tasks they were
determined by the top and bottom 50th percentile, whereas the
33th and 66th percentiles limits defined the three-class problem.
At this point we want to point out, that the epoching does
not necessarily need to obey the original time structure of the
experimental paradigm, under which X was recorded.

3.3. Sweep Over Three Dataset-Inherent
Parameters
The practitioner will probably strive for the best possible
decoding performance. For doing so, he/she may have the choice
between different decoding models or may try to improve upon
existing methods. In a real application, the relative variance of
the labels, dataset size, and label noise level are typically not
or only weakly controllable, even though these dataset-inherent
parameters may have a strong impact upon the decoding. In

our benchmarking scenario, however, absolute control over these
or similar dataset-inherent parameters is granted for free, thus
allowing to investigate, under which conditions a decodingmodel
is applicable or which aspects of an existing method should be
improved in order to optimize the decoding performance. Along
the lines of the illustrative chart shown in Figure 3, we provide
three exemplary use cases, where we tested the robustness of
the three decoding methods wrt. the aforementioned parameters,
namely: (1) relative variance of the labels, (2) dataset size, and (3)
label noise level.

3.3.1. Relative Variance of the Labels
First, machine learning methods favor datasets that contain
high contrast in the labels. For example, Meinel et al. (2018)
demonstrated that SPoC decoding performance is positively
correlated with the variance of the target labels z over epochs e.
In our current contribution, we analyzed the performance of the
decoding methods for three type of target sources: sources with
high, medium, and low power variability, each corresponding
to the respective subject-wise tertile membership of the source
power variability (z-variance). Note that when using ICA for
generating Sd, the scaling of the sources S is unknown. This does
not represent any drawback for our framework; however, to allow
for the analysis of performance with respect to z-variance, each
of the sources in S ∈ Sd were normalized wrt. their ℓ2-norm and
scaled using the average covariance of each source with all the
channels, i.e., s̃i =

(
1/Nc

∑
Nc

six
T
i

)
si; with s̃i being the i-th row

in S̃ ∈ Sd, from which the z labels are finally extracted, according
to section 2.2.2.

3.3.2. Dataset Size
Second, each decoding model’s sensitivity wrt. the number of
training epochs was evaluated by sweeping from 50 to 2,000
epochs, as larger datasets prevent overfitting and deliver more
robust models.

3.3.3. Label Noise
Third, the influence of label noise was investigated, which was
either imposed upon z (in the case of continuous labels in
regression problems) or upon y (for classification problems). For
both types of problems, the intensity of the noise was defined,
respectively, as {ξ

reg
n , ξ classn } ∈ R, 0 < ξ

reg
n < 1, 0 < ξ classn <

1, specifically:
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FIGURE 3 | Typical use-case for the post-hoc labeling framework. Firstly, the kind of inverse mapping algorithm used shall be determined (e.g., ICA, MNE, or any

other inverse mapping method). Afterwards, depending on the analysis goals, a subset of dataset parameters—as dataset size or label noise—can be selected for a

parameter sweep, allowing to arrive to conclusions providing insight about the decoding methods evaluated.

Label noise for regression: The variable ξ
reg
n controls the

correlation ρn between the original clean labels z and more
challenging labels zn, such that ξ

reg
n = (1 − ρn) holds.

Subsequently, noisy labels zn are defined as

zn = z +
1− (1− ξ

reg
n )2

(1− ξ
reg
n )2

var (z) η (9)

where η is a normally distributed random variable.
Label noise for classification: The variable ξ classn for discrete labels
is defined as

ξ classn = 2
(
1− P

[
yn(e) = y(e)|y(e))

])
(10)

that is, ξ classn controls the probability of assigning a given epoch
e to a class different from the ground truth. For multiclass
problems, if yn(e) 6= y(e), then yn(e) is assigned with equal
probability to any of the remaining classes.

Sweeping over the three hyperparameters delivered more
than 10,000 evaluations of different dataset configurations. The
performance of each configuration is assessed by a chronological
5-fold cross-validation procedure. All results shown are based on
the data of all the seven subjects. The results shown for SPoC
and CSP were computed using the dataset generation framework
based on data-driven source constraints, whereas for ConvNet,
the version with physiologically constrained sources was used.

4. RESULTS OF USE-CASES

The datasets generated using the post-hoc labeling framework
are characterized by Figure 4. Per subject, an average of 4,700
epochs could be obtained from only 73min of average EEG
recording time, while an average of 2,136 epochs were rejected
as artifactual. Thus the proposed framework yields an acceptance
rate of approximately 55%. The accepted epochs could then be
labeled in multiple ways, as each source can be utilized to define
a label set. Per source, the resulting labels were analyzed for
variance. We found, that the distribution of all label variances
approximates a gamma distribution (see histograms in Figure 4),

both for the labels extracted via MNE and those extracted by the
data-driven fastICA approach.

Next, we exemplify how the sensitivity of the three use-case
algorithms SPoC, CSP, and ConvNet toward dataset-inherent
parameters can be analyzed using the proposed framework. The
top row of Figure 5 shows the performance metrics obtained by
a sweep over the parameter label noise while maintaining the full
dataset size. The bottom row depicts the influence of the dataset
size upon the performance, while no label noise was applied
(ξ classn = ξ

reg
n = 0). For each subplot, results have been grouped

into tertiles defined by z-variance. In addition, Figure 6 provides
a full bi-parametric analysis separately for the z-variance tertiles.

We observed, that label noise values of ξ
reg
n > 0.2 significantly

reduced SPoC’s performance score ρ. Interestingly, the variance
of the labels z does not seem to play a systematic role for SPoC’s
decoding quality, if the training set is large. However, SPoC’s
performance suffers a drop for dataset sizes of ≈ 300 epochs or
less, and this drop is most pronounced for the low and medium
groups of z-variance. It can also be observed that high label noise
cannot be compensated for by SPoC, even with large training
datasets. However, for limited amount of noise, a larger dataset
may be a sufficient countermeasure, which can be obtained
by adapting the experimental design of a given paradigm in
order to improve the data collection efficiency. The method CSP
shows a similar behavior to SPoC. The critical thresholds of the
investigated parameters, for which the performance dramatically
drops, are around a label noise value of ξn ≈ 0.1 and a dataset
containing ≈ 400 samples. These results might be an indication
for applying regularization techniques, specially if CSP or SPoC
are to deal with small datasets. This conclusion agrees with
state-of-the-art studies, e.g., by Meinel et al. (2018).

ConvNet models show a high performance variance over the
full spectrum of both parameters. Its performance scores are
very sensitivity wrt. the number of epochs and label noise: this
data-hungry method requires approx. 1,000 epochs under no
label noise to reach peak performance. Even small amounts of
label noise influence ConvNet’s performance, with label noise
larger than ξ classn ≈ 0.1 leading to a pronounced decline of the
network’s performance. It is necessary to remark that the 3-class
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FIGURE 4 | Characteristics of the generated datasets. (Left) accepted and rejected (artifactual) 1-s epochs for each of the subjects. (Right) Pooled over all sources

derived from the seven subjects, the distribution of the variance of labels z is given, as observed during the data/label generation using either the head model or the

data-driven approach. Color encode the tertile membership of the z-variance: low varying labels, medium varying labels, and high varying labels.

FIGURE 5 | Performance analysis wrt. to label noise and dataset size, discriminated for each tertile membership of z-variance, i.e., first tertile, second tertile, and

third tertile. (The corresponding shaded areas indicate one standard deviation).

classification task solved by ConvNet is the most complex one of
the use-cases analyzed. This may partially explain the increased
sensitivity of the method to the dataset size and label noise.
However, another likely reason for such sensitivity is the large
number of free parameters of the network to be tuned during its
training, indicating that the complexity of the network should be
reduced if the dataset size is not large enough.

5. DISCUSSION

For the development of decoding algorithms, an ideal testbench
should be capable of providing large amounts of data, clean

labels, and realistic neural dynamics. Unfortunately, state-of-the-
art approaches lack one or several of these properties. To address
this, we have introduced a labeled dataset generation framework.
Its key idea is to implement a post-hoc labeling of (potentially very
long) paradigm-agnostic pre-recorded M/EEG signals.

5.1. Advantages Over State-of-the-Art
Frameworks
The post-hoc labeling framework allows to generate relatively
large labeled datasets based on real neural signals and by
doing so, it prescinds from making critical assumptions about
neural dynamics. As a clear advantage of the proposed
framework, the labels can be deterministically recoverable from
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FIGURE 6 | Biparametrical analysis of performance wrt. to tertile membership of the target variable z variance.

the available data, thus, they are provided free of noise,
from the perspective of the decoding methods. Furthermore,
the post-hoc labeling of paradigm-agnostic M/EEG recordings
offers greater efficiency in terms of data use. Compared to
real datasets whose labels depend on the paradigm they were
recorded under, our post-hoc labeling can also make use of
recorded idle periods or preparatory intervals. For the provided
EEG dataset, this led to an exploitation of effectively 55%
of the overall M/EEG recording time for training and test
data generation.

Our framework allows for absolute control over important
parameters of the generated dataset and provides full knowledge
about the statistical and—in case of the head model—anatomical
properties of the target sources. It provides an ideal starting point
for comparing competing decoding methods, as it yields insight
into the data conditions under which methods stand out among
the competing others.

Nevertheless, one relevant parameter unfortunately remains
outside the control of our framework: the amount of sensor
noise. This parameter is determined by the available real-M/EEG
signals and can not be improved (only worsened) post-hoc.

Here, synthetic data generation approaches have a theoretical
advantage, as they can control the level of sensor noise. In
practice, however, it may not be straightforward to determine
noise levels during synthetic data generation in order to match
real experimental conditions.

5.2. Application in Development of Neural
Decoding Methods
With the three use-cases presented as exemplary analyses
enabled by post-hoc labeling, we intent to show how our
framework can be used to investigate strengths and limitations
of arbitrary decoding algorithms under different scenarios. For
example, it could be easily observed, that the performance
differences among labels with different variability is marginal,
if the number of epochs surpasses a critical, method-specific
threshold. However, for datasets below this threshold, the
strongest varying labels showed a better performance than
those belonging to the first and second tertile of label
variability. Using the post-hoc labeling framework was an effective
way to investigate these thresholds as well as the influence
of label noise. However, not only the required (minimum)
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TABLE 1 | Comparison of advantages and disadvantages of two state-of-the-art

testbench scenarios against the proposed novel post-hoc labeling framework.

Dataset

type

Dataset

size

Label noise

ctrl.

Sensor

noise ctrl.

Real statistics

and dynamics

Synthetic Large Yes Yes No

Real EEG Small No No Yes

Post-hoc

labeling

Medium/large / Yes No Yes

amount of training data or feasible levels of label noise
can be examined with the framework, also other specific
constraints could easily be incorporated during the generation
of the benchmark datasets. Examples are prior knowledge
about central frequency, strength, or anatomical location
of sources.

Nevertheless, frameworks using purely synthetically generated
signals or real EEG recordings with paradigm specific labels
have their place, next to the post-hoc labeling framework,
in the development pipeline of neural decoding methods.
Early development stages of decoding algorithms may benefit
from strictly controlled simulation environments, as shown for
example in the recent work presented by Krol et al. (2018).
Furthermore, in late development stages and prior to deployment
in real-world applications, validation on strictly real scenarios
is necessary, for example, using the benchmark framework
provided by Jayaram and Barachant (2018).

5.3. Considerations About Non-stationary
Dynamics
By using MNE and ICA for inverse mapping, as shown in the
exemplary use-cases, we assume a stationary mapping between
M/EEG signals and neural sources, which may not always be
true, specially for long recordings. Such assumption should
be kept in the foreground, mainly in two scenarios: First,
when claiming that the generated target sources exclusively
correspond to a particular source with specific anatomical or
physiological interpretation, since a stationary inverse mapping
under non-stationary conditions would potentially deliver a
time-varying mixture of underlying neural sources. Second,
when benchmarking neural decoding methods designed to
deal with non-stationary dynamics, since post-hoc labeling
using stationarity assumptions may deliver a dataset where
the strengths of any adaptive decoding method cannot be
properly evaluated.

Using ICA and MNE in our use-cases was motivated by
the observation, that the most popular decoding methods (for
example, CSP, SPoC, or convNets) predominantly assume an
underlying within-session stationary process. Challenging those
popular decoding methods with labels derived by, e.g., STOUT
or adaptive ICA would probably have an impact upon these
decoding methods comparable to label noise.

Fortunately, the flexibility provided by the post-hoc labeling
framework facilitate the use of inverse mapping methods,
capable of dealing with underlying non-stationary processes. For
example, state-of-the-art source reconstruction methods as TF-
MxNE (Gramfort et al., 2013b) or STOUT (Castaño-Candamil
et al., 2015a) are designed to extract neural sources from non-
stationary M/EEG recordings, and could be employed in our
post-hoc labeling framework, instead of MNE. Likewise, adaptive
blind-source separation methods (usually deployed in online
scenarios) can be used to perform a data-driven inverse mapping
without assuming stationary dynamics (Hsu et al., 2015), as an
alternative to the ICA procedure presented. Finally, under the
assumption of piecewise stationarity, long recordings may be
segmented into locally stationary windows—e.g., using statistical
features of the spectrogram of the signals (Hory et al., 2002)—,
and then the proposed post-hoc labeling framework can be
carried out in the resulting (stationary) epochs.

To wrap up, Table 1 summarizes the properties of our
contribution (post-hoc labeled data) compared to that of other
testbench approaches.

To facilitate the adoption of the post-hoc labeling framework
as a tool for developing and testing decoding algorithms for
oscillatory neural phenomena, both the source code and datasets
utilized in the use-case scenarios have been made publicly
available1 (Castaño-Candamil et al., 2017a).
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